
HAL Id: hal-02101806
https://hal-lara.archives-ouvertes.fr/hal-02101806v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Broadcast Trees for Heterogeneous Platforms.
Olivier Beaumont, Loris Marchal, Yves Robert

To cite this version:
Olivier Beaumont, Loris Marchal, Yves Robert. Broadcast Trees for Heterogeneous Platforms.. [Re-
search Report] Laboratoire de l’informatique du parallélisme; LIP RR-2004-46. 2004, 2+18p. �hal-
02101806�

https://hal-lara.archives-ouvertes.fr/hal-02101806v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Broadcast Trees for Heterogeneous

Platforms

Olivier Beaumont,
Loris Marchal,
Yves Robert

November 2004

Research Report No 2004-46

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Broadcast Trees for Heterogeneous Platforms

Olivier Beaumont, Loris Marchal, Yves Robert

November 2004

Abstract
In this paper, we deal with broadcasting on heterogeneous platforms.
Typically, the message to be broadcast is split into several slices, which
are sent by the source processor in a pipeline fashion. A spanning tree
is used to implement this operation, and the objective is to find the tree
which maximizes the throughput, i.e. the average number of slices sent
by the source processor every time-unit. We introduce several heuristics
to solve this problem. The good news is that the best heuristics per-
form quite efficiently, reaching more than 70% of the absolute optimal
throughput, thereby providing a simple yet efficient approach to achieve
very good performance for broadcasting on heterogeneous platforms.

Keywords: Collective communications, steady-state, heterogeneous platforms, modeling

Résumé
Dans ce rapport, nous considérons le problème de la diffusion de mes-
sages sur plates-formes hétérogènes. En particulier, nous considérons le
cas où le message à envoyer, de grande taille, est fractionné en plusieurs
morceaux qui sont envoyés par le processeur à la source de la diffusion
de façon successive et pipelinée. On utilise un arbre de diffusion pour
implémenter cette opération, et le but est de trouver l’arbre de diffu-
sion qui permet d’obtenir le meilleur débit. Nous introduisons plusieurs
heuristiques pour résoudre ce problème. La meilleure de ces heuristiques
atteint un débit de plus de 70% de l’optimal, et fournit ainsi une ap-
proche simple mais efficace pour obtenir de bonnes performances pour
la diffusion sur plates-formes hétérogènes.

Mots-clés: Communications collectives, régime permanent, plates-formes hétérogènes,
modélisation

Broadcast Trees for Heterogeneous Platforms 1

STA Single Tree, Atomic Only for small messages
STP Single Tree, Pipelined Allows pipelining along the tree
MTP Multiple Tree, Pipelined Powerful, but difficult to design/implement

Table 1: Summary of the three approaches for broadcasting.

1 Introduction

Broadcasting in computer networks is the focus of a vast literature. The one-to-all broadcast,
or single-node broadcast [23], is the most primary collective communication pattern: initially,
only the source processor has the data that needs to be broadcast; at the end, there is a copy
of the original data residing at each processor. Parallel applications and algorithms often
require to send identical data to all other processors, in order to disseminate global informa-
tion (typically, input data such as the problem size or application parameters). Numerous
broadcast algorithms have been designed for parallel machines such as meshes, hypercubes,
and variants (see among others [18, 39, 36, 22, 38]). The MPI Bcast routine [33] is widely
used, and particular care has been given to its efficient implementation on a large variety of
platforms [17].

For short-size broadcasts, a single message is sent by the source processor, and forwarded
across the network. A spanning tree is used to implement this operation. However, finding
the best spanning tree, i.e. the tree which minimizes the total execution time of the broadcast,
is a difficult problem; it turns out NP-complete even for the uttermost basic telephone model
(problem ND49 in [14]).

For broadcasting larger messages, pipelining strategies are mandatory to optimize the total
execution time. At the application level, the source message is split into a number of slices,
which are routed in a pipelined fashion from the source processor to all other nodes1. There is
more freedom here: either we decide to route all the slices along the same spanning tree, or we
use several spanning trees simultaneously. In the latter case, each tree is used to broadcast a
distinct fraction of the total message. Each message fraction will itself be divided into slices,
to be sent in a pipeline fashion along the corresponding tree. Of course the implementation
becomes more complex: the communications along the different trees must be orchestrated
so as to take resource conflicts into account (e.g., if two trees share a physical link, the slices
from both trees have to share the available bandwidth).

We summarize the three previous approaches, labeled STA, STP and MTP, in Table 1.
Numerous heuristics are available in the literature for the STA problem, such as Fastest Node
First [1] and Fastest Edge First [9]. For the STA problem, there is a single message to
broadcast, and the objective is to find a tree that minimizes the total execution time (the
makespan). For the STP problem, there is a large number of message slices to broadcast, and
the objective is to find a tree that maximizes the throughput, i.e. the average number of slices
sent by the source processor every time-unit. The problem of throughput maximization can
be viewed as a relaxation of the problem of makespan minimization, because the initialization
and clean-up phases are ignored. Still, the problem of throughput maximization remains NP-
hard (see problem ND1 in [14] and the reduction in [6]). To the best of our knowledge, little
work has been conducted on the design and experimental evaluation of polynomial heuristics

1Note that a message slice can itself be further divided into packets by the system or network layer, but (i)
this is transparent to the user and (ii) this is accounted for by using an affine cost model for communications,
see Section 2.

