Chordal embeddings of planar graph
Vincent Bouchitté, Frédéric Mazoit, Ioan Todinca

To cite this version:
Vincent Bouchitté, Frédéric Mazoit, Ioan Todinca. Chordal embeddings of planar graph. [Research Report] Laboratoire de l’informatique du parallélisme. 2001, 2+14p. hal-02101804

HAL Id: hal-02101804
https://hal-lara.archives-ouvertes.fr/hal-02101804
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Chordal embeddings of planar graphs

V. Bouchitté, F. Mazoit and I. Todinca
16th November 2001

Research Report N° RR2001-47
Chordal embeddings of planar graphs

V. Bouchitté, F. Mazoit and I. Todinca

16th November 2001

Abstract

Robertson and Seymour conjectured that the treewidth of a planar graph and the treewidth of its geometric dual differ by at most one. Laroire solved the conjecture in the affirmative, using algebraic techniques. We give here a much shorter proof of this result.

Keywords: planar graphs, treewidth, duality

Résumé

Roberson et Seymour ont conjecturé que la largeur arborescente d’un graphe planaire et celle de son dual diffèrent d’au plus un. Laroire a prouvé cette conjecture en utilisant des outils algébriques. Nous donnons ici une preuve beaucoup plus courte de ce résultat.

Mots-clés: graphes planaires, largeur arborescente, dualité

1 Introduction

The notions of treewidth and tree decomposition of a graph have been introduced by Robertson and Seymour in [14] for their study of minors of graphs. These notions have been intensively investigated for algorithmical purposes since many NP-hard problems become polynomial and even linear when restricted to classes of graphs with bounded treewidth.

Robertson and Seymour conjectured in [13] that the treewidth of a planar graph and the treewidth of its geometric dual differ by at most one. Lapoire [11] solved this conjecture in the affirmative, in fact he proved a more general result. In order to prove his result, Lapoire worked on hypermaps and introduced the notion of splitting of hypermaps, his approach is essentially an algebraic one.

Computing the treewidth of an arbitrary graph is NP-hard. Nevertheless, the treewidth can be computed in polynomial time for several well-known classes of graphs, for example chordal bipartite graphs [9], circle and circular-arc graphs [8] [16], permutation graphs [2] and weakly triangulated graphs [4]. Actually all these classes of graphs have a polynomial number of minimal separators, we proved in [3] that we can compute, in polynomial time, the treewidth for every classes having a polynomial number of minimal separators.

For classes of graphs having an exponential number of minimal separators, we know very few, for instance the problem remains NP-hard on AT-free graphs [1] and it is polynomial for rectangular grids. Maybe the most challenging open problem is the computation of the treewidth for planar graphs. In [13], Seymour and Thomas gave a polynomial time algorithm that approximate the treewidth of planar graph within a factor of $\frac{3}{2}$.

In this paper, we give a new approach to tackle the problem of the treewidth computation for planar graphs. First, we recall how to obtain minimal chordal embeddings of graphs by completing some families of minimal separators. Secondly, we show that we can interpret minimal separators of planar graphs as Jordan curves of the plane. Then, we study the structure of Jordan curves that give a minimal triangulation of the graph. Next, given a family of curves of the plane, we show how to build a minimal triangulation of the geometric dual of the graph. Finally, given an optimal triangulation w.r.t treewidth of the initial graph, we give a triangulation of the dual graph whose maximal cliquesize is no more than the maximal cliquesize of the original graph plus one. So, we get a new proof of the conjecture of Robertson and Seymour which is much simpler than the proof of Lapoire.

2 Preliminaries

Throughout this paper we consider simple, finite, undirected graphs.

A graph $G = (V, E)$ is planar if it can be drawn in the plane such that no two edges meet in a point other than a common end. The plane will be denoted by Σ. A plane graph $G = (V, E)$ is a drawing of a planar graph. That is, each vertex $v \in V$ is a point of Σ, each edge $e \in E$ is a curve between two vertices, distinct edges have distinct sets of endpoints and the interior of an edge contains no point of another edge. A face of the plane graph G is a region of $\Sigma \backslash G$. $F(G)$ denotes the set of faces of G. Sometimes we will also use plane multigraphs, i.e. we allow loops and multiple edges.

