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Abstract

Blum� Cucker� Shub and Smale have shown that the problem �P � NP ��
has the same answer in all algebraically closed �elds of characteristic ��
We generalize this result to the polynomial hierarchy� if it collapses over
an algebraically closed �eld of characteristic �� then it must collapse at the
same level over all algebraically closed �elds of characteristic �� The main
ingredient of their proof was a theorem on the elimination of parameters�
which we also extend to the polynomial hierarchy� Similar but somewhat
weaker results hold in positive characteristic�

The present paper updates a report 	LIP Research Report 
���� with the
same title� and in particular includes new results on interactive protocols
and boolean parts�

Keywords� elimination of parameters� polynomial hierarchy�

Blum�Shub�Smale model�

R�esum�e

Blum� Cucker� Shub et Smale ont montr�e que la r�eponse au probl�eme
�P � NP �� est la m�eme dans tous les corps alg�ebriquement clos de
caract�eristique �� Nous g�en�eralisons ce r�esultat �a la hi�erarchie polynomiale�
si elle s�e�ondre pour un corps alg�ebriquement clos de caract�eristique ��
alors elle s�e�ondre au m�eme niveau pour tous les corps alg�ebriquement
clos de caract�eristique �� L�ingr�edient principal de leur d�emonstration est
un th�eor�eme d��elimination des param�etres� que nous �etendons �egalement �a
la hi�erarchie polynomiale� Des r�esultats similaires mais un peu plus faibles
s�appliquent en caract�eristique positive�

Cet article met �a jour un rapport pr�ec�edent 	rapport de recherche LIP 
��
�� portant le m�eme titre� et contient notamment des r�esultats nouveaux
sur les preuves interactives et les parties bool�eennes�

Mots�cl�es� �elimination des param�etres� hi�erarchie polynomiale�

mod�ele de Blum�Shub�Smale�
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� Introduction

Blum� Cucker� Shub and Smale ��� �	 have shown that the answer to the question

P�NP � is the same in all algebraically closed �elds of characteristic �� This
theorem is based on an elimination of parameters� if K � K are two algebraically
closed �elds of characteristic �� the restriction to K of a problem which is P in K
�possibly with the help of parameters from K� is P in K� In this paper we prove
the corresponding theorems for the polynomial hierarchy� Thus� if the hierarchy
collapses over an algebraically closed �eld of characteristic �� it collapses at the
same level over all algebraically closed �elds of characteristic �� We have similar
but weaker results in positive characteristic� For instance� we can only show that
the collapse of the hierarchy over K at level k implies its collapse at level k � �
over K� It may be possible to avoid losing one level by moving to non�uniform
complexity classes� see ���	 for such results� Let us also mention that for an
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arbitrary structure� one never has to lose more than three levels in the downward
transfer for P � NP ���	� Proposition ������

As in these two papers� our methods have a method�theoretic �avor� In
particular� we use e�ective quanti�er elimination bounds in characteristic �� It is
not clear whether the present results can be obtained with the number�theoretic
techniques of ��� �	�

The rest of this paper is organized as follows� In section � we recall some more
or less standard material on de�nable sets and on the polynomial hierarchy� Sec�
tion � is devoted mostly to the elimination of algebraic parameters �in arbitrary
characteristic�� From this we obtain the transfer theorem in characteristic � at
the end of that section� As in ��� �	 this theorem follows from the elimination of
parameters� but one can give a fairly simple and direct proof sooner� We have
found it useful to use the 
generic quanti�er �� throughout the paper� It is
introduced in section �� but a systematic investigation of its properties is post�
poned until section �� Finally we eliminate parameters in section �� That section
also includes an application to boolean parts� the transfer theorem in positive
characteristic� and a study of interactive protocols �at the MA and AM levels� in
algebraically closed �elds� A study of interactive protocols over the reals �at the
higher IP level� has been undertaken recently in ���	�

� Background

��� Formulas and the Sets they De�ne

In this paper we work in the �rst order theory of an algebraically closed �eld
K� Unless stated otherwise� p denotes the characteristic of K� and Fp its ground
�eld� F� � Q and Fp �Z�pZfor p � �� The set de�ned by a formula F �x� where
the free variable lives in Kn is the set of u � Kn such that K j� F �u�� De�nable
sets are also called constructible� or quasi�algebraic�

A basic quasi�algebraic set of Km is de�ned by a system of polynomial equal�
ities and inequalities of the form

P��x� � �� � � � � Pk�x� � �� Q��x� �� �� � � � � Ql�x� �� �

where P�� � � � � Pk� Q�� � � � � Ql are in K�X�� � � � �Xm	� By quanti�er elimination�
every de�nable set is a �nite union of basic quasi�algebraic sets� The following
result from ��	 gives an e�ective version of quanti�er elimination�

Theorem ��� Let K be an algebraically closed �eld and F a prenex formula in
the �rst�order theory of K� Let k be the number of quanti�er blocks� m the total
number of variables� and � the total degree of F � de�ned as � � � �

P
i deg Fi

where the Fi�s are the polynomials occurring in F � F is equivalent to a quanti�er�
free formula G in which all polynomials have degree at most

�m
O�k��log��O���

�
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The number of polynomials occurring in G is O��m
O�k�

��
Moreover� when K is of characteristic � and F is a formula in which all

parameters are integers of bit�size at most L� the parameters in G are integers of
bit size at most L��m

O�k��log��O���
�

In the remainder of section ��� we assume that K is of characteristic ��
Let F �x� be a �rst�order formula in the theory of K where the free variable

x lives in Kn � If the set of w � Kn such that K j� F �w� is dense in Kn we say
that K j� ��x F �x� �more on this 
generic quanti�er in section ��� Let T �F �
�for 
test set� be the set of w � Kn such that K j� F �w� i� Kj���x F �x��

Proposition ��� Let F �x� be a quanti�er�free �rst�order formula where x � Kn �
Assume that the polynomials in F are of degree at most D� with integer coe�cients
bounded byM in absolute value� Any point � � ���� � � � � �n� satisfying �� �M��
and �j � � �M�D � ��j���D

j�� for j � � is in T �F ��

Proof� Replacing F by �F if necessary� we assume that K j� ��x F �x��
The subset of Kn de�ned by F is a �nite union of basic quasi�algebraic sets

�obtained by putting F in disjunctive normal form�� and one of them must be
dense� Such a set S is of the form P��x� �� �� � � � � Pm�x� �� � where the Pi�s are
non�zero polynomials of degree at most D� with integer coe�cients bounded by
M in absolute value� Then the � de�ned in the statement of the theorem satis�es
Pi��� �� � for any i � �� � � � �m �this is not hard to prove� see e�g� ���	 and its
erratum�� This implies � � S� hence F ��� holds� �

Note that the sequence in this lemma can be constructed in a polynomial number
of arithmetic operations �more precisely in O�log logM � n logD� operations
starting from the integer ��� Nonetheless the components of � are of bit size
exponential in n� The next result shows �non�constructively� that there exist
integer points of polynomial size in T �F ��

Proposition ��� Let F �x� be a quanti�er�free �rst�order formula where x � Kn �
Let s be the number of atomic predicates in F and D an upper bound on their
degrees� There exists a point in T �F � whose coordinates are non�negative integers
bounded by sDn�

Proof� We may assume again that K j� ��x F �x�� As in the proof of Proposi�
tion ���� T �F � contains a set of the form P��x� �� �� � � � � Pm�x� �� � where m � s
and the Pi�s are non�zero polynomials of degree at most D� Let P �

Qm
i�� Pi�

By Schwarz�s Lemma ���	� there exists � such that P ��� �� � and ��� � � � � �n are
integers in f�� �� � � � � sDng� �

Note that the parameters in F may be arbitrary elements from K� One can apply
these two propositions to quanti�ed formulas by eliminating quanti�ers �rst�

�



Corollary ��� Let F a prenex formula in the �rst�order theory of K� Let � be
its total degree� k be the number of quanti�er blocks� and m the total number
of variables� There exists a point in T �F � with integer coordinates of bit size
mO�k��log ��O���� Moreover� if the parameters in F are integers of bit size at most
L� one can construct in O�log L� � mO�k��O��� arithmetic operations an integer
point in T �F �� This point depends only on L� m and ��

Proof� Immediate from Proposition ���� Proposition ��� and Theorem ���� �

��� The Polynomial Hierarchy

Here we want to recall the de�nition and basic properties of the polynomial
hierarchy� We will work over algebraically closed �elds since this is the examplewe
have in mind for this paper� but everything holds true in much greater generality
�see ���	 and ��	� in particular sections � and ��� For an introduction to the
Blum�Shub�Smale model of computation� see ��	 or ���	�

For any k � �� a problem A � K� is in �k
K if there exists a problem B � PK

such that for each n � �� A � Kn is de�ned by the formula

Q�y� � K
p� �n� � � �Qkyk � K

pk �n�hx� y�� � � � � yki � B

where the quanti�ers alternate� starting with Q� � �� If Q� � 	 instead� A �
�k
K� Of course the polynomial hierarchy is the union of the �k