Broadcast Trees for Heterogeneous Platforms 2

for the STP problem. One major goal of this paper is to fill the void.
At first sight, the MTP problem looks more complicated than the STP problem: finding

a set of trees that can be used simultaneously, without link conflict, to maximize the total
throughput that can be achieved, seems more difficult than finding a single tree. Surprisingly,
the optimal solution to the MTP problem can be computed in in polynomial time [5, 6]. How-
ever, the latter result is mostly of theoretical interest, because it requires a very complicated
algorithm to extract the set of spanning trees that achieves the optimal throughput. Even
after deriving the set of trees, it would be quite time-consuming to implement the fraction-
ing of the original message, and the reconstruction of the solution at every node. However,
the first step of the approach is both simple and fast: it consists in computing the optimal
throughput that can be achieved (only the value of the throughput, not the trees needed
to achieve it) by solving a linear program over the rationals, using standard tools such as
Maple [10] or MuPad [35]. This is of great practical interest, because the knowledge of the
optimal throughput enables to quantify the absolute performance of the STP heuristics, and
to assess how far they are from the optimal2. The good news is that the best STP heuristics
reach around 70% of the optimal, thereby providing a simple yet efficient way to achieve very
good performance for broadcasting on heterogeneous platforms.

The rest of the paper is organized as follows. First, Section 2 reviews several platform
models, and provides the framework that will be used throughout the paper. In Section 3,
we introduce a first set of heuristics for the STP problem (i.e. using a single spanning
tree for pipelining the broadcast message). These heuristics are derived from classical graph
algorithms. Next, in Section 4, we briefly recall the linear program computing the optimal
solution for the MTP problem. We use the solution of this linear program to construct a
second set of heuristics for the STP problem. We report some experimental data to compare
all these heuristics in Section 5. We briefly survey related work in Section 6. Finally, we state
some concluding remarks in Section 7.

2 Models and framework

In this section, we review several platform models to implement a broadcast operation. The
models mainly differ by the capability (or not) for a node to perform several communications
simultaneously.

2.1 Models

The target architectural platform is represented by a directed graph P = (V,E). Note that
this graph may well include cycles and multiple paths. For the sake of generality, we assume
that the graph is directed, so that all links are unidirectional (but using two opposite edges
would model a bidirectional link).

Consider two adjacent processors Pu and Pv in the graph (hence the link eu,v : Pu → Pv

belongs to the set of physical links E). Assume that Pu sends a message of size L to Pv.
There are several models in the literature, which we summarize through the general scenario
depicted in Figure 1.

Here are some notations to analyze the communication from Pu to Pv:
2Recall that computing the optimal solution for the STP problem requires exponential time, unless P=NP.

This explains the detour via MTP.

Broadcast Trees for Heterogeneous Platforms 3

Tu,v(L)

su,v

αu,v

βu,v · L
link eu,v

receiving processor Pv

sending processor Pu

time

ru,v

su,v · L

ru,v · L

Figure 1: Sending a message of size L along the link eu,v : Pu → Pv

• The time where Pu is busy sending the message is expressed as an affine function
sendu,v(L) = su,v + L · su,v. The start-up time su,v corresponds to the software and
hardware overhead paid to initiate the communication. The link capacity su,v corre-
sponds to the inverse of the transfer rate which can be achieved (say, from main memory
of Pu to a network card able to buffer the message).

• Similarly, the time where Pv is busy receiving the message is expressed as an affine
function of the message length L, namely recvu,v(L) = ru,v + L · ru,v.

• The total time for the communication, which corresponds to the total occupation time
of the link eu,v : Pu → Pv, is also expressed as an affine function Tu,v(L) = αu,v +L·βu,v.
The parameters αu,v and βu,v correspond respectively to the start-up cost and to the
inverse of the link bandwidth.

Simpler models do not make the distinction between the three occupation times sendu,v(L)
(emission by Pu), Tu,v(L) (occupation of eu,v : Pu → Pv) and recvu,v(L) (reception by Pv).
Such models use su,v = ru,v = αu,v and su,v = ru,v = βu,v. This amounts to assume that the
sender Pu and the receiver Pv are blocked throughout the communication. In particular, Pu

cannot send any message to another neighbor Pw during Tu,v(L) time-steps. However, some
system/platform combinations may allow Pu to proceed to another send operation before
the entire message has been received by Pv. To account for this situation, more complex
models would use different functions for sendu,v(L) and Tu,v(L), with the obvious condition
that sendu,v(L) � Tu,v(L) for all message sizes L (this implies su,v � αu,v and su,v � βu,v).
Similarly, Pv may be involved only at the end of the communication, during a time period
recvu,v(L) smaller than Tu,v(L).

Here is a summary of the general framework: assume that Pu initiates a communication
of size L to Pv at time-step t = 0:

• Link eu,v : Pu → Pv is busy from t = 0 to t = Tu,v(L) = αu,v + L · βu,v

• Processor Pu is busy from t = 0 to t = sendu,v(L) = su,v + L · su,v, where su,v � αu,v

and su,v � βu,v

• Processor Pv is busy from t = Tu,v(L) − recvu,v(L) to t = Tu,v(L), where recvu,v(L) =
ru,v + L · ru,v, ru,v � αu,v and ru,v � βu,v

Broadcast Trees for Heterogeneous Platforms 4

In the following, we review some models that have been introduced in the literature.
Multi-port models allow parallel sends (and parallel receive) while One-port models assume
that a sending processor is blocked throughout the communication.

2.2 Multi-port models

Banikazemi et al [2] propose a model which is very close to the general model presented
above. They use affine functions to model the occupation time of the processors and of the
communication link. The only minor difference is that they assume that the time intervals
where Pu is busy sending (of duration sendu,v(L)) and where Pv is busy receiving (of duration
recvu,v(L)) do not overlap, so that they write

Tu,v(L) = sendu,v(L) + linku,v(L) + recvu,v(L).

In [2] a methodology is proposed to instantiate the six parameters of the affine functions
sendu,v(L), linku,v(L) and recvu,v(L) on a heterogeneous platform. The authors point out
that these parameters actually differ for each processor pair and depend upon the CPU speeds.