Let $G = (V, E)$ a plane graph. The dual $G^* = (F, E^*)$ of G is a plane multigraph obtained in the following way: for each face of G, we place a point f into the face, and these points form the vertex set of G^*. For each edge e of G, we link the two vertices of G^* corresponding to faces incident to e in G, by an edge e^* crossing e; if e is incident with only one face, then e^* is a loop.
A graph H is chordal (or triangulated) if every cycle of length at least four has a chord. A triangulation of a graph $G = (V, E)$ is a chordal graph $H = (V, E')$ such that $E \subseteq E'$. H is a minimal triangulation if for any intermediate set E'' with $E \subseteq E'' \subseteq E'$, the graph (V, E'') is not triangulated. We point out that in this paper, a triangulation of a planar graph G will always mean a chordal embedding of G. Thus, a triangulation of G is clearly not equivalent to a planar triangulation (that is, a planar supergraph such that each face of the supergraph is a triangle) of G.

Definition 1 Let G be a graph. The treewidth of G, denoted by $\text{tw}(G)$, is the minimum, over all triangulations H of G, of $\omega(H) - 1$, where $\omega(H)$ is the the maximum clique size of H. The treewidth of a multigraph is the treewidth of the corresponding simple graph.

The aim of this paper is to prove the following assertion, stated by Robertson and Seymour in [13]:

Problem. For any plane graph $G = (V, E)$,

$$\text{tw}(G^*) \leq \text{tw}(G) \leq \text{tw}(G^*) + 1.$$

We say that a graph G' is a minor of a graph G if we can obtain G' from G by repeatedly using the following operations: vertex deletion, edge deletion and edge contraction. Kuratowski’s theorem states that a graph G is planar if and only if the graphs $K_{3,3}$ and K_5 are not minors of G. It is well-known that if G' is a minor of G, then $\text{tw}(G') \leq \text{tw}(G)$. We refer to [5] for more details on these results.

When we compute the treewidth of a graph G, we are searching for a triangulation of G with smallest clique size, so we can restrict our work to minimal triangulations. We need a characterization of the minimal triangulations of a graph, using the notion of minimal separator.

A subset $S \subseteq V$ is an a, b-separator for two nonadjacent vertices $a, b \in V$ if the removal of S from the graph separates a and b in different connected components. S is a minimal a, b-separator if no proper subset of S separates a and b. We say that S is a minimal separator of G if there are two vertices a and b such that S is a minimal a, b-separator. Notice that a minimal separator can be strictly included into another. We denote by Δ_G the set of all minimal separators of G.

Let G be a graph and S be a minimal separator of G. We denote by $C_G(S)$ the set of connected components of $G \setminus S$. A component $C \in C_G(S)$ is full if every vertex of S is adjacent to some vertex of C. For the following lemma, we refer to [7].

Lemma 1 A set S of vertices of G is a minimal a, b-separator if and only if a and b are in different full components of S.

Definition 2 Two separators S and T cross, denoted by $S \nparallel T$, if there are some distinct components C and D of $G \setminus \{S, T\}$ such that S intersects both of them. If S and T do not cross, they are called parallel, denoted by $S \parallel T$.

It is easy to prove that these relations are symmetric.

Let $S \in \Delta_G$ be a minimal separator. We denote by G_S the graph obtained from G by completing S, i.e. by adding an edge between every pair of non-adjacent vertices of S. If $\Gamma \subseteq \Delta_G$ is a set of separators of G, G_{Γ} is the graph obtained by completing all the separators of Γ. The results of [10], concluded in [12], establish a strong relation between the minimal triangulations of a graph and its minimal separators.
Theorem 1 Let $\Gamma \in \Delta_G$ be a maximal set of pairwise parallel separators of G. Then $H = G_\Gamma$ is a minimal triangulation of G and $\Delta_H = \Gamma$.

