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that the problem \P = NP ?" has the same answer in all algebraically closed elds of characteristic 0. We generalize this result to the polynomial hierarchy: if it collapses over an algebraically closed eld of characteristic 0, then it must collapse at the same level over all algebraically closed elds of characteristic 0. The main ingredient of their proof was a theorem on the elimination of parameters, which w e also extend to the polynomial hierarchy. Similar but somewhat weaker results hold in positive c haracteristic. The present paper updates a report (LIP Research Report 97-37) with the same title, and in particular includes new results on interactive protocols and boolean parts.

Introduction

Blum, Cucker, Shub and Smale 3, 4] have s h o wn that the answer to the question \P=NP ?" is the same in all algebraically closed elds of characteristic 0. This theorem is based on an elimination of parameters: if K K are two algebraically closed elds of characteristic 0, the restriction to K of a problem which i s P i n K (possibly with the help of parameters from K) i s P i n K. I n t h i s p a p e r w e p r o ve the corresponding theorems for the polynomial hierarchy. T h us, if the hierarchy collapses over an algebraically closed eld of characteristic 0, it collapses at the same level over all algebraically closed elds of characteristic 0. We h a ve similar but weaker results in positive c haracteristic. For instance, we can only show t h a t the collapse of the hierarchy o ver K at level k implies its collapse at level k + 1 over K. I t m a y be possible to avoid losing one level by m o ving to non-uniform complexity classes, see 13] for such results. Let us also mention that for an arbitrary structure, one never has to lose more than three levels in the downward transfer for P = NP [START_REF] Bourbaki | Alg ebre[END_REF], Proposition 3.12).

As in these two papers, our methods have a method-theoretic avor. In particular, we use e ective q u a n ti er elimination bounds in characteristic 0. It is not clear whether the present results can be obtained with the number-theoretic techniques of [START_REF] Balc Azar | Structural Complexity I[END_REF][START_REF] Blum | Algebraic settings for the problem \P6 =NP?[END_REF].

The rest of this paper is organized as follows. In section 2 we recall some more or less standard material on de nable sets and on the polynomial hierarchy. S e ction 3 is devoted mostly to the elimination of algebraic parameters (in arbitrary characteristic). From this we obtain the transfer theorem in characteristic 0 at the end of that section. As in [START_REF] Balc Azar | Structural Complexity I[END_REF][START_REF] Blum | Algebraic settings for the problem \P6 =NP?[END_REF] this theorem follows from the elimination of parameters, but one can give a fairly simple and direct proof sooner. We h a ve found it useful to use the \generic quanti er" 9 throughout the paper. It is introduced in section 2, but a systematic investigation of its properties is postponed until section 4. Finally we eliminate parameters in section 5. That section also includes an application to boolean parts, the transfer theorem in positive characteristic, and a study of interactive protocols (at the MA and AM levels) in algebraically closed elds. A study of interactive protocols over the reals (at the higher IP level) has been undertaken recently in 10].

Background

Formulas and the Sets they De ne

In this paper we w ork in the rst order theory of an algebraically closed eld K. Unless stated otherwise, p denotes the characteristic of K, a n d F p its ground eld: F 0 = Q and F p = Z=pZfor p > 0. The set de ned by a formula F(x) w h e r e the free variable lives in K n is the set of u 2 K n such that K j = F(u). De nable sets are also called constructible, o r quasi-algebraic. A basic quasi-algebraic set of K m is de ned by a system of polynomial equalities and inequalities of the form P 1 (x) = 0 : : : P k (x) = 0 Q 1 (x) 6 = 0 : : : Q l (x) 6 = 0 where P 1 : : : P k Q 1 : : : Q l are in K X 1 : : : X m ]. By quanti er elimination, every de nable set is a nite union of basic quasi-algebraic sets. The following result from 8] gives an e ective v ersion of quanti er elimination.

Theorem 2.1 Let K be an algebraically closed eld and F a p r enex formula in the rst-order theory of K. L et k be the number of quanti er blocks, m the total number of variables, and the total degree o f F, de ned a s = 2 + P i deg F i where the F i 's are the polynomials occurring in F. F is equivalent to a quanti erfree formula G in which all polynomials have degree at most 2 m O(k) (log ) O(1) :

The number of polynomials occurring in G is O( m O(k) ). Moreover, when K is of characteristic 0 and F is a formula in which all parameters are i n t e gers of bit-size at most L, the parameters in G are integers of bit size at most L:2 m O(k) (log ) O(1) . In the remainder of section 2.1 we assume that K is of characteristic 0.