K for k � �� By
convention one can set ��

K � ��
K � PK� In the notations �k and �k� we always

assume implicitly that k � � unless otherwise stated�
We recall that the polynomial hierarchy is said to collapse at level k if any

of these three equivalent properties holds� �i� �k
K � �k

K� �ii� �k
K � �k��

K � �iii�
�k
K � �k��

K � We also recall that the decision problem D�k
K for �k formulas is

�k
K�complete �for polynomial�time reductions�� and that the decision problem

D�k
K for �k formulas is �k

K�complete� Therefore �k
K � �k

K i� D�k
K � �k

K� More�
over� D�k

K and D�k
K are de�ned by the same parameter�free formulas in any

algebraically closed �eld� From this an upward transfer theorem follows easily�

Proposition ��� Let K � K be two algebraically closed �elds� If �k
K � �k

K then
�k
K � �k

K�

Proof Sketch� By hypothesis D�k
K � �k

K� and the corresponding algorithm will
also solve D�k

K since these two problems are de�ned by the same formulas� This
implies �k

K � �k
K �see ��	� Lemma ��� for more details�� �

There is a partial converse�

Proposition ��	 Let K � K be two algebraically closed �elds� If D�k
K is in �k

K

and the corresponding algorithm uses only parameters from K then �k
K � �k

K�

�



Proof Sketch� As in the proof of Proposition ���� the �k
K algorithm for D�k

K will
also solve D�k

K � Hence D�k
K � �k

K� and �k
K � �k

K� �

In the proof of the transfer theorem �Theorem ���� we will show that this proposi�
tion can be applied if the polynomial hierarchy collapses in characteristic �� More
precisely� if �k

K � �k
K then D�k

K can be solved by a parameter�free �k
K algorithm�

� A Transfer Theorem in Characteristic �

The main goal of this section is to establish the transfer theorem for the collapse
of the polynomial hierarchy� First� we show that algebraic parameters can be
eliminated� This will also be useful for the proof of the general elimination result
in section ��

Lemma ��� Let K be an algebraically closed �eld of any characteristic� and K a
sub�eld of K� Let A be a problem in �k

K with parameters in an algebraic extension
K��	 of K �here � � K�� There exists a problem A� in �k

K with parameters in K
such that A and A� have the same restriction to K� Moreover� A � A� if A is
de�nable with parameters in K�

Proof� There is a problem B in PK with parameters in K such that for x � Kn �
x is in A i�

Q�y� � K
p� �n� � � �Qkyk � K

pk �n�hx� y�� � � � � yk� �i � B�

Let m be the minimal polynomial of � overK� We de�ne A� as follows� if Qk � ��
x � Kn �A� i�

Q�y� � K
p� �n� � � �Qkyk � K

pk �n�Qk� � K�m��� � � 
 hx� y�� � � � � yk� �i � B	�

If Qk � 	� x � Kn �A� i�

Q�y� � K
p� �n� � � �Qkyk � K

pk �n�Qk� � K�m��� � � � hx� y�� � � � � yk� �i � B	�

It is clear that A� is in �k
K with parameters in K� We claim that A and A� have

the same restriction to K� and that A � A� if A is de�nable with parameters in
K�

For the �rst part of the claim� �x any x � Kn� and consider the set Gx � K

of parameters that can 
play the role of � on input x� That is� � � Gx i��

x � A� Q�y� � K
p� �n� � � �Qkyk � K

pk �n�hx� y�� � � � � yk� �i � B�

Note that in this formula� 
x � A is just a boolean value since x is �xed� Since
� � Gx by de�nition� its conjugates �the other roots of m� are also in Gx� Indeed�
by quanti�er elimination Gx is de�ned by a quanti�er�free formula Fx��� with

�



parameters in K� An atomic predicate P ��� � � in that formula is satis�ed by
� i� P is a multiple of m� that is� i� it is satis�ed by all the roots of m� This
property of Gx implies the �rst part of the claim�

The proof of the second part is very similar� Let Fn be a formula with pa�
rameters in K de�ning A � Kn � Consider the set G � K of parameters that can

play the role of � for any input x � Kn � That is� � � G i��

	x � Kn �Fn�x�� Q�y� � K
p� �n� � � �Qkyk � K

pk �n�hx� y�� � � � � yk� �i � B	�

For the same reason as above� the roots of m are all in G and this impliesA � A��
�

Theorem ��� Let K be an algebraically closed �eld of any characteristic� and
K a sub�eld of K� Let A be a problem in �k

K with parameters in an algebraic
extension K���� � � � � �p	 of K� There exists a problem A� in �k

K with parameters
in K such that A and A� have the same restriction to K� Moreover� A � A� if A
is de�nable with parameters in K�

Proof� By induction on k� The case p � � is Lemma ���� To go from p to p � ��
write K���� � � � � �p��	 as K���� � � � � �p	��p��	� apply the lemma to get rid of �p���
and then the induction hypothesis to get rid of ��� � � � � �p� �

In particular� if K is algebraically closed the restriction of A is in �k
K since K is

an elementary extension of K in this case� Note that if K is of characteristic ��
we can assume that p � � by the primitive element theorem�

Corollary ��� Let K be an algebraically closed �eld of any characteristic� and
K a sub�eld of K� Let A be a problem in �k