Let H be a minimal triangulation of a graph G. Then Δ_H is a maximal set of pairwise parallel separators of G and $H = G_{\Delta_H}$. Moreover, for each $S \in \Delta_H$, the connected components of $H \setminus S$ are exactly the connected components of $G \setminus S$.

In other terms, every minimal triangulation of a graph G is obtained by considering a maximal set Γ of pairwise parallel separators of G and completing the separators of Γ. The minimal separators of the triangulation are exactly the elements of Γ.

3 Minimal separators as curves

We show in this section that, in plane graphs, we can associate to each minimal separator S a Jordan curve such that, if S separates two vertices of the graph, then the curve separates the corresponding points in the plane.

Definition 3 Let $G = (V, E)$ be a planar graph. We fix a plane embedding of G. Let F be the set of faces of this embedding. The intermediate graph $G_I = (V \cup F, E_I)$ has vertex set $V \cup F$. We place an edge in G_I between an original vertex $v \in V$ and a face-vertex $f \in F$ whenever the corresponding vertex and face are incident in G.

Proposition 1 Let G be a 2-connected plane graph. Then the intermediate graph G_I is also 2-connected.

Proof. Let us prove that, for any couple of original vertices x and y of G_I and for any face or original vertex a, there is an x,y-path in G_I avoiding a. Let $\mu = [x = v_1, v_2, \ldots, v_p = y]$ an x, y-path of G. If $a \in V(G)$, since $\{a\}$ is not an x, y separator of G, we can choose μ such that $a \not\in \mu$. For each edge $e_i = v_i, v_{i+1}, 1 \leq i < p$, let f_i be a face incident to e_i in G. If a is a face-vertex, we use the fact that in a 2-connected plane graph each edge is incident to at least two faces and we choose $f_i \neq a$. Then $[v_1, f_1, v_2, f_2, \ldots, v_p]$ is an x,y-path of G_I, avoiding a. It follows that, for any $x, y \in V(G)$ and for any $a \in V(G) \cup F(G)$, $\{a\}$ is not an x, y separator of G_I. Each face-vertex is adjacent in G_I to at least two original vertices. It follows easily that for any $a \in V \cup F$, $\{a\}$ is not a separator of G_I.

The following propositions show that a minimal separator of G can be viewed as a cycle in the intermediate graph G_I. This result of Eppstein appears in [6], in a slightly different form.

Proposition 2 Consider a cycle ν of G_I. Its drawing defines a Jordan curve $\hat{\nu}$ in the plane. Removing $\hat{\nu}$ separates the plane into two regions. If both regions contain at least one original vertex, then the original vertices of ν form a separator of G.

Proof. Let x and y be two original vertices, separated by the curve $\hat{\nu}$ in the plane. Clearly, no edge of G crosses an edge of G_I, and therefore no edge of G crosses the curve $\hat{\nu}$. Every path μ connecting x and y in G intersects $\hat{\nu}$, so μ has a vertex in ν. It follows that $\nu \cap V$ is a x,y-separator of G. □

Proposition 3 Let S be a minimal separator of a 2-connected plane graph G and C be a full component associated to S. Then S corresponds to an elementary cycle $\nu_S(C)$ of G_I, of the same original vertices and of equal number of face-vertices in G_I, such that $G_I \setminus \nu_S(C)$ has at least two connected components. Moreover, the original vertices of one of these components are exactly the vertices of C.
Proof. Let C be a full component associated to S, let G^C be formed by contracting C into a supervertex, and let S' be the set of faces and vertices adjacent in G^C to the contracted supervertex. Then S' is neighborhood of the supervertex in G^C, so it has the structure of a cycle in G^C and therefore in G. This cycle will be denoted $\nu_S(C)$. Since C is a full component associated to S in G, we have that $S = N_G(C)$, so the original vertices of S' are exactly vertices of S. The cycle separates C from $V\setminus(S \cup C)$ in G. □

The cycle $\nu_C(S)$ defined in the previous proposition will be called the cycle associated to S and C, close to C. Remark. Any cycle ν of G forms a Jordan curve in the plane. We denote ν this curve. Removing ν separates the plane into two open regions. Consider the cycle $\nu_C(S)$ of G associated to a minimal separator S and a full component C of $G\setminus S$, close to C. Then one of the regions defined by $\nu_C(S)$ contains all the vertices of C and the other contains all the vertices of $V\setminus(S \cup C)$. □

4 Some technical lemmas

In the next section we show how to associate to each minimal separator S of the 3-connected plane graph G a unique cycle of G having good separation properties. We group here some technical lemmas that will be used in the next sections.