Let F(x) be a rst-order formula in the theory of K where the free variable

x lives in K n . If the set of w 2 K n such t h a t K j = F(w) is dense in K n we s a y that K j = 9 x F (x) (more on this \generic quanti er" in section 4). Let T(F) (for \test set") be the set of w 2 K n such that K j = F(w) i Kj=9 x F (x). Proposition 2.2 Let F(x) be a quanti er-free rst-order formula where x 2 K n .

Assume that the polynomials in F are o f d e gree at most D, w i t h i n t e ger coe cients bounded b y M in absolute value. Any point = ( 1 : : : n ) satisfying 1 M+1 and j 1 + M(D + 1 ) j;1 D j;1 for j 2 is in T(F).

Proof. Replacing F by :F if necessary, w e assume that K j = 9 x F (x).

The subset of K n de ned by F is a nite union of basic quasi-algebraic sets (obtained by putting F in disjunctive normal form), and one of them must be dense. Such a s e t S is of the form P 1 (x) 6 = 0 : : : P m (x) 6 = 0 where the P i 's are non-zero polynomials of degree at most D, w i t h i n teger coe cients bounded by M in absolute value. Then the de ned in the statement of the theorem satis es P i ( ) 6 = 0 f o r a n y i = 1 : : : m(this is not hard to prove, see e.g. 13] and its erratum). This implies 2 S, hence F( ) holds.

Note that the sequence in this lemma can be constructed in a polynomial number of arithmetic operations (more precisely in O(log log M + n log D) operations starting from the integer 1). Nonetheless the components of are of bit size exponential in n. The next result shows (non-constructively) that there exist integer points of polynomial size in T(F).

Proposition 2.3 Let F(x) be a quanti er-free rst-order formula where x 2 K n .

Let s be the number of atomic predicates in F and D an upper bound on their degrees. There exists a point in T(F) whose coordinates are non-negative integers bounded b y sDn.

Proof. We m a y assume again that K j = 9 x F (x). As in the proof of Proposition 2.2, T(F) contains a set of the form P 1 (x) 6 = 0 : : : P m (x) 6 = 0 w h e r e m s and the P i 's are non-zero polynomials of degree at most D. Let P = Q m i=1 P i . By Schwarz's Lemma 18], there exists such t h a t P( ) 6 = 0 and 1 : : : n are integers in f0 1 : : : s D n g.

Note that the parameters in F may be arbitrary elements from K. One can apply these two propositions to quanti ed formulas by eliminating quanti ers rst.

Corollary 2.4 Let F a p r enex formula in the rst-order theory of K. L et be its total degree, k be the number of quanti er blocks, and m the total number of variables. There exists a point in T(F) with integer coordinates of bit size m O(k) (log ) O(1) . Moreover, if the parameters in F are i n t e gers of bit size at most L, one can construct in O(log L) + m O(k) O(1) arithmetic operations an integer point in T(F). This point depends only on L, m and .

Proof. Immediate from Proposition 2.2, Proposition 2.3 and Theorem 2.1.

The Polynomial Hierarchy

Here we w ant to recall the de nition and basic properties of the polynomial hierarchy. W e will work over algebraically closed elds since this is the example we have in mind for this paper, but everything holds true in much greater generality (see 17] and 6], in particular sections 2 and 3). For an introduction to the Blum-Shub-Smale model of computation, see 4] or 17].

For any k 1, a problem A K 1 is in k K if there exists a problem B 2 P K such that for each n > 0, A \ K n is de ned by the formula Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) hx y 1 : : : y k i 2 B where the quanti ers alternate, starting with Q 1 = 9. I f Q 1 = 8 instead, A 2 k K . Of course the polynomial hierarchy is the union of the k K for k 1. By convention one can set 0 K = 0 K = P K . In the notations k and k , w e a l w ays assume implicitly that k 1 unless otherwise stated.

We recall that the polynomial hierarchy is said to collapse at level k if any of these three equivalent properties holds: (i) k K = k K ( i i ) k K = k+1 K ( i i i ) k K = k+1 K . We also recall that the decision problem D k K for k formulas is k K -complete (for polynomial-time reductions), and that the decision problem

D k K for k formulas is k K -complete. Therefore k K = k K i D k K 2 k K . More-
over, D k K and D k K are de ned by the same parameter-free formulas in any algebraically closed eld. From this an upward transfer theorem follows easily. Proposition 2.5 Let K K be two algebraically closed elds.

If k K = k K then k K = k K .
Proof Sketch. By hypothesis D k K 2 k K , and the corresponding algorithm will also solve D k K since these two problems are de ned by the same formulas. This implies k K = k K (see 6], Lemma 3.5 for more details).

There is a partial converse.

Proposition 2.6 Let K K be two algebraically closed elds. If D k K is in k K and the corresponding algorithm uses only parameters from K then k K = k K .