K� There exists an extension L �
K���� � � � � �q� with algebraically independent �i�s and a problem A� in �k

K with
parameters in L such that A and A� have the same restriction to K� Moreover�
A � A� if A is de�nable with parameters in K�

Proof� A is in �k
K with parameters in an algebraic extension

K���� � � � � �q����� � � � � �p	

of a transcendental extension K���� � � � � �q�� Now apply Theorem ��� to
K���� � � � � �q�� �

Here is the main result of section �� The proof is quite similar to that of Propo�
sition � in ���	�

Theorem ��� Let K be an algebraically closed �eld of characteristic �� If the
polynomial hierarchy over K collapses� it collapses at the same level over any
algebraically closed �eld of characteristic ��
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Proof� It su�ces to show that �k
K � �k

K if and only if �k

Q
� �k

Q
� The 
if part

follows from Proposition ����
Assume now that �k

K � �k
K� in this caseD�k

K can be solved by a �k
K algorithm

using p parameters ��� � � � � �p� For each n there is a parameter�free formula Fn

which is satis�ed by � � Kp i� � can be used by this algorithm as a vector of
parameters to solve all instances of D�k

K of size n� Observe that �when put in
prenex form� Fn is of polynomial size and has a bounded number of quanti�er
alternations� Also K j� Fn��� by de�nition�

By Corollary ��� �applied with K � Q� we can assume that ��� � � � � �p are
algebraically independent� From K j� Fn��� it follows that K j� ��x Fn�x� �if
this is not clear to you� read the proof of Proposition ����� By Corollary ���� one
can construct in time polynomial in n a vector � � Np satisfying Fn� We can
then use � to solve D�k

K with a parameter�free �k
K algorithm� We conclude that

�k

Q
� �k

Q
by Proposition ���� �

� The Generic Quanti�er

The results of sections ��� and ��� apply to algebraically closed �elds of arbitrary
characteristic�

��� De�nition and Basic Properties

We have already introduced the generic quanti�er in section �� given an alge�
braically closed �eld K �of any characteristic� and a �rst�order formula F �v�
where v � Kq � K j� ��v F �v� i� the set of v�s such that F �v� holds is �Zariski�
dense in Kq � This means that there exists a nonzero polynomial p such that
K j� F �v� whenever p�v� �� �� One could also de�ne a 	� quanti�er as�

	�v F �v�  ���v �F �v��

but this would be redundant since this double negation is equivalent to ��v F �v��
�Note however that in real�closed �elds� one can similarly de�ne two distinct
quanti�ers �� and 	� ���	��

First�order formulas involving this new quanti�er will be called 
generalized
formulas� Ordinary formulas will just be referred to as 
formulas� or 
�rst�
order formulas� This distinction will be dropped shortly since� as we now show�
generalized formulas are equivalent to ordinary formulas�

Proposition ��� Let F �u�� � � � � us� be a generalized formula in the language
f�� ������ �g� and K an algebraically closed �eld of characteristic p � �� There
exists an ordinary formula F � in the same language such that for all u � Ks �
K j� F �u� if and only if K j� F ��u�� Moreover� F � depends only on F �

�



Proof� Reasoning by induction on the structure of F � it su�ces to consider
formulas of the form F �u�  ��v G�u� v� where v � Kq � Moreover� we may
assume that G is quanti�er�free and in disjunctive normal form� Then G �
C� � � � � � Cm where each Ci is a conjunction of the form

pi���u� v� � � 
 � � � 
 pi�mi
�u� v� � � 
 qi�u� v� �� ��

��v G�u� v� is equivalent to
Wm
i�� �

�v Ci�u� v�� Given u � Ks � ��v Ci�u� v� holds
if as a polynomial in v� q�u� �� is not identically zero and if all the pij�u� �� are
identically zero� This yields the desired ordinary formula� Since G depends only
on F �in particular G can be made independent of p�� the same is true for F ��
�

As a consequence� we see that elementary equivalence also holds for generalized
formulas�

Corollary ��� Let K � K be two algebraically closed �elds� and F a generalized
statement �closed formula� with parameters in K� Then K j� F if and only if
K j� F �

Proof� Write F � G�u� where u is the vector of parameters of F � and apply
Proposition ��� to G� The result then follows from elementary equivalence for
ordinary formulas� �

Proposition ��� Let K be an algebraically closed �eld and F �v� a �rst�order
formula where the free variable v lives in Kq � Let K � K be a �eld containing
the parameters of F � If K is of transcendence degree at least q over K� the three
following properties are equivalent�

�i� K j� ��v F �v��

�ii� For any v � �v�� � � � � vq� of transcendence degree q over K� K j� F �v��

�iii� There exists v � �v�� � � � � vq� of transcendence degree q over K such that
K j� F �v��

Proof� As in the proof of Proposition ���� we assume that F is in disjunctive
normal form� F  C� � � � � � Cm where each Ci is a conjunction of the form

pi���v� � � 
 � � � 
 pi�mi
�v� � � 
 qi�v� �� ��

K j� ��v F �v� if and only if there exists a Ci with qi not identically zero and all
the pij identically zero� In this case� if v is of of transcendence degree q over K
then qi�v� �� � by de�nition� Therefore �i� implies �ii�� The implication �ii�� �iii�
is trivial �but uses the assumption on K�� To show that �iii� implies �i�� we use
the disjunctive normal form again� Let v�� � � � � vq be algebraically independent
elements such that K j� F �v�� There exists a Ci such that K j� Ci�v�� Again by
de�nition of algebraic independence� this implies that all the pij are � and qi is
not identically �� Hence K j� ��v F �v�� �

�



As ordinary quanti�ers� �� is commutative� The proof of this Fubini�style prop�
erty is based on Proposition ����

Proposition ��� Let K be an algebraically closed �eld and F �u� v� a �rst�order
formula in the theory of K� The three following properties are equivalent�

�i� K j� ���u� v� F �u� v��

�ii� K j� ��u��v F �u� v��

�iii� K j� ��v��u F �u� v��

Proof� By Corollary ���� we may assume without loss of generality that K is of
in�nite transcendence degree over Fp� Let K be the extension of Fp generated
by the parameters of F � Assume �rst that �i� holds� Then by Proposition ����
there exists a tuple �a� b� with algebraically independent �over K� components
such that K j� F �a� b�� Since the components of b are algebraically independent
over K�a�� it follows again from Proposition ��� that K j� ��vF �a� v�� Finally�
since the components of a are algebraically independent over the parameters of
the formula ��vF ��� v� �they are in K� we conclude that �ii� holds� The proof
that �i� implies �iii� is similar�

Assume now that �ii� holds� By Proposition ���� there exists a tuple a with
components that are algebraically independent overK such thatK j� ��vF �a� v��
and a tuple b with components that are algebraically independent over K�a�
such that K j� F �a� b�� Since the components of tuple �a� b� are algebraically
independent over K� we conclude from Proposition ��� that �i� holds� The proof
that �iii� implies �i� is similar� �

Of course� in this proof one could also work with a �eld K of �nite� but 
large
enough transcendence degree�

��� E�cient Elimination of the Generic Quanti�er

We have seen in section ��� that generalized formulas can be replaced by ordinary
�rst�order formulas� In this section we will see that this transformation can be
made 
e�ciently�

Theorem ��� Let K be an algebraically closed �eld of any characteristic� Let
F �u� v� be a �rst�order formula where u � Ks and v � Kq � The set W �F � of
sequences �v�� � � � � v�s��� � Kq��s��� satisfying	

	u ���vF �u� v�� jfi� F �u� vi�gj � s� �	 ���

is dense in Kq��s��� �

�



This means that to decide whether F �u� v� holds for 
most v�s� one just has to
check whether it holds for a majority of v�� � � � � v�s��� Moreover� the same �s� �
test points can be used for any choice of u and 
most tuples of �s�� points are
good for that purpose�

The proof given below relies on transcendence degree arguments� and was
suggested by Bruno Poizat �personal communication�� In model theory there is
an abstract version of arguments of this kind� see e�g� ���	� Chapter �� �a sequence
of algebraically independent elements of K is an example of an 
indiscernible
sequence�� It is also possible to use the dimension of de�nable sets� These two
proofs are essentially equivalent� but the �rst one is muchmore concise� We begin
with a simple lemma�

Lemma ��	 Let K be a sub�eld of K and a � �a�� � � � � ak� a sequence of el�
ements of K that are algebraically independent over K� For any s � k and
�v�� � � � � vs� � Ks � there exists a subsequence �aij���j�k�s whose elements are al�
gebraically independent over the the �eld K � � K�v�� � � � � vs��

Proof� Let K �� be the �eld extension of K � generated by the ai�s� tr�degK�K �� �
k � s since tr�degKK

�� � tr�degK�K �� � tr�degKK
� �this is e�g� the corollary of

Theorem � in section V����� of ��	�� tr�degKK
� � s and tr�degKK

�� � k by
de�nition of a� Let B be a transcendence base of K �� overK � made up of elements
of a� B has at least k � s elements� and they are algebraically independent over
K � as needed� �

Proof of Theorem 
��� Let K be the �eld extension of Fp generated by the pa�
rameters of F � As in the proof of Proposition ���� we can assume by Corollary ���
that K has in�nite transcendence degree over K� By Proposition ���� it su�ces
to show that if the components of w � Kq��s��� are algebraically independent
over K� then w � W �F �� Let w � �v�� � � � � v�s��� be such a sequence� and �x any
u � Ks �

Assume for instance that ��vF �u� v� holds� we need to show that
jfi� F �u� vi�gj � s��� By Lemma ���� at least q��s���� s among the q��s���
components of the vi�s are algebraically independent over K � � K�v�� � � � � vs��
This implies that at least ��s����s � s�� of the vi�s have all their components
algebraically independent overK �� By Proposition ���� K j� F �u� vi� for any such
vi�

If ��vF �u� v� does not hold then ��v�F �u� v� holds and applying the argument
above to �F shows that jfi� �F �u� vi�gj � s� �� �

The example F �u� v�  ��v�u���v�u�� � � � �v�us����	 shows that �s�� cannot
be replaced by �s in this theorem� However� for certain formulas one can get
away with fewer test points in the following sense�
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Theorem ��
 Let F �u� v� be a �rst�order formula such that for any u � Ks � if
��vF �u� v� does not hold then F �u� v� does not hold for any v � Kq � The set
G�F � of sequences �v�� � � � � vs��� � Kq�s��� satisfying	

	u ���vF �u� v�� jfi� F �u� vi�gj � �	 ���

is dense in Kq�s����

Proof� Let K be as in the proof of Theorem ���� We claim that if the components
of w � Kq�s��� are algebraically independent over K� then w � G�F �� Indeed�
it follows again from Lemma ��� that for such a w and any u � Kq � there must
exist at least one vi with components that are algebraically independent over
K�u�� � � � � uq�� Then ��vF �u� v� implies F �u� vi�� Conversely� if F �u� vi� holds for
some i then by the hypothesis on F � ��vF �u� v� must hold as well� �

The hypothesis in this theorem is satis�ed in particular by formulas of the form
F �u� v�  �P �u� v� �� �	� where P is a polynomial� Such formulas have been
considered in the study of 
correct test sequences ��	 and in the Witness Theo�
rem ��� �	� The same example shows that the s � � bound cannot be improved
in general �there is a similar remark in ��	��

Theorems ��� and ��� do not provide an explicit construction of a sequence in
W �F � or G�F �� Here is a completely constructive way of eliminating the generic
quanti�er�

Theorem ��� For any �rst�order formula F �v� where v � Kq � K j� ��v F �v� if

and only if K j� �t�� � � � � tq�� � K
q 	v � Kq

q���

i��

F �v� ti��

Proof� Assume �rst that K j� ��v F �v�� Let K be the extension of Fp generated
by the parameters of F � and t�� � � � � tq�� a sequence with components that are
algebraically independent over K� Arguing as in the proof of Theorem ���� we
see that for any v � Kq there exists a ti whose components are algebraically
independent over K�v�� � � � � vq�� The components of v � ti are then algebraically
independent over K� and thus K j� F �v � ti� by Proposition ����

For the converse� let E be the subset of Kq de�ned by F and E� ti the image
of E by the translation of vector ti� If

Sq��
i�� �E�ti� � Kq then one of the translates

of E must be dense in Kq � This implies that E is dense� too� �

The three theorems of section ��� are adaptations to the BSS model of classical
theorems of complexity theory �BPP � P�poly� RP � P�poly and BPP � ����
See e�g� ��	 for the classical theory and ��� ��	 for adaptations of these results to
the BSS model of computation over the reals�

��



��� Construction in Characteristic �

In this subsection we assume that the algebraically closed �eld K is of charac�
teristic �� We will see in Theorem ���� that it is possible to construct explicitly
a sequence in W �F �� Before that� we show that W �F � contains a sequence of
points with integer coordinates of polynomial size� The proof given here relies on
e�ective quanti�er elimination� In ���	 a more precise bound is provided using
connected component arguments�

First� note that W �F � is an equivalence class of the equivalence relation � on
Kq��s��� de�ned by� v � w i�

	u � Ks �jfi� F �u� vi�gj � s� � � jfi� F �u�wi�gj � s� �	� ���

Lemma ��� Let F �u� v� be a quanti�er�free formula of total degree � �with u �
Ks and v � Kq�� There exists a sequence in W �F � with integer coordinates of bit
size �qs log ��O����

Proof� Fix any w � W �F �� Then W �F � is de�ned by ���� The total number
of variables in this formula is s � q��s � ��� its total degree is upper bounded
by ���s� ���� and it has a single block of quanti�ers� By Theorem ���� W �F � is
dense in Kq��s��� and the result follows from Corollary ���� �

An explicit construction follows from this non�constructive bound�

Lemma ��� Let F �u� v� be a quanti�er�free formula where u � Ks and v �
Kq � with integer parameters of bit size at most L� Let � be its total degree�
One can construct in O�log L� � �qs log ��O��� arithmetic operations a sequence
�v�� � � � � v�s��� � W �F � with integer coordinates� Moreover� this sequence depends
only on L� q� s and ��

Proof� We proceed as in the proof of Lemma ���� but instead of an arbitrary point
w � W �F � we use in ��� the point with 
small integer coordinates whose exis�
tence is asserted by that lemma� The result then follows again from Corollary ����
�

There is another proof of this lemma� Instead of de�ning W �F � by ��� one can
replace the generic quanti�er in ��� by the �� formula provided by Theorem ����
One can then apply Corollary ��� as in the proof above�

A generalization to quanti�ed formulas follows easily from Lemma �����

Theorem ���� Let K be an algebraically closed �eld of characteristic � and
F �u� v� a prenex formula with k blocks of quanti�ers� and integer parameters
of bit size at most L� Let � be its total degree� and m the total number of vari�
ables �thus if u � Ks and v � Kq � there are m � s � q quanti�ed variables��
One can construct in O�log L� � �m log ��O�k� arithmetic operations a sequence
�v�� � � � � v�s��� � W �F � with integer coordinates� Moreover� this sequence depends
only on L� m� k and ��
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Proof� Eliminate quanti�ers in F with Theorem ��� and then apply Lemma �����
�

� Stability in the Polynomial Hierarchy

The main goal of this section is to prove the following 
e�ective stability result�

Theorem ��� Let K � K be two algebraically closed �elds of characteristic ��
and A a problem in �k

K� The restriction of A to K is in �k
K �

An application to boolean parts is also discussed in section ���� and interactive
protocols over C are studied in section ����

��� Elimination of Parameters

Proof of Theorem ���� By Corollary ���� we may assume without loss of generality
that A is �k

K with parameters ���� � � � � �q� ��� � � � � �r� where the �i are algebraically
independent over K� and the �i are in K� Our goal is to show that for inputs in
K� the �i�s can be simulated by computations in K�

A � Kn is de�ned by a formula Fn�x� �� �� of the form

Q�y� � K
p� �n� � � �Qkyk � K

pk �n�hx� y�� � � � � yk� �i � B

where � � ���� � � � � �q� and B is PK with parameters �� By Proposition ���� this
is equivalent for x � Kn to

��z � Kq Fn�x� z� �� ���

since the �i are algebraically independent� Hence we are led to consider the
problem A� � Kn de�ned by ���� As we have just seen� A and A� have the
same restriction to K� Let w � �v�� � � � � v��n�r���� � K

q���n�r���� be a sequence
inW �Fn�� By de�nition ofW �Fn�� an input x � Kn is inA� i� jfi� Fn�x� vi� ��gj �
n� r � �� or in other words�

�i�� � � � � in�r��
n�r���

j��

Fn�x� vij � ��� ���

Each term in the conjunction is a �k formula� One can put ��� in �k �prenex�
form by interleaving the quanti�ers blocks coming from each term� Since B � PK
and the vi can be constructed in polynomial time by Theorem ����� this shows
that A� is in �k

K with parameter � � Kr� By elementary equivalence� we conclude
that the restriction of A� to K is in �k

K �with the same parameter ��� �

��



This proof also applies with a minor modi�cation to PK � ��
K� In this case

we do not need the existential formula ���� Instead� one can decide directly in
polynomial time whether jfi� Fn�x� vi� ��gj � n�r�� since Fn is polynomial�time
decidable� Note the following consequence of Theorem ����

Corollary ��� Let K be an algebraically closed �eld of characteristic �� and K
a sub�eld of K� Let A be a problem in �k

K� If A is de�nable with parameters in
K� A is in �k

K with parameters in K�

Proof� Let K � K be the algebraic closure of K� Since the extension K � K is
elementary� it follows from Proposition ���� of ��	 and Theorem ��� that A is �k

K

with parameters in K � Hence by Theorem ���� A is in fact �k
K with parameters

in K� �

Theorem ��� Let K � K be two algebraically closed �elds of any characteristic�
and k � � an integer� The restriction to A of a problem in �k

K is in �k��
K and

the restriction of a problem in �k
K is in �k��

K �

Proof� By complementation it su�ces to prove the �rst part of the theorem� We
keep the same notations as in the proof of Theorem ���� By Theorem ���� A��Kn

is de�ned by the formula�

�t�� � � � � tq�� � K
q 	z � Kq

q���

i��

Fn�x� z � ti� ��� ���

Proceeding as in the proof of Theorem ���� one can put the disjunction above in
�k form� This gives a �polynomial size� �k�� form for ���� and the parameter �
is in Kr� Hence the restriction of A� to K is in �k��

K � �

A transfer theorem in arbitrary characteristic follows�

Theorem ��� Let K � K be two algebraically closed �elds of any characteristic�
and k � � an integer� If �k