Lemma 2 Let G be a 3-connected planar graph and S be a minimal separator of G. Then $G\setminus S$ has exactly two connected components.

Proof. By lemma 1, there are two distinct full components C_1 and C_2 associated to S. Suppose there is another component C_3 of $G\setminus S$ and let $S_3 = N(C_3)$. Clearly, S_3 is a separator of G, so $|S_3| \geq 3$. Let x_1, x_2, x_3 be three distinct vertices of S_3. Consider the plane graph G' obtained from G by contracting each component C_1, C_2 and C_3 into a supervertex. The three supervertices are adjacent in G' to x_1, x_2, x_3, so G' contains a subgraph isomorphic to $K_{3,3}$ — contradicting Kuratowski’s theorem. □

Proposition 4 Let S be a minimal separator of a 3-connected planar graph G. Then S is also an inclusion minimal separator of G.

Proof. Suppose there is a separator T of G such that $T \subset S$. There is a connected component C of $G\setminus T$ such that $C \cap S = \emptyset$. Indeed, if S intersects each component of $G\setminus T$, then S and T cross, and since the crossing relation is symmetric T must intersect two connected components of $G\setminus S$, contradicting $T \subset S$. Since $S \cap C = \emptyset$ and $T \subset S$, C is also a connected component of $G\setminus S$. By lemma 1, there are two full components D_1, D_2 associated to S. Notice that C is not a full component associated to S, because $N(C) = T \subset S$. It follows that D_1, D_2 and C are three distinct components associated to S in G, contradicting lemma 2. □

Lemma 3 Let G be a plane graph and ν be a cycle of G such that ν separates two original vertices a and b in the plane. Consider two vertices x and y of ν. Suppose there is a path μ from x to y in G, such that $a, b \notin \mu$ and μ does not intersect the cycle ν except in x and y.

The vertices x and y split ν into two x,y-paths of G, denoted μ_1 and μ_2. Consider the cycles ν_1 (respectively ν_2) of G formed by the paths μ and μ_1 (respectively μ and μ_2). Then ν_1 or ν_2 separate two original vertices in the plane.

Proof. Let R_1, R_2 be the two regions obtained by removing ν from the plane. By hypothesis, both R_1 and R_2 contain original vertices, say $a \in R_1$ and $b \in R_2$. □
Suppose w.l.o.g. that the path μ is contained in $R_1 \cup \{x, y\}$. Then the drawing of μ splits R_1 into two regions: R_1', bordered by the curve $\tilde{\nu}_1$, and R_1'', bordered by $\tilde{\nu}_2$. If $a \in R_1'$ then $\tilde{\nu}_1$ separates a and b in the plane, otherwise $a \in R_1''$ so $\tilde{\nu}_2$ separates a and b in the plane. \qed

Lemma 4 Let S be a minimal separator of a 3-connected plane graph G. Consider a cycle ν_S of G_1 such that the original vertices of ν_S are the elements of S. Suppose that ν_S separates in the plane two original vertices of G.

If two original vertices of S are at distance two in G_1 (i.e. they are incident to a same face of G), these vertices are also at distance two on the cycle ν_S.

Proof. Let $\nu_S = [v_1, f_1, \ldots, v_p, f_p]$, where v_i (respectively f_i) are the original (respectively face) vertices of ν_S. The conclusion is obvious if $p \leq 3$. Suppose there are two vertices $x, y \in S$ at distance two in G_1, but not in ν_S. W.l.o.g., we suppose $x = v_1$ and $y = v_i$, $3 \leq i \leq p - 2$. Let f be a face vertex adjacent to v_1 and v_i in G_1.