Proof Sketch. As in the proof of Proposition 2.5, the k K algorithm for D k K will

also solve D k K . Hence D k K 2 k K , a n d k K = k K .
In the proof of the transfer theorem (Theorem 3.4) we will show t h a t t h i s p r o p o s ition can be applied if the polynomial hierarchy collapses in characteristic 0. More precisely, i f k K = k K then D k K can be solved by a parameter-free k K algorithm.

A T ransfer Theorem in Characteristic 0

The main goal of this section is to establish the transfer theorem for the collapse of the polynomial hierarchy. First, we s h o w that algebraic parameters can be eliminated. This will also be useful for the proof of the general elimination result in section 5.

Lemma 3.1 Let K be a n a l g e b r aically closed eld of any characteristic, and K a sub eld of K. L et A be a p r oblem in k K with parameters in an algebraic extension K ] of K (here 2 K). There exists a problem A 0 in k K with parameters in K such that A and A 0 have the same restriction to K. Moreover, A = A 0 if A is de nable with parameters in K.

Proof. There is a problem B in P K with parameters in K such t h a t f o r x 2 K n ,

x is in A i Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) hx y 1 : : : y k i 2 B:
Let m be the minimal polynomial of over K. W e de ne A 0 as follows

: if Q k = 9, x 2 K n \ A 0 i Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) Q k 2 K m( ) = 0 ĥ x y 1 : : : y k i 2 B]: If Q k = 8, x 2 K n \ A 0 i Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) Q k 2 K m( ) = 0 ) h x y 1 : : : y k i 2 B]:
It is clear that A 0 is in k K with parameters in K. W e claim that A and A 0 have the same restriction to K, a n d t h a t A = A 0 if A is de nable with parameters in K.

For the rst part of the claim, x any x 2 K n , and consider the set G x K of parameters that can \play the role" of on input x. That is, 2 G x i :

x 2 A , Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) hx y 1 : : : y k i 2 B: Note that in this formula, \x 2 A" is just a boolean value since x is xed. Since 2 G x by de nition, its conjugates (the other roots of m) are also in G x . Indeed, by quanti er elimination G x is de ned by a quanti er-free formula F x ( ) w i t h parameters in K. An atomic predicate P( ) = 0 in that formula is satis ed by i P i s a m ultiple of m, that is, i it is satis ed by all the roots of m. This property o f G x implies the rst part of the claim.

The proof of the second part is very similar. Let F n be a formula with parameters in K de ning A \ K n . Consider the set G K of parameters that can \play the role" of for any input x 2 K n . That is, 2

G i : 8x 2 K n F n (x) , Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) hx y 1 : : : y k i 2 B]:
For the same reason as above, the roots of m are all in G and this implies A = A 0 .

Theorem 3.2 Let K be an algebraically closed eld of any characteristic, and K a sub eld of K. Let A be a p r oblem in k K with parameters in an algebraic extension K 1 : : : p ] of K. There exists a problem A 0 in k K with parameters in K such that A and A 0 have the same restriction to K. Moreover, A = A 0 if A is de nable with parameters in K.

Proof. By induction on k. The case p = 1 is Lemma 3.1. To go from p to p + 1 , write K 1 : : : p+1 ] a s K 1 : : : p ] p+1 ], apply the lemma to get rid of p+1 , and then the induction hypothesis to get rid of 1 : : : p .

In particular, if K is algebraically closed the restriction of A is in k K since K is an elementary extension of K in this case. Note that if K is of characteristic 0, we can assume that p = 1 b y the primitive e l e m e n t theorem.

Corollary 3.3 Let K be an algebraically closed eld of any characteristic, and K a sub eld of K. Let A be a p r oblem in k K . There exists an extension L = K( 1 : : : q ) with algebraically independent i 's and a problem A 0 in k K with parameters in L such that A and A 0 have the same restriction to K. Moreover, A = A 0 if A is de nable with parameters in K.

Proof. A is in k K with parameters in an algebraic extension K( 1 : : : q ) 1 : : : p ] of a transcendental extension K( 1 : : : q ). Now apply Theorem 3.2 to K( 1 : : : q ).

Here is the main result of section 3. The proof is quite similar to that of Proposition 1 in 13].

Theorem 3.4 Let K be an algebraically closed eld of characteristic 0. If the polynomial hierarchy over K collapses, it collapses at the same level over any algebraically closed eld of characteristic 0.

Proof. It su ces to show that k K = k K if and only if k Q = k Q . The \if" part follows from Proposition 2. [START_REF] Blum | Complexity and Real Computation[END_REF].