A simplified version of the general model has been proposed by Bar-Noy et al [3]. In this
variant, the time during which an emitting processor Pu is blocked does not depend upon the
receiver Pv (and similarly the blocking time in reception does not depend upon the sender.
In addition, only fixed-size messages are considered in [3], so that this model writes

Tu,v = sendu + linku,v + recvv (1)

The models of Banikazemi et al [2] and Bar-Noy et al [3] are called multi-port because
they allow a sending processor to initiate another communication while a previous one is still
on-going on the network. However, both models insist that there is an overhead time to pay
before being engaged in another operation, so there are not allowing for fully simultaneous
communications.

2.3 One-port models

These models come in two variants. In the unidirectional variant, a processor cannot be
involved in more than one communication at a given time-step, either a send or a receive. In
the bidirectional model, a processor can send and receive in parallel, but at most to a given
neighbor in each direction. In both variants, if Pu sends a message to Pv , both Pu and Pv

are blocked throughout the communication: with previous notations su,v = ru,v = αu,v and
su,v = ru,v = βu,v.

The bidirectional one-port model is used by Bhat et al [8, 9] for fixed-size messages. They
advocate its use because “current hardware and software do not easily enable multiple mes-
sages to be transmitted simultaneously”. Even if non-blocking multi-threaded communication
libraries allow for initiating multiple send and receive operations, they claim that all these
operations “are eventually serialized by the single hardware port to the network”. Experi-
mental evidence of this fact has recently been reported by Saif and Parashar [32], who report
that asynchronous MPI sends get serialized as soon as message sizes exceed a few megabytes.
Their result hold for two popular MPI implementations, MPICH on Linux clusters and IBM
MPI on the SP2.

The one-port model fully accounts for the heterogeneity of the platform, as each link
has a different bandwidth. It generalizes a simpler model studied by Banikazemi et al. [1]

Broadcast Trees for Heterogeneous Platforms 5

Liu [25] and Khuller and Kim [21]. In this simpler model, the communication time Tu,v(L)
only depends on the sender, not on the receiver: in other words, the communication speed
from a processor to all its neighbors is the same.

2.4 Framework

Let P = (V,E) be the platform graph, and p = |V | be the number of nodes. The source node
Psource initially holds all the data to be broadcast. All the other nodes Pu, 1 � u � p, u �= s,
are destination nodes which must receive all the data sent by Psource . We assume that the
total size of the data to be broadcast is large, say from a few megabytes to larger values.

As discussed in Section 1, a natural strategy is to pipeline the broadcast along a single
spanning tree. At the application level, the large message will be split into several slices
which will be broadcast consecutively, in a pipeline fashion, so that first slices will reach the
leaves of the tree while the source node is still emitting the last slices. The usefulness of
pipelining a large number of slices has been demonstrated by van de Geijn et al. [37, 4] when
communicating over LANs et WANs. Including such pipelining strategies in MPICH-G2 if
the focus of on-going work [20].

We let L denote the size of a slice, which should be set at the application level. When
the value of L has been fixed, we have a series of same-size messages to be broadcast consec-
utively by Psource . The objective is to find a spanning tree with good throughput, where the
throughput is defined as the average number of message slices sent by Psource every time-unit.
Because the number of slices is assumed to be large, we can safely neglect the initialization and
clean-up phases: as soon as the first slices are circulated along the tree, every node operates
in steady-state.

Following the previous discussion, we mainly use the (bidirectional) one-port model to
implement the broadcast operation. However, we will extend some of the heuristics to the
multi-port model.

3 Platform-based heuristics

In this section, we describe several heuristics for the STP problem: given a platform graph and
a source processor, we aim at finding a “good” broadcast tree, that is a tree where messages
can be sent in a pipelined fashion with a good throughput.

3.1 One-port model

We use here the (bidirectional) one-port model, where a processor can be involved in only
one sending (and one receiving) operation. We consider the pipelined broadcast of a message
divided into slices of same size L. For every link eu,v : Pu → Pv, we write:

sendu,v(L) = recvu,v(L) = Tu,v(L) = Tu,v.

The edges of platform graph P = (V,E) are weighted by the time needed to send a
message of size L: the weight of eu,v : Pu → Pv is Tu,v. We design four heuristics. The
first two heuristics start from the platform graph and delete edges until the resulting graph
is a tree, while the third heuristic grows a spanning tree rooted at the source processor. The
fourth one, based on MPI policy to broadcast a message, is included for sake of comparison
with existing broadcast techniques.

Broadcast Trees for Heterogeneous Platforms 6

3.1.1 Simple Platform Pruning

The idea of this simple heuristic is to prune the platform graph, deleting edges with maximum
weight, until we obtain a tree spanning all the nodes: see Algorithm 1.

SIMPLE-PLATFORM-PRUNING(P, Psource)
TreeEdges ← all edges of E
while |TreeEdges |> n − 1 do

L ← edges of TreeEdges sorted by non-increasing weight Tu,v

for each edge e ∈ L do
if the graph (V,TreeEdges\{e}) is still connected then

TreeEdges ← TreeEdges\{e}
return (V,TreeEdges)

Algorithm 1: The simple platform pruning algorithm

3.1.2 Refined Platform Pruning

If we look carefully at the previous heuristic, we realize that there is no reason to discard
all edges with large weight: if a node has a many children in the tree (say, 10), with all
its outgoing edges of medium weight (e.g. 2), it will spend 20 time-units to broadcast each
message slice. On the contrary, a node linked to a single child in a tree by an edge of larger
weight (say 15) will only need 15 time-units broadcast each message slice. The throughput
of each node is inversely proportional to its weighted outgoing degree, i.e. the sum of the
weights of its outgoing edges in the tree. A more accurate metric in the heuristic would be
the weighted out-degree of a node in the tree rather than the maximum weight of all edges.