If $f \not\in \nu_S(C)$, we apply lemma 3 with cycle ν_S and path $[v_1, f, v_i]$, so one of the cycles $v_1 = [v_1, f_1, v_2, f_2, \ldots, v_i, f]$ or $v_2 = [v_1, f, v_i, f_i, v_{i+1}, f_{i+1}, \ldots, v_p, f_p]$ separates two original vertices in the plane (see figure 1a). By proposition 2, the original vertices of v_1 or v_2 form a separator T in G. But T is strictly contained in S, contradicting proposition 4.

![Proof of lemma 4](image)

The case $f \in \nu_S$ is very similar. There is some $j, 1 \leq j \leq p$ such that $f = f_j$. Since v_1 and v_i are not at distance two on ν_S, we have that $j \not\in \{1, p\}$ or $j \not\in \{i - 1, i + 1\}$. Suppose w.l.o.g. that f is not consecutive to v_1 on the cycle ν_S. We apply lemma 3 with cycle ν_S and path $[v_1, f]$. We obtain that one of the cycles $v_1 = [v_1, f_1, \ldots, v_j, f_j]$ or $v_2 = [v_1, f_j, v_{j+1}, f_{j+1}, \ldots, v_p, f_p]$ (see figure 1b) separates two original vertices of G, so the original vertices of v_1 or v_2 form a separator T of G. In both cases, $T \subset S$, contradicting proposition 4. \qed

Lemma 5 Let $G = (V, E)$ be a plane graph and $x, y \in V$ such that at least three faces are incident to both x and y. Then $\{x, y\}$ is a separator of G.

Proof. Let f_1, f_2, f_3 be three faces incident to both x and y. Consider the three paths $\mu_i = [x, f_i, y]$, $1 \leq i \leq 3$ of the intermediate graph G_1. The drawings of these paths split the plane into three regions: R_1 bordered by the cycle $\nu_1 = [x, f_1, y, f_3]$, R_2 bordered by $\nu_2 = [x, f_1, y, f_3]$ and R_3 bordered by $\nu_3 = [x, f_1, y, f_3]$. We show that at least two of the three regions contain one or more original vertices.

Suppose that R_2 and R_3 do not contain original vertices. In the graph G, each face is incident to at least three vertices, so f_1 has a neighbor z, different from x and y. The edge $f_1 z$ of G_1 does not cross any of the paths μ_1, μ_2, μ_3, so z is in one of the regions R_2 or R_3, incident to f_1. This contradicts our assumption that R_2 and R_3 do not contain original vertices.
We proved that at least two of the three regions R_1, R_2, R_3 — say R_1 and R_2 — contain original vertices. Then $\tilde{\mu}$, the Jordan curve bordering R_1, separates two original vertices of G. By proposition 2, the original vertices of μ_1, namely $\{x, y\}$, form a separator of G.

Lemma 6 Let $G = (V, E)$ be a 3-connected plane graph and $x, y \in V$.

1. If $xy \in E$, there are exactly two faces incident to both x and y.

2. If $xy \notin E$, there is at most one face of G incident to both x and y.

Proof. The graph G is 3-connected, so by lemma 5 there are at most two faces incident to both x and y.

The first statement is obvious since the edge xy is incident to two faces of G. For the second statement, suppose there are two faces f_1 and f_2 incident to x and y. Consider the plane graph G' obtained from G by adding the edge xy, drawn in the face f_1. Then the face f_1 of G is split into two faces f_1' and f_1'', both incident to x and y in G'. So, in G', the three faces f_1', f_1'' and f_2 are incident to both x and y. But G' is a 3-connected planar graph, and by lemma 5 we have that $\{x, y\}$ is a separator of G' — a contradiction. □

Proposition 5 Let G be a 3-connected plane graph. Consider two cycles ν and ν' of G_1, such that ν and ν' only differ by their face vertices. Then $\tilde{\nu}$ separates two original vertices a and b in the plane if and only if $\tilde{\nu}'$ also separates a and b in the plane.