Assume now that k K = k K : in this case D k K can be solved by a k K algorithm using p parameters 1 : : : p . F or each n there is a parameter-free formula F n which is satis ed by 2 K p i can be used by this algorithm as a vector of parameters to solve all instances of D k K of size n. Observe that (when put in prenex form) F n is of polynomial size and has a bounded number of quanti er alternations. Also K j = F n ( ) b y de nition. By Corollary 3.3 (applied with K = Q) w e can assume that 1 : : : p are algebraically independent. From K j = F n ( ) i t f o l l o ws that K j = 9 x F n (x) (if this is not clear to you, read the proof of Proposition 4.3). By Corollary 2.4, one can construct in time polynomial in n a v ector 2 N p satisfying F n . W e c a n then use to solve D k K with a parameter-free k K algorithm. We conclude that k Q = k Q by Proposition 2.6.

4

The Generic Quanti er

The results of sections 4.1 and 4.2 apply to algebraically closed elds of arbitrary characteristic.

De nition and Basic Properties

We h a ve already introduced the generic quanti er in section 2: given an algebraically closed eld K (of any c haracteristic) and a rst-order formula F(v)

where v 2 K q , K j = 9 v F (v) i the set of v's such that F(v) holds is (Zariski) dense in K q . This means that there exists a nonzero polynomial p such t h a t K j = F(v) whenever p(v) 6 = 0. One could also de ne a 8 quanti er as: 8 v F (v) : 9 v :F(v) but this would be redundant since this double negation is equivalent t o 9 v F (v).

(Note however that in real-closed elds, one can similarly de ne two distinct quanti ers 9 and 8 15].) First-order formulas involving this new quanti er will be called \generalized formulas". Ordinary formulas will just be referred to as \formulas", or \ rstorder formulas". This distinction will be dropped shortly since, as we n o w show, generalized formulas are equivalent to ordinary formulas. Proposition 4.1 Let F(u 1 : : : u s ) be a generalized formula in the language f0 1 + ; g, and K an algebraically closed eld of characteristic p 0. There exists an ordinary formula F in the same language such that for all u 2 K s , K j = F(u) if and only if K j = F (u). Moreover, F depends only on F.

Proof. Reasoning by induction on the structure of F, it su ces to consider formulas of the form F(u) 9 v G (u v) where v 2 K q . Moreover, we m a y assume that G is quanti er-free and in disjunctive normal form. Then G = C 1 _ _C m where each C i is a conjunction of the form p i 1 (u v) = 0 ^ ^pi m i (u v) = 0 ^qi (u v) 6 = 0 :

9 v G (u v) is equivalent t o W m i=1 9 v C i (u v). Given u 2 K s , 9 v C i (u v) h o l d s
if as a polynomial in v, q(u :) is not identically zero and if all the p ij (u :) a r e identically zero. This yields the desired ordinary formula. Since G depends only on F (in particular G can be made independent o f p), the same is true for F .

As a consequence, we see that elementary equivalence also holds for generalized formulas.

Corollary 4.2 Let K K be two algebraically closed elds, and F a generalized statement (closed formula) with parameters in K. Then K j = F if and only if K j = F.

Proof. Write F = G(u) where u is the vector of parameters of F, and apply Proposition 4.1 to G. The result then follows from elementary equivalence for ordinary formulas.

Proposition 4.3 Let K be an algebraically closed eld and F(v) a rst-order formula where the free variable v lives in K q . L et K K be a eld containing the parameters of F. I f K is of transcendence d e gree a t l e ast q over K, the three following properties are e quivalent.

(i) K j = 9 v F (v).

(ii) For any v = ( v 1 : : : v q ) of transcendence d e gree q over K, K j = F(v).

(iii) There exists v = ( v 1 : : : v q ) of transcendence d e gree q over K such that K j = F(v).

Proof. As in the proof of Proposition 4.1, we assume that F is in disjunctive normal form: F C 1 _ _C m where each C i is a conjunction of the form p i 1 (v) = 0 ^ ^pi m i (v) = 0 ^qi (v) 6 = 0 : K j = 9 v F (v) if and only if there exists a C i with q i not identically zero and all the p ij identically zero. In this case, if v is of of transcendence degree q over K then q i (v) 6 = 0 b y de nition. Therefore (i) implies (ii). The implication (ii) ) (iii) is trivial (but uses the assumption on K). To s h o w that (iii) implies (i), we use the disjunctive normal form again. Let v 1 : : : v q be algebraically independent elements such that K j = F(v). There exists a C i such t h a t K j = C i (v). Again by de nition of algebraic independence, this implies that all the p ij are 0 and q i is not identically 0. Hence K j = 9 v F (v).