We can adapt the previous heuristic to this metric by maintaining the current weighted
out-degree of each node u, denoted as OutDegree(u), and trying to delete an edge from the
node which maximizes this metric. This is summarized in Algorithm 2.

REFINED-PLATFORM-PRUNING(P, Psource)
1: TreeEdges ← all edges of E
2: for each u ∈ V do
3: OutDegree(u) ←

∑
v, (u,v)∈E

Tu,v

4: while |TreeEdges | > n − 1 do
5: SortedNodes ← nodes sorted by non-increasing value of OutDegree(u)
6: for u ∈ SortedNodes do
7: L ← edges sorted by decreasing weight Tu,v

8: for each edge e = (u, v) ∈ L do
9: if the graph (V,TreeEdges\{e}) is still connected then

10: TreeEdges ← TreeEdges\{e}
11: OutDegree(u) ← OutDegree(u) − Tu,v

12: goto 4
13: return (V,TreeEdges)

Algorithm 2: The refined platform pruning algorithm.

Broadcast Trees for Heterogeneous Platforms 7

3.1.3 Growing a Minimum Weighted Out-Degree Tree

This heuristic is derived from Prim’s algorithm [11] for building a minimum cost spanning
tree. The usual metric for the cost of the tree is the sum of all its edges. However, as
discussed in the previous heuristic, this is not the good metric for our problem. Instead, we
are interested in minimizing the maximum weighted out-degree of each node in the tree. We
can adapt Prim’s algorithm as shown in Algorithm 3.

When we add a new edge (u, v) in the tree, we update the cost of edges (u,w), for all
neighbors w of u not already in the tree. The cost of an edge (u,w) (with Pu in the tree and
Pw not yet in the tree) is defined as the sum of the weights of the current tree edges outgoing
from Pu. By selecting the edge with minimum cost, we add the edge which increases as little
as possible the maximum weighted out-degree of any node in the tree.

GROWING-MINIMUM-WEIGHTED-OUT-DEGREE-TREE(P, Psource)
TreeEdges ← ∅
TreeVertices ← {Psource}
for each edge e = (u, v) do

cost(u, v) ← Tu,v

while TreeVertices �= V do
choose the link (u, v) such that u ∈ TreeVertices , v /∈ TreeVertices and (u, v)
has minimum value cost(u, v)
TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}
for each edge (u,w) /∈ TreeEdges do

cost(u,w) ← cost(u,w) + cost(u, v)
return (TreeVertices ,TreeEdges)

Algorithm 3: The growing tree algorithm.

3.1.4 Binomial tree heuristic

For the sake of comparison with existing strategies for the STP problem, we introduce another
heuristic using a binomial tree. This heuristic is based on the classical MPI implementation
of the broadcast [33], which constructs a binomial spanning tree based on the index of each
processor, without any topological information. We assume here that the source has index 0,
and we compute a binomial tree for the first 2m nodes of the platform (where m = �log2 |V |�).
Each of the remaining nodes x receives the message from one of the previous nodes (x− 2m)
in the last stage of the tree construction. When adding a transfer from node u to node v, edge
(u, v) may not exist; in this case, we schedule the transfer through the shortest path from u to
v. This heuristic is described in Algorithm 4 (we suppose that SHORTEST-PATH(u,v) returns
the edges of the shortest path from u to v).

3.2 Multi-port

The Growing-Minimum-Weighted-Out-degree-Tree heuristic can be adapted to the multi-port
model. Recall that in this model, the occupation of the sending processor is less than the
total occupation of the communication link. According to Equation 1, the time to transfer

Broadcast Trees for Heterogeneous Platforms 8

BINOMIAL-TREE(P, Psource)
TreeEdges ← ∅
m = �log2 |V |�
for p = 0 . . . m − 1 do

for X = 0 . . . 2p − 1 do
TreeEdges ← TreeEdges ∪ SHORTEST-PATH(X · 2m−p,X · 2m−p + 2m−p−1)

for u = 2m . . . |V | − 1 do
TreeEdges ← TreeEdges ∪ SHORTEST-PATH(u, u − 2m)

return (V,TreeEdges)

Algorithm 4: The binomial tree algorithm.

a message from Pu to Pv is Tu,v = sendu + linku,v + recvv. If Pu initiates several sends, the
first and third term sendu and recv v have to be serialized, while the second term linku,v may
be parallelized. This is represented in Figure 2.

sendu

recv v1

Tu,v1 Tu,v2

recvv2

Tu,v3

recvv2

u

v1

v3

v2

iv3

iv2iv1

iu

Figure 2: Tree under construction under the multiport model

In Figure 2, nodes iu, iv1 , iv2 , iv3 represent network interfaces of nodes u, v1, v2 and v3.
In this example, we assume that the edges (u, v1) and (u, v2) are already included in the
broadcast tree, and we study the impact of adding edge (u, v3) in the tree. If we add this
edge, Pu can send a new message slice to its three children in the tree every Tperiod , where
Tperiod = max (3 × ru,Tu,v1 ,Tu,v2 ,Tu,v3). See Figure 3 for a graphical explanation of this
formula.

In general, the throughput that a node Pu can achieve is the inverse of Tperiod , where

Tperiod = max
(

δout(Pu) × sendu,max
i

(Tu,vi)
)

where δout(Pu) is the out-degree of u (the number of its children in the tree). Therefore,
adapting the previous heuristic to the multi-port model simply amounts to change the cost
of adding a new edge. This is described in Algorithm 5.

Broadcast Trees for Heterogeneous Platforms 9

Tu,v1

Tu,v2

recvv1

recvv2

Tu,v3

recvv3

sendu

(a) Case where throughput is bounded by the se-
rialized sendu.