Proof. It is sufficient to prove our statement for two cycles that only differ by one face vertex, say $\nu = [v_1, f_1, v_2, f_2, \ldots, v_p, f_p]$ and $\nu' = [v_1, f_1', v_2, f_2, \ldots, v_p, f_p]$, such that $f_1 \neq f_1'$. Since v_1 and v_2 are incident to both f_1 and f_1' in G, it comes by lemma 6 that v_1 and v_2 are adjacent in G. Thus, f_1 and f_1' are the faces incident in G to the edge $e = v_1v_2$.

Consider the cycle $\nu'' = [v_1, f_1, v_2, f_1']$ of G_1 and let R be the region bordered by $\tilde{\nu}''$ and containing the interior of the edge e. Clearly, the region R contains no original or face vertex of G_1.

Let R_1, R_2 be the two regions obtained by removing $\tilde{\nu}$ from the plane. Suppose that the edge e, and thus the face f_1', is in R_2. Then the regions obtained by removing $\tilde{\nu}$ from the plane are exactly $R'_1 = R_1 \cup R \cup [v_1, f_1, v_2]$ and $R'_2 = R_2 \setminus R \setminus [v_1, f_1', v_2]$. Since R contains no original vertices, the original vertices of R'_1 (respectively R'_2) are the original vertices of R_1 (respectively R_2). □

Lemma 7 ([5], proposition 4.2.10) Let G be a 3-connected plane graph. For any face f, the set of vertices incident to f do not form a separator of G.

Lemma 8 Let G be a 3-connected plane graph and S be a minimal separator of G. Then each face of G is incident to at most two vertices of S.

Proof. Suppose there are three vertices x, y, z of S incident to a same face f. Let C be a full component associated to S in G and $\nu_S(C)$ be the cycle associated to S in G_1, close to C. Consider first the case $|S| \geq 4$, so there is some vertex $t \in S \setminus \{x, y, z\}$. Suppose w.l.o.g. that $\nu_S(C)$ encounters x, y, z and t in this order. Then x and z are not at distance 2 on the cycle $\nu_S(C)$, contradicting lemma 4.

If $|S| = 3$, let T be the set of vertices incident to f, so $S \subseteq T$. Thus, T is a separator of G, contradicting lemma 7. □
5 Minimal separators in 3-connected planar graphs

Consider a minimal separator S of G and two full components C and D associated to S. We can associate to S two cycles of G_1, namely $v_S(C)$ and $v_S(D)$, closed to C, respectively D. In general, the two cycles are distinct, although they represent for us the same minimal separator S. In the case of 3-connected planar graphs, we slightly modify the construction of proposition 3 in order to obtain a unique cycle representing S in G_1.

Let G be a 3-connected plane graph. Consider two original vertices x and y situated at distance two in G_1. We know that x and y are incident to a same face in G, but this face is not necessarily unique. For each pair of vertices $x, y \in V$ at distance two in G_1, we fix a unique face $f(x, y)$ of G_1 incident to both x and y. Let $\nu = [v_1, f_1, v_2, f_2, \ldots, v_p, f_p]$ be a cycle of G_1, where v_i are the original vertices and f_i are the face vertices of ν. We say that a cycle ν is well-formed if, for each pair of consecutive original vertices v_i, v_{i+1} of ν we have $f_i = f(v_i, v_{i+1})$ ($1 \leq i \leq p$, $v_{p+1} = v_1$).

Given a minimal separator S of G we construct a unique well-formed cycle ν_S associated to S as follows. Let C, D be the full components associated to S in G and let $v_S(C) = [v_1, f_1, v_2, f_2, \ldots, v_p, f_p]$ be the cycle associated to S in G_1, close to C. We denote $v_S'(C) = [v_1, f'_1, v_2, f'_2, \ldots, v_p, f'_p]$ where $f'_i = f(v_i, v_{i+1})$ \forall i, 1 \leq i \leq p. Notice that \forall i, j, 1 \leq i < j \leq p we have $f'_i \neq f'_j$ by lemma 8, so $v_S'(C)$ is an elementary cycle of G_1.