K � �k
K then �k��

K � �k��
K �

Proof� If �k
K � �k

K then �k
K � �k��

K � hence the �k��
K �complete problem D�k��

K is
in �k

K� By Theorem ���� the restriction of D�k��
K to K is in �k��

K � This restriction
is nothing but D�k��

K � so D�k��
K � �k��

K � This implies �k��
K � �k��

K � �

��



��� Interactive Protocols

In this section we introduce complex version of the classical complexity classes
AM �
Arthur�Merlin� and MA �
Merlin�Arthur�� Here we just recall that these
two classes are randomized versions of NP located between NP and ��� See ��	
for more details�

Let K be an algebraically closed �eld� A problem A � K� is said to be in
MAK if there exist two polynomials p and q and a problem B � PK such that for
each n � �� A � Kn is de�ned by the formula

�y � Kp�n���z � Kq�n�hx� y� zi � B� ���

The complexity class AMK is de�ned by a similar condition� for x � Kn �

x � A� ��z � Kq�n��y � Kp�n�hx� y� zi � B�

Theorem ��� For any algebraically closed �eld MAK is included in AMK� and
moreover MAK � AMK � NPK in characteristic zero�

Proof� Let A be a problem in MAK and let B � PK be the 
corresponding
problem� Given an input x � Kn � let Fx�y� z� be the formula de�ning B �fxg�
Kp�n��q�n� �

By Theorem ���� the set W �Fx� of sequences �z�� � � � � z�p�n���� � K
q�n����p�n����

satisfying�
	y ���z Fx�y� z�� jfi� Fx�y� zi�gj � p�n� � �	

is dense in Kq�n����p�n����� Hence condition ��� is equivalent to

��z�� � � � � z�p�n��� �y jfi� Fx�y� zi�gj � p�n� � ��

This shows that A � AMK�
Assume now that K is of characteristic �� and take a problem A in AMK�

The restriction of A to Kn is de�ned by formula ��� with q � q�n�� � the tuple
of parameters used by B� and Fn an existential formula of polynomial size� We
have seen in the proof of Theorem ��� that this condition can be veri�ed by a
NPK algorithm �and more generally by a �k

K algorithm if the Fn�s de�ne a �k
K

problem�� Hence A � NPK� �Note� q is a constant in Theorem ���� However� it
follows from Theorem ���� that the witness points vi can still be constructed in
polynomial time even when q � q�n��� This completes the proof of the theorem
since the inclusion NPK � MAK obviously holds true �in any characteristic�� �

As in the classical case� it is possible to prove by induction on the number of
rounds that interactive protocols with a constant number of rounds are not more
powerful than AM protocols�

In positive characteristic the inclusion NPK � AMK is presumably strict� but
it may be possible to prove as in the classical setting that AMK � NPK�polybool�
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where 
polybool denotes a boolean advice of polynomial size �in characteristic ��
this result can be established without Corollary ��� using Lemma ����� Note also
that AMK � ��

K follows from Theorem ��� by complementation�
One interpretation of Theorem ��� is that interactive protocols are not as

interesting in characteristic � as in the classical setting since they do not increase
the power of nondeterminism� More optimistically� we prefer to point out that this
theorem makes it possible to convert automatically an MA or an AM algorithm
into an NP algorithm� In particular� this may yield an 
optimal algorithm if the
problem under consideration is NPK�hard� See ���	 for an example of a conversion
of an AM algorithm into an NP algorithm� Also the NPR�completeness result
of ���	 can be seen as a conversion of an MA algorithm over the reals into an NP
algorithm�

��� Boolean Parts

Let K be an algebraically closed �eld of characteristic �� We recall that the
boolean part BP�NPK� of NPK is the set of boolean problems �subsets of f�� �g��
that belong to NPK� Equivalently� BP�NPK� can be de�ned as the set of problems
of the form A � f�� �g� where A � NPK� We also recall that HN is the problem
of deciding whether a system of polynomial equations in several variables �with
integer coe�cients given in bits� has a solution in an algebraically closed �eld of
characteristic ��

Theorem ��	 Assuming the generalized Riemann hypothesis� BP�NPK� � AM�

Proof� Let A be a boolean problem in NPK� By Theorem ���� we can assume
that the corresponding NPK algorithm is parameter�free� It is thus possible to
reduce A to HN in polynomial time in the bit model �this follows basically from
the NPK�completeness of ��

K�� Since HN � AM under GRH �see the long version
of ���	�� the same is true of A� �

It was shown in ���	 that the dimension problem DIMK for algebraic varieties
is NPK�complete� For the DIM problem �concerning varieties de�ned by poly�
nomial equations with integer coe�cients given in bits� we have the following
consequence�

Corollary ��
 Assuming the generalized Riemann hypothesis� DIM � AM�

Proof� DIM � BP�NPK� � AM since DIMK � NPK� �

The observation that DIM � AM assuming GRH was already made in ���	�
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