As ordinary quanti ers, 9 is commutative. The proof of this Fubini-style property is based on Proposition 4.3. Proposition 4.4 Let K be an algebraically closed eld and F(u v) a rst-order formula in the theory of K. The three following properties are e quivalent.

(i) K j = 9 (u v) F(u v). (ii) K j = 9 u9 v F (u v). (iii) K j = 9 v9 u F (u v).

Proof. By Corollary 4.2, we m a y assume without loss of generality that K is of in nite transcendence degree over F p . Let K be the extension of F p generated by the parameters of F. Assume rst that (i) holds. Then by Proposition 4.3, there exists a tuple (a b) with algebraically independent ( o ver K) components such that K j = F(a b). Since the components of b are algebraically independent over K(a), it follows again from Proposition 4.3 that K j = 9 vF(a v). Finally, since the components of a are algebraically independent o ver the parameters of the formula 9 vF(: v) (they are in K) w e conclude that (ii) holds. The proof that (i) implies (iii) is similar.

Assume now that (ii) holds. By Proposition 4.3, there exists a tuple a with components that are algebraically independent o ver K such t h a t K j = 9 vF(a v), and a tuple b with components that are algebraically independent o ver K(a)

such that K j = F(a b). Since the components of tuple (a b) are algebraically independent o ver K, w e conclude from Proposition 4.3 that (i) holds. The proof that (iii) implies (i) is similar.

Of course, in this proof one could also work with a eld K of nite, but \large enough" transcendence degree.

E cient Elimination of the Generic Quanti er

We h a ve seen in section 4.1 that generalized formulas can be replaced by ordinary rst-order formulas. In this section we will see that this transformation can be made \e ciently".

Theorem 4.5 Let K be an algebraically closed eld of any characteristic. Let F(u v) be a rst-order formula where u 2 K s and v 2 K q . The set W(F) of sequences (v 1 : : : v 2s+1 ) 2 K q(2s+1) satisfying: 8u 9 vF(u v) , j f i F(u v i )gj s + 1 ]

(1) is dense in K q(2s+1) .

This means that to decide whether F(u v) holds for \most" v's, one just has to check whether it holds for a majority o f v 1 : : : v 2s+1 . M o r e o ver, the same 2s + 1 test points can be used for any c hoice of u and \most" tuples of 2s + 1p o i n ts are good for that purpose.

The proof given below relies on transcendence degree arguments, and was suggested by Bruno Poizat (personal communication). In model theory there is an abstract version of arguments of this kind, see e.g. 16], Chapter 12 (a sequence of algebraically independent elements of K is an example of an \indiscernible" sequence). It is also possible to use the dimension of de nable sets. These two proofs are essentially equivalent, but the rst one is much more concise. We begin with a simple lemma. Lemma 4.6 Let K be a sub eld of K and a = ( a 1 : : : a k ) a s e quence o f e lements of K that are algebraically independent over K. For any s < k and (v 1 : : : v s ) 2 K s , there exists a subsequence (a i j ) 1 j k;s whose elements are a lgebraically independent over the the eld K 0 = K(v 1 : : : v s ).

Proof. Let K 00 be the eld extension of K 0 generated by t h e a i 's: tr.deg K 0 K 00 k ; s since tr.deg K K 00 = tr.deg K 0 K 00 + tr.deg K K 0 (this is e.g. the corollary of Theorem 4 in section V.14.3 of 5]), tr.deg K K 0 s and tr.deg K K 00 k by de nition of a. Let B be a transcendence base of K 00 over K 0 made up of elements of a. B has at least k ; s elements, and they are algebraically independent o ver K 0 as needed.

Proof of Theorem 4.5. Let K be the eld extension of F p generated by t h e p arameters of F. As in the proof of Proposition 4.4, we can assume by Corollary 4.2 that K has in nite transcendence degree over K. By Proposition 4.3, it su ces to show that if the components of w 2 K q(2s+1) are algebraically independent over K, t h e n w 2 W(F). Let w = ( v 1 : : : v 2s+1 ) b e s u c h a sequence, and x any u 2 K s .

Assume for instance that 9 vF(u v) holds: we need to show that jfi F(u v i )gj s + 1. By Lemma 4.6, at least q(2s + 1 ) ; s among the q(2s + 1 ) components of the v i 's are algebraically independent o ver K 0 = K(v 1 : : : v s ). This implies that at least (2s+1 );s = s+1o ft h ev i 's have all their components algebraically independent o ver K 0 . By Proposition 4.3, K j = F(u v i ) f o r a n y s u c h v i .