Tu,v1

Tu,v2

recvv1

recvv2

Tu,v3

recvv3

sendu

(b) Case where throughput is bounded by
the longest link occupation Tu,v.

Figure 3: Examples for the two cases determining Tperiod

MULTIPORT-GROWING-MINIMUM-WEIGHTED-OUT-DEGREE-TREE(P, Psource)
TreeEdges ← ∅
TreeVertices ← {Psource}
for each u ∈ V do

children(u) ← ∅
for all edge e = (u, v) do

cost(u, v) ← Tu,v

while TreeVertices �= V do
choose the link (u, v) such that u ∈ TreeVertices , v /∈ TreeVertices and (u, v)
has minimum value cost(u, v)
TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}
children(u) ← children(u) ∪ {v}
for each edge (u,w) /∈ TreeEdges do

cost(u, v) ← max
(∣∣∣children[u]

∣∣∣ ∗ sendu , max
w′∈children[u]

(Tu,w′)
)

return (TreeVertices ,TreeEdges)

Algorithm 5: The multiport growing tree algorithm

Broadcast Trees for Heterogeneous Platforms 10

4 LP-based heuristics

4.1 Linear program

As pointed out in Section 1, the optimal throughput for the MTP problem is equal to the
solution of the following linear program over the rationals (which we solve with standard tools
such as Maple [10] or MuPad [35]:

Steady-State Broadcast Problem on a Graph SSB(G)
Maximize TP,
subject to

(a) ∀u,
∑

Pv∈N out(Psource) xsource ,v
u = TP

(b) ∀u, Pu �= Psource ,
∑

Pv∈N in(Pu) xv,u
u = TP

(c) ∀u, v, Pv �= Psource , Pv �= Pu,
∑

Pw∈N in(Pv) xw,v
u =

∑
Pw∈N out(Pv) xv,w

u

(d) ∀eu,v : Pu → Pv, nu,v = maxw xu,v
w

(e) ∀eu,v : Pu → Pv, tu,v = nu,v · Tu,v

(f) ∀u, t
(in)
u =

∑
Pv∈N in (Pu) tv,u

(g) ∀u, t
(out)
u =

∑
Pv∈N out(Pu) tu,v

(h) ∀u, v, tu,v � 1
(i) ∀u, t

(in)
u � 1

(j) ∀u, t
(out)
u � 1

(2)

In the linear program (2), the objective function is the throughput TP. We let N out (Pu)
denote the set of the output neighbors of Pu, i.e. the set of nodes Pv such that eu,v : Pu →
Pv ∈ E; similarly, N in(Pv) is the set of the input neighbors of Pu, i.e. nodes Pv such that
eu,v ∈ E. Also, xu,v

w denotes the fractional number of message slices which are sent by Psource

to Pw every time-unit, and that transit on the edge eu,v : Pu → Pv. Of course each processor
will receive the same set of messages in the end, but the same message may well be forwarded
along different trees to different destinations, hence the need for “tracking” the circulation of
messages along each edge.

The first constraint (a) states that the total number of messages destined to Pu and which
are sent from Psource every time-unit is indeed TP . Similarly, constraint (b) expresses that the
total number of messages which are actually received by Pu every time-unit is also equal to
TP . Constraint (c) states a conservation law at any intermediate processor Pv distinct from
Psource and from Pu: the number of messages destined to Pu which arrive at Pv each time-unit
is the same as the number of same type messages that go out of Pv. This conservation law
is only valid in steady-state operation, it does not apply to the initialization and clean-up
phases.

The following set of constraints is related to link occupation. First, nu,v denotes the total
number of messages that transit on the edge eu,v : Pu → Pv . We know that for each w, there
are xu,v

w messages sent to Pw which do transit on this edge. The main difficulty is that the sets
of messages transiting on the edge and sent to different Pw’s may partly overlap. If they were
all disjoint, we would write nu,v =

∑
w xu,v

w (this would hold true for a scatter operation). In
fact, it turns out that is it possible to design a schedule such that nu,v = maxw xu,v

w , which
is precisely constraint (d). This means that is is possible to orchestrate the communications
such that given any two message sets circulating on the same edge and destined to different

Broadcast Trees for Heterogeneous Platforms 11

processors, one is a subset of the other. The proof of this result is quite involved, see [6].
The next constraints are easier to derive. Constraint (e) expresses the time to circulate
all messages on the edge eu,v. The next two constraints correspond to the one-port model:
constraint (f) ensures that all incoming communications are sequentialized, and constraint (g)
is the counterpart for outgoing communications. The last three constraints simply state that
any set of sequential communications lasts no more than one time-unit.

We do not use the complicated algorithm described in [5, 6] to design an actual schedule
that achieves the optimal throughput TP through the parallel propagation of message slices
along several spanning trees. We only compute the optimal solution of the linear program (2),
and we retain the values of TP, the optimal throughput, and of nu,v, the number of message
slices that circulate along each edge eu,v.

4.2 Heuristic for the one-port model

We assign the weight nu,v to each edge eu,v of the platform graph G = (V,E), and we
use these weights to design two heuristics for the STP problem. We call communication
graph the platform graph weighted as just defined. The first heuristic starts from the whole
communication graph and removes the edges carrying the smallest number of messages, until
having reduced the graph to a spanning tree. The second heuristic works bottom-up, and
grows a spanning tree starting from the source processor, using the the most “useful” edges.

4.2.1 Communication graph pruning

In this heuristic, we delete the edges which preserve the connectivity of the graph and have
minimum weight, i.e. edges carrying the fewest messages in the solution returned by the
linear program (2). This is described in Algorithm 6.