If 9 vF(u v) does not hold then 9 v:F(u v) holds and applying the argument above t o :F shows that jfi :F(u v i )gj s + 1 . The example F(u v) (v ; u 1 )(v ; u 2 ) : : : (v ; u s )6 =0] shows that 2s + 1 cannot be replaced by 2 s in this theorem. However, for certain formulas one can get away with fewer test points in the following sense.

Theorem 4.7 Let F(u v) be a rst-order formula such that for any u 2 K s , i f 9 vF(u v) does not hold then F(u v) does not hold for any v 2 K q . The set G(F) of sequences (v 1 : : : v s+1 ) 2 K q(s+1) satisfying: 8u 9 vF(u v) , j f i F(u v i )gj 1]

(2) is dense in K q(s+1) .

Proof. Let K be as in the proof of Theorem 4.5. We claim that if the components of w 2 K q(s+1) are algebraically independent o ver K, then w 2 G(F). Indeed, it follows again from Lemma 4.6 that for such a w and any u 2 K q , there must exist at least one v i with components that are algebraically independent o ver K(u 1 : : : u q ). Then 9 vF(u v) implies F(u v i ). Conversely, i f F(u v i ) holds for some i then by the hypothesis on F, 9 vF(u v) m ust hold as well.

The hypothesis in this theorem is satis ed in particular by f o r m ulas of the form F(u v) P(u v) 6 = 0], where P is a polynomial. Such f o r m ulas have been considered in the study of \correct test sequences" 9] and in the Witness Theorem 3, 4]. The same example shows that the s + 1 bound cannot be improved in general (there is a similar remark in 9]). Theorems 4.5 and 4.7 do not provide an explicit construction of a sequence in W(F) o r G(F). Here is a completely constructive w ay of eliminating the generic quanti er. Theorem 4.8 For any rst-order formula F(v) where v 2 K q , K j = 9 v F (v) if and only if K j = 9t 1 : : : t q+1 2 K q 8v 2 K q q+1 _ i=1 F(v ; t i ):

Proof. Assume rst that K j = 9 v F (v). Let K be the extension of F p generated by the parameters of F, a n d t 1 : : : t q+1 a sequence with components that are algebraically independent o ver K. Arguing as in the proof of Theorem 4.7, we see that for any v 2 K q there exists a t i whose components are algebraically independent o ver K(v 1 : : : v q ). The components of v ; t i are then algebraically independent o ver K, a n d t h us K j = F(v ; t i ) b y Proposition 4.3.

For the converse, let E be the subset of K q de ned by F and E +t i the image of E by the translation of vector t i . I f S q+1 i=1 (E+t i ) = K q then one of the translates of E must be dense in K q . This implies that E is dense, too.

The three theorems of section 4.2 are adaptations to the BSS model of classical theorems of complexity theory (BPP P=poly, RP P=poly and BPP 2 ). See e.g. 2] for the classical theory and 7, 11] for adaptations of these results to the BSS model of computation over the reals.

Construction in Characteristic 0

In this subsection we assume that the algebraically closed eld K is of characteristic 0. We will see in Theorem 4.11 that it is possible to construct explicitly a sequence in W(F). Before that, we s h o w t h a t W(F) c o n tains a sequence of points with integer coordinates of polynomial size. The proof given here relies on e ective quanti er elimination. In 14] a more precise bound is provided using connected component arguments.

First, note that W(F) is an equivalence class of the equivalence relation on K q(2s+1) de ned by: v w i 8u 2 K s jfi F(u v i )gj s + 1 , j f i F(u w i )gj s + 1 ] :

(3) Lemma 4.9 Let F(u v) be a quanti er-free formula of total degree (with u 2 K s and v 2 K q ). There exists a sequence i n W(F) with integer coordinates of bit size (qslog ) O(1) .

Proof. Fix any w 2 W(F). Then W(F) i s d e n e d b y [START_REF] Balc Azar | Structural Complexity I[END_REF]. The total number of variables in this formula is s + q(2s + 1), its total degree is upper bounded by 2(2s + 1 ) , and it has a single block of quanti ers. By Theorem 4.5, W(F) i s dense in K q(2s+1) and the result follows from Corollary 2.4. An explicit construction follows from this non-constructive bound. Lemma 4.10 Let F(u v) be a quanti er-free formula where u 2 K s and v 2 K q , with integer parameters of bit size at most L. Let be its total degree. One can construct in O(log L) + ( qslog ) O(1) arithmetic operations a sequence (v 1 : : : v 2s+1 ) 2 W(F) with integer coordinates. Moreover, this sequence depends only on L, q, s and . Proof. We proceed as in the proof of Lemma 4.9, but instead of an arbitrary point w 2 W(F) w e use in (3) the point with \small" integer coordinates whose existence is asserted by that lemma. The result then follows again from Corollary 2.4.