LP-PRUNE(P, Psource)
solve linear program (2), and compute nu,v, the number of messages
sent through edge (u, v) during one time-unit
TreeEdges ← all edges of E
while |TreeEdges |> n − 1 do

L ← edges (u, v) sorted by non-increasing value of nu,v

for each edge e ∈ L do
if the graph (V,TreeEdges\{e}) is still connected then

TreeEdges ← TreeEdges\{e}
return (V,TreeEdges)

Algorithm 6: The communication graph pruning algorithm

4.2.2 Growing a spanning tree over the communication graph

In this heuristic, we consider again the communication graph given by the solution of the linear
program (2). We grow a spanning tree, starting from the source processor, and selecting edges
with maximum weight, i.e. edges carrying the maximum number of messages in the solution
of the linear program. This heuristic is described in Algorithm 7.

Broadcast Trees for Heterogeneous Platforms 12

LP-GROW-TREE(P, Psource)
solve linear program (2), and compute nu,v, the number of messages sent through
edge (u, v) during one time-unit
TreeEdges ← ∅
TreeVertices ← {Psource}
while TreeVertices �= V do

choose the link (u, v) such that u ∈ TreeVertices , v /∈ TreeVertices and (u, v)
has maximum value nu,v

TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}

return (TreeVertices ,TreeEdges)

Algorithm 7: The growing tree algorithm based on the communication graph.

5 Experiments

In this section, we describe the experiments conducted to assess the performance of all the
previous heuristics. We perform experiments through simulation, so as to test our heuristics
on a wide range of heterogeneous platforms.

5.1 Platforms

We use two types of platforms: first we randomly generate platform graphs, using the param-
eters described in Table 2. In Table 2, the density is the probability of the existence of an
edge between two nodes.

number of nodes : 10, 20,. . . , 50
density : 0.04, 0.08,. . . , 0.20

Tu,v : Gaussian distribution (mean=100MB/s, deviation=20MB/s)
sendu,v : 0.80 · minw,(u,w)∈E {Tu,w} (depends only on sending node u)

Table 2: Parameters for random generation of platform. For each set of parameters, we
generate 10 different configurations.

Next, to perform simulations on more realistic platforms, we use platforms generated
by Tiers, a popular generator of network topologies [19]. Using Tiers, we generate 100
platforms with 30 nodes, and 100 platforms with 65 nodes. These platforms have a density
between 0.05 and 0.15, depending on the number of nodes. We use the same distribution for
the values of Tu,v as for random platforms.

For both random and Tiers platforms, we conduct some experiments under the multi-
port model. In that case, the value of sendu,v is set to 80% of the shortest link occupation
when sending a message to one neighbor. This percentage is somewhat arbitrary, but our
simulations show that the results do not strongly depend upon this parameter.

5.2 Results

On each platform configuration, we compute the throughput of each heuristic, and compare
it to the optimal throughput of the MTP problem under the one-port model, obtained as the

Broadcast Trees for Heterogeneous Platforms 13

solution of the linear program described in Section 4. So what is called “relative performance”
in the following results is the throughput of a given heuristic compared to the best throughput
that can be achieved using several broadcast trees.

5.2.1 Random platforms, one-port

In Figure 4(a), we plot the performance of the different heuristics for several platform sizes.
We point out that for a small number of nodes, our heuristics are able to reach a throughput
very close to the optimal. For larger platforms, the “advanced heuristics” (i.e. Topo-Prune-
Degree, Topo-Grow-Tree, LP-Prune and LP-Grow-Tree) are able to reach 60% of the optimal
throughput with several trees. The heuristics Topo-Prune-Degree and Topo-Grow-Tree are
even within 70% of the optimal. The simple pruning heuristic (Topo-Prune-Simple) behaves
well for a small number of nodes, but is not scalable to larger platforms: its throughput falls
down to 20% of the optimal. Last, the Binomial-Tree heuristic gives very poor results, which
was expected because it does not take topological information into account.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

Prune Platform Simple
Prune Platform Degree

Grow Tree
LP Grow Tree

LP Prune
Binomial Tree

(a) Performance as a function of number of nodes

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Prune Platform Simple
Prune Platform Degree

Grow Tree
LP Grow Tree

LP Prune
Binomial Tree

(b) Performance as a function of density

Figure 4: Performance of the different heuristics in the one-port model. The Y axis is the
relative average performance compared to the optimal solution for the MTP problem.

Figure 4(b) shows the relative performances of our heuristics as a function of the density of
the underlying platform. Intuitively, a higher density allows for more freedom in the routing,
hence more gain in using several trees in parallel. However, our refined heuristics are still
within 70% of the optimal throughput.

5.2.2 Random platforms, multi-port

Figure 5 shows the performance of the Multi-Port Growing Tree heuristic described in Sec-
tion 3.2, compared to the Binomial-Tree heuristic. Again, we compute the ratio of the through-
put of these heuristics over the optimal throughput given by the linear program of Section 4.
At first sight it may seem surprising to achieve ratios larger than 1 (hence better than the
“optimal”). However, recall that the linear program gives an optimal throughput under the

Broadcast Trees for Heterogeneous Platforms 14

one-port assumption, while the throughput of the heuristics are computed using the multi-
port model, which allows some overlapping of consecutive sends by a given processor We still
choose to plot this ratio because: (i) we do not know how to compute the optimal throughput
under the multi-port model; and (ii) we believe that it is interesting to compare all heuristics
over the same basis, here the solution of the linear program, giving a good idea of what can
be achieved on the platform.

We notice that the performance of the Binomial-Tree heuristic is better that previously,
and this is because the multi-port model is less constrained, allowing for multiple communi-
cations to go through one node without severely decreasing the throughput. However, the
adapted Multi-Port Growing Tree heuristic gives much better results. We also present the
performance of the heuristics based on linear programming under this model, which are close
to the performance of the adapted Growing Tree heuristic. Finally, note that other heuristics,
such as Topo-Prune-Degree, can be adapted to the multi-port model, and give good results
too: the latter heuristic is labeled Multiport-Prune-Degree in Figure 5).