There is another proof of this lemma. Instead of de ning W(F) b y (3) one can replace the generic quanti er in (1) by t h e 2 formula provided by Theorem 4.8. One can then apply Corollary 2.4 as in the proof above.

A generalization to quanti ed formulas follows easily from Lemma 4.10.

Theorem 4.11 Let K be an algebraically closed eld of characteristic 0 and F(u v) a p r enex formula with k blocks of quanti ers, and integer parameters of bit size at most L. L et be its total degree, and m the total number of variables (thus if u 2 K s and v 2 K q , there a r e m ; s ; q quanti ed variables).

One can construct in O(log L) + ( m log ) O(k) arithmetic operations a sequence (v 1 : : : v 2s+1 ) 2 W(F) with integer coordinates. Moreover, this sequence depends only on L, m, k and .

Interactive Protocols

In this section we i n troduce complex version of the classical complexity classes AM (\Arthur-Merlin") and MA (\Merlin-Arthur"). Here we just recall that these two classes are randomized versions of NP located between NP and 2 . S e e 1 ] for more details. Let K be an algebraically closed eld. A problem A K 1 is said to be in MA K if there exist two polynomials p and q and a problem B 2 P K such t h a t f o r each n > 0, A \ K n is de ned by the formula 9y 2 K p(n) 9 z 2 K q(n) hx y zi 2 B:

The complexity class AM K is de ned by a similar condition: for x 2 K n , x 2 A , 9 z 2 K q(n) 9y 2 K p(n) hx y zi 2 B: Theorem 5.5 For any algebraically closed eld MA K is included i n AM K , and moreover MA K = A M K = N P K in characteristic zero.

Proof. Let A be a problem in MA K and let B 2 P K be the \corresponding problem." Given an input x 2 K n , l e t F x (y z) be the formula de ning B \f xg K p(n)+q(n) . By Theorem 4.5, the set W(F x ) of sequences (z 1 : : : z 2p(n)+1 ) 2 K q(n):(2p(n)+1) satisfying: 8y 9 z F x (y z) , j f i F x (y z i )gj p(n) + 1 ] is dense in K q(n):(2p(n)+1) . Hence condition ( 7) is equivalent t o 9 z 1 : : : z 2p(n)+1 9y jfi F x (y z i )gj p(n) + 1 : This shows that A 2 AM K .

Assume now that K is of characteristic 0, and take a problem A in AM K . The restriction of A to K n is de ned by formula (4) with q = q(n), the tuple of parameters used by B, and F n an existential formula of polynomial size. We have seen in the proof of Theorem 5.1 that this condition can be veri ed by a NP K algorithm (and more generally by a k K algorithm if the F n 's de ne a k K problem). Hence A 2 NP K . (Note: q is a constant in Theorem 5.1. However, it follows from Theorem 4.11 that the witness points v i can still be constructed in polynomial time even when q = q(n).) This completes the proof of the theorem since the inclusion NP K MA K obviously holds true (in any c haracteristic).

As in the classical case, it is possible to prove b y induction on the number of rounds that interactive protocols with a constant n umber of rounds are not more powerful than AM protocols.

In positive c haracteristic the inclusion NP K AM K is presumably strict, but it may be possible to prove as in the classical setting that AM K NP K =polybool, where \polybool" denotes a boolean advice of polynomial size (in characteristic 0, this result can be established without Corollary 2.4 using Lemma 4.9). Note also that AM K 2 K follows from Theorem 4.8 by complementation.

One interpretation of Theorem 5.5 is that interactive protocols are not as interesting in characteristic 0 as in the classical setting since they do not increase the power of nondeterminism. More optimistically, w e prefer to point out that this theorem makes it possible to convert automatically an MA or an AM algorithm into an NP algorithm. In particular, this may yield an \optimal" algorithm if the problem under consideration is NP K -hard. See 14] for an example of a conversion of an AM algorithm into an NP algorithm. Also the NP R -completeness result of 15] can be seen as a conversion of an MA algorithm over the reals into an NP algorithm.

Boolean Parts

Let K be an algebraically closed eld of characteristic 0. We recall that the boolean part BP(NP K ) o f N P K is the set of boolean problems (subsets of f0 1g 1 ) that belong to NP K . Equivalently, B P (NP K ) can be de ned as the set of problems of the form A \ f 0 1g 1 where A 2 NP K . W e also recall that HN is the problem of deciding whether a system of polynomial equations in several variables (with integer coe cients given in bits) has a solution in an algebraically closed eld of characteristic 0. Theorem 5.6 Assuming the generalized R iemann hypothesis, BP(NP K ) AM.