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 15 20 25 30 35 40 45 50

Multi Port Prune Degree
Multi Port Grow Tree

LP Grow Tree
LP Prune

Binomial Tree

Figure 5: Performance of the different heuristics in the multi-port model. The X axis is
the number of nodes in randomly generated platform. The Y axis is the relative average
performance compared to the optimal solution for the MTP problem on the same platform
(but under the one-port model).

5.2.3 Tiers platforms, one-port

Table 3 gives the results of all the heuristics for Tiers generated platforms, under the one-
port model. The results are congruent with those on randomly generated platforms, although
the LP-based heuristics (LP-Prune and LP-Grow-Tree) give a slightly better results on large
Tiers platforms.

6 Related work

As pointed out in the introduction, most papers dealing with broadcasting on heterogeneous
platforms restrict to the STA problem, i.e. they build a single spanning tree, without pipelin-
ing.

As mentioned in Section 2.3, Banikazemi et al. [1] have considered a simple model in which
the heterogeneity among processors is characterized by the speed of the sending processors.

Broadcast Trees for Heterogeneous Platforms 15

number Platform based heuristics LP based heuristics Binomial
of nodes Prune Simple Refined Prune Grow Tree Grow Tree Prune Max Tree

30 46% (±0.12%) 82% (±10%) 75% (±10%) 82% (±11%) 82% (±11%) 11% (±2%)

65 30% (±10%) 73% (±13%) 71% (±12%) 73% (±11%) 74% (±11%) 5% (±1%)

Table 3: Performance of the one-port heuristics on two types of platforms generated by Tiers
(average value, (±deviation%))

The authors argue that this simple model of heterogeneity can well describe the different
communication delays in a heterogeneous cluster. They introduce the Fastest Node First
(FNF) heuristic: to construct a good broadcast tree, it is better to put fastest processors
(processors that have the smallest sending time) at the top of tree. Some theoretical results
(NP-completeness and approximation algorithms) have been developed for the problem of
broadcasting a message in this model: see [15, 21, 25, 26, 31].

The (bidirectional) one-port model; which we extensively used in this paper, has been
introduced by Bhat et al. [8, 7]. In [8], some heuristics are proposed for the STA problem
(broadcast and multicast) using this model.

Sun et al [34] investigate clusters of SMPs connected by one-port switches, and they intro-
duce several heuristic for the STA problem on such hierarchical platforms. Other collective
communications, such as multicast, scatter, all-to-all, gossiping, and gather (or reduce) have
been studied in the context of heterogeneous platforms: see [16, 27, 24, 28, 29, 30] among
others.

7 Conclusion

In this paper, we have considered the problem of broadcasting large messages on heterogeneous
platforms. The broadcast may be performed either using a single tree and sending the whole
message at once (the STA approach), or using a single tree and sending the message in a
pipeline fashion (the STP approach), or using several broadcast trees and sending the message
in a pipeline fashion (the MTP approach). Surprisingly, the former two problems are NP-
Complete, whereas the latter can be solved in polynomial time.
Nevertheless, the use of a single tree has many advantages. In particular, there is no need
of complex synchronization to handle conflicts that may arise on communication resources;
also, a communication scheme using a single broadcast tree may well be more robust to small
changes in link performances.

We have derived several heuristics for the STP approach, and compared them, through
extensive simulations, against the optimal solution of the MTP problem. The results pre-
sented in this paper show that for realistic platforms such as those generated by Tiers [19],
there is little difference in the throughput achieved when using a single or several broadcast
trees. Our results also prove that it is mandatory to take into account the actual topology
and performances of the network to derive efficient implementations. Estimates of the trans-
fer speeds can be acquired by querying grid information services [12, 40, 13], or by directly
observing the performance being delivered by the communication links. Whenever available
on the target heterogeneous platform, plugging this information into our heuristics is very
likely to provide significant improvement over current MPI implementations.

Broadcast Trees for Heterogeneous Platforms 16

References

[1] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective communication on het-
erogeneous networks of workstations. In Proceedings of the 27th International Conference
on Parallel Processing (ICPP’98). IEEE Computer Society Press, 1998.

[2] M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P. Sadayappan. Commu-
nication modeling of heterogeneous networks of workstations for performance characteri-
zation of collective operations. In HCW’99, the 8th Heterogeneous Computing Workshop,
pages 125–133. IEEE Computer Society Press, 1999.

[3] A. Bar-Noy, S. Guha, J. S. Naor, and B. Schieber. Message multicasting in heterogeneous
networks. SIAM Journal on Computing, 30(2):347–358, 2000.

[4] M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn. On the efficiency of global
combine algorithms for 2-D meshes with wormhole routing. J. Parallel and Distributed
Computing, 24(2):191–201, 1995.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Pipelining broadcasts on het-
erogeneous platforms. In International Parallel and Distributed Processing Symposium
IPDPS’2004. IEEE Computer Society Press, 2004.

[6] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Pipelining broadcasts on hetero-
geneous platforms. IEEE Trans. Parallel Distributed Systems, 2004, to appear. Available
as LIP Research Report 2003-34.

[7] P. Bhat, C. Raghavendra, and V. Prasanna. Adaptive communication algorithms for
distributed heterogeneous systems. Journal of Parallel and Distributed Computing,
59(2):252–279, 1999.

[8] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in dis-
tributed heterogeneous systems. In ICDCS’99 19th International Conference on Dis-
tributed Computing Systems, pages 15–24. IEEE Computer Society Press, 1999.

[9] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in dis-
tributed heterogeneous systems. Journal of Parallel and Distributed Computing, 63:251–
263, 2003.

[10] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt. Maple
Reference Manual, 1988.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[12] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services
for Distributed Resource Sharing. In Proceedings of the 10th IEEE Symposium on High-
Performance Distributed Computing (HPDC-10), August 2001.

[13] The Ganglia Project. http://ganglia.sourceforge.net.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

Broadcast Trees for Heterogeneous Platforms 17

[15] N. Hall, W.-P. Liu, and J. Sidney. Scheduling in broadcast networks. Networks,
32(14):233–253, 1998.

[16] J.-I. Hatta and S. Shibusawa. Scheduling algorithms for efficient gather operations in dis-
tributed heterogeneous systems. In 2000 International Conference on Parallel Processing
(ICPP’2000). IEEE Computer Society Press, 2000.

[17] K. Hwang and Z. Xu. Scalable Parallel Computing. McGraw-Hill, 1998.

[18] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication
in hypercubes. IEEE Trans. Computers, 38(9):1249–1268, 1989.

[19] K. Calvert and M. Doar and E.W. Zegura. Modeling Internet Topology. IEEE Commu-
nications Magazine, 35:160–163, 1997.

[20] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of the
message passing interface. J. Parallel and Distributed Computing, 63(5):551–563, 2003.

[21] S. Khuller and Y. Kim. On broadcasting in heterogenous networks. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1011–1020.
Society for Industrial and Applied Mathematics, 2004.

[22] H. Ko, S. Latifi, and P. Srimani. Near-optimal broadcast in all-port wormhole-routed
hypercubes using error-correcting codes. IEEE Trans. Parallel and Distributed Systems,
11(3):247–260, 2000.

[23] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing.
The Benjamin/Cummings Publishing Company, Inc., 1994.

[24] R. Libeskind-Hadas, J. R. K. Hartline, P. Boothe, G. Rae, and J. Swisher. On mul-
ticast algorithms for heterogeneous networks of workstations. Journal of Parallel and
Distributed Computing, 61(11):1665–1679, 2001.

[25] P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Journal of
Algorithms, 42(1):135–152, 2002.

[26] P. Liu and T.-H. Sheng. Broadcast scheduling optimization for heterogeneous cluster
systems. In SPAA’2000, 12th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 129–136. ACM Press, 2000.

[27] P. Liu and D.-W. Wang. Reduction optimization in heterogeneous cluster environments.
In 14th International Parallel and Distributed Processing Symposium (IPDPS’2000).
IEEE Computer Society Press, 2000.

[28] B. Lowekamp and A. Beguelin. Eco: Efficient collective operations for communication
on heterogeneous networks. In 10th International Parallel and Distributed Processing
Symposium (IPDPS’96). IEEE Computer Society Press, 1996.

[29] Z. B. Miled, J. A. Fortes, R. Eigenmann, and V. Taylor. On the implementation of
broadcast, scatter and gather in a heterogeneous architecture. In Thirty-First Annual
Hawaii International Conference on System Sciences (volume 3). IEEE Computer Society
Press, 1998.

Broadcast Trees for Heterogeneous Platforms 18

[30] F. Ooshita, S. Matsumae, and T. Masuzawa. Efficient gather operation in heterogeneous
cluster systems. In Proceedings of the 16th International Symposium on High Perfor-
mance Computing Systems and Applications (HPCS’02). IEEE Computer Society Press,
2002.

[31] F. Ooshita, S. Matsumae, T. Masuzawa, and N. Tokura. Scheduling for broadcast op-
eration in heterogeneous parallel computing environments. Systems and Computers in
Japan, 35(5):44–54, 2004.

[32] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS
3149, pages 173–182. Springer, 2004.

[33] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI the
complete reference. The MIT Press, 1996.

[34] Y. Sun, D. Bader, X. Lin, and Y. Ling. Broadcast on clusters of SMPs with optimal con-
currency. In International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’02). CSREA Press, 2002.

[35] The MuPAD Group (B. Fuchssteiner et al.). MuPAD User’s Manual. John Wiley and
sons, 1996.

[36] Y.-C. Tseng, S.-Y. Wang, and C.-W. Ho. Efficient broadcasting in wormhole-routed
multicomputers: a network-partitioning approach. IEEE Trans. Parallel and Distributed
Systems, 10(1):44–61, 1999.

[37] R. van de Geijn. On global combine operations. J. Parallel and Distributed Computing,
22(2):324–328, 1995.

[38] S.-Y. Wang and Y.-C. Tseng. Algebraic foundations and broadcasting algorithms for
wormhole-routed all-port tori. IEEE Trans. Computers, 49(3):246–258, 2000.

[39] J. Watts and R. Van De Geijn. A pipelined broadcast for multidimensional meshes.
Parallel Processing Letters, 5(2):281–292, 1995.

[40] R. Wolski, N. Spring, and J. Hayes. The network weather service: a distributed re-
source performance forecasting service for metacomputing. Future Generation Computer
Systems, 15(10):757–768, 1999.

	1 Introduction
	2 Models and framework
	2.1 Models
	2.2 Multi-port models
	2.3 One-port models
	2.4 Framework

	3 Platform-based heuristics
	3.1 One-port model
	3.1.1 Simple Platform Pruning
	3.1.2 Refined Platform Pruning
	3.1.3 Growing a Minimum Weighted Out-Degree Tree
	3.1.4 Binomial tree heuristic

	3.2 Multi-port

	4 LP-based heuristics
	4.1 Linear program
	4.2 Heuristic for the one-port model
	4.2.1 Communication graph pruning
	4.2.2 Growing a spanning tree over the communication graph

	5 Experiments
	5.1 Platforms
	5.2 Results
	5.2.1 Random platforms, one-port
	5.2.2 Random platforms, multi-port
	5.2.3 Tiers platforms, one-port

	6 Related work
	7 Conclusion