Proof. Let A be a boolean problem in NP K . By Theorem 5.1, we can assume that the corresponding NP K algorithm is parameter-free. It is thus possible to reduce A to HN in polynomial time in the bit model (this follows basically from the NP K -completeness of 1 K ). Since HN 2 AM under GRH (see the long version of 12]), the same is true of A.

It was shown in 14] that the dimension problem DIM K for algebraic varieties is NP K -complete. For the DIM problem (concerning varieties de ned by polynomial equations with integer coe cients given in bits) we h a ve the following consequence.

Corollary 5.7 Assuming the generalized R iemann hypothesis, DIM 2 AM.

Proof. DIM 2 BP(NP K ) AM since DIM K 2 NP K . The observation that DIM 2 AM assuming GRH was already made in 14].

Proof. Eliminate quanti ers in F with Theorem 2.1 and then apply Lemma 4.10.

Stability in the Polynomial Hierarchy

The main goal of this section is to prove the following \e ective stability" result. Theorem 5.1 Let K K be two algebraically closed elds of characteristic 0, and A a p r oblem in k K . The restriction of A to K is in k K . An application to boolean parts is also discussed in section 5.3, and interactive protocols over C are studied in section 5.2.

Elimination of Parameters

Proof of Theorem 5.1. By Corollary 3.3, we m a y assume without loss of generality that A is k K with parameters ( 1 : : : q 1 : : : r ) where the i are algebraically independent o ver K, and the i are in K. Our goal is to show that for inputs in K, the i 's can be simulated by computations in K.

A \ K n is de ned by a formula F n (x ) of the form Q 1 y 1 2 K p 1 (n) Q k y k 2 K p k (n) hx y 1 : : : y k i 2 B where = ( 1 : : : q ) a n d B is P K with parameters . By Proposition 4.3, this is equivalent for x 2 K n to 9 z 2 K q F n (x z )

since the i are algebraically independent. Hence we are led to consider the problem A 0 K n de ned by (4). As we h a ve just seen, A and A 0 have t h e same restriction to K. Let w = ( v 1 : : : v 2(n+r)+1 ) 2 K q(2(n+r)+1) be a sequence in W(F n ). By de nition of W(F n ), an input x 2 K n is in A 0 i jfi F n (x v i )gj n + r + 1 or in other words:

Each term in the conjunction is a k formula. One can put (5) in k (prenex)

form by i n terleaving the quanti ers blocks coming from each term. Since B 2 P K and the v i can be constructed in polynomial time by Theorem 4.11, this shows that A 0 is in k K with parameter 2 K r . By elementary equivalence, we conclude that the restriction of A 0 to K is in k K (with the same parameter ).

This proof also applies with a minor modi cation to P K = 0 K . In this case we do not need the existential formula [START_REF] Blum | Complexity and Real Computation[END_REF]. Instead, one can decide directly in polynomial time whether jfi F n (x v i )gj n+r+1 since F n is polynomial-time decidable. Note the following consequence of Theorem 5.1.

Corollary 5.2 Let K be an algebraically closed eld of characteristic 0, and K a sub eld of K. L et A be a p r oblem in k K . I f A is de nable with parameters in K, A is in k K with parameters in K.

Proof. Let K K be the algebraic closure of K. Since the extension K K is elementary, it follows from Proposition 3.17 of 6] and Theorem 5.1 that A is k K with parameters in K. Hence by Theorem 3.2, A is in fact k K with parameters in K.

Theorem 5.3 Let K K be two algebraically closed elds of any characteristic, and k 1 an integer. The restriction to A of a problem in k K is in k+1 K and the restriction of a problem in k K is in k+1 K .

Proof. By complementation it su ces to prove the rst part of the theorem. We keep the same notations as in the proof of Theorem 5.1. By Theorem 4.8, A 0 \K n is de ned by the formula: 9t 1 : : : t q+1 2 K q 8z 2 K q q+1 _ i=1 F n (x z ; t i ):

Proceeding as in the proof of Theorem 5.1, one can put the disjunction above i n k form. This gives a (polynomial size) k+1 form for [START_REF] Bourbaki | Alg ebre[END_REF], and the parameter is in K r . Hence the restriction of A 0 to K is in k+1 K .

A transfer theorem in arbitrary characteristic follows.

Theorem 5.4 Let K K be two algebraically closed elds of any characteristic, and k 1 an integer. If k K = k K then k+1 K = k+1 K .

Proof. If k K = k K then k K = k+1 K , hence the k+1 K -complete problem D k+1 K is in k K . By Theorem 5.3, the restriction of D k+1 K to K is in k+1 K . This restriction is nothing but D k+1 K , s o D k+1 K 2 k+1 K . This implies k+1 K = k+1 K .