The cycle $v_S(D)$, associated to S and close to D, has the same original vertices as $v_S(C)$, encountered in the same order: $v_S(D) = [v_1, f''_1, v_2, f''_2, \ldots, v_p, f''_p]$. Thus, $\nu_S'(D) = \nu_S'(C)$ and from now on this cycle will be denoted ν_S. By proposition 5, ν_S separates C and D in the plane:

Proposition 6 Let G be a 3-connected planar graph and S be a minimal separator of G. Let C, D be the two connected components of $G \setminus S$. Then ν_S separates C and D in the plane.

Definition 4 Two Jordan curves $\tilde{\nu}_1$ and $\tilde{\nu}_2$ cross if $\tilde{\nu}_1$ intersects the two regions of $\Sigma \setminus \tilde{\nu}_2$. Otherwise, they are parallel. Two cycles ν_1 and ν_2 of G_1 cross if and only if $\tilde{\nu}_1$ and $\tilde{\nu}_2$ cross.

Notice that the parallel and crossing relation between curves and cycles are symmetric.

Proposition 7 Two minimal separators S and T of a 3-connected plane graph G are parallel if and only if the corresponding cycles ν_S and ν_T of G_1 are parallel.

Proof. We prove that if S and T cross, then ν_S and ν_T cross. Let C and D be the two connected components of $G \setminus S$. By definition of crossing separators, T intersects two connected components of $G \setminus S$, so T intersects C and D. The curve ν_S separates C and D in the plane, by proposition 6. Thus, $\tilde{\nu}_T$ intersects two different regions of $\Sigma \setminus \tilde{\nu}_S$, so ν_T crosses ν_S.

We prove that if ν_S crosses ν_T, then S crosses T. Let R and R' be the regions of $\Sigma \setminus \tilde{\nu}_S$. We show that at least one original vertex of ν_T is in R. Since ν_S crosses ν_T, $\tilde{\nu}_T$ intersects R. Thus, an original vertex or a face-vertex of ν_T is in R. Suppose that ν_T has no original vertex in R and let f be a face-vertex of $\nu_T \cap R$. On the cycle ν_T, the face-vertex f is between two original vertices x and x'. Notice that x is also a vertex of ν_S. Indeed, $x \notin R$, and x cannot be in R', because the edge xf of G_1 cannot cross the drawing of the cycle ν_S. It follows that $x \in \tilde{\nu}_S$. So x and x' are both vertices of ν_S. Since x and x' are adjacent to a same face-vertex of G_1, they are on a same face of G. By lemma 4, x and x' are at distance two on the
cycle ν_S, and let f' be the face-vertex of ν_S between x and x'. Since ν_S and ν_T are well-formed cycles, we have $f' = f(x,y) = f$, so $f \in \nu_S$. This contradicts the fact that f is in one of the regions of $\Sigma \setminus \hat{\nu}_S$.

We showed that ν_S has original vertices in region R, and for similar reasons it has original vertices in R'. So ν_S separates two original vertices of ν_T in the plane, and by proposition 6 S separates these vertices in G. Thus, S crosses T. \hfill \Box

\section{Block regions}

Let $\hat{\nu}$ be a Jordan curve in the plane. Let R be one of the regions of $\Sigma \setminus \hat{\nu}$. We say that $(\hat{\nu}, R) = \hat{\nu} \cup R$ is a one-block region of the plane, bordered by $\hat{\nu}$.

\begin{definition}
Let $\hat{\mathcal{C}}$ be a set of curves such that for each $\hat{\nu} \in \hat{\mathcal{C}}$, there is a one-block region $(\hat{\nu}, R(\hat{\nu}))$ containing all the curves of $\hat{\mathcal{C}}$. We define the region between the elements of $\hat{\mathcal{C}}$ as

$$\text{RegBetween}(\hat{\mathcal{C}}) = \bigcap_{\hat{\nu} \in \hat{\mathcal{C}}} (\hat{\nu}, R(\hat{\nu}))$$

We say that the region between the curves of $\hat{\mathcal{C}}$ is bordered by $\hat{\mathcal{C}}$.
\end{definition}

\begin{definition}
A subset $BR \subseteq \Sigma$ of the plane is a block region if one of the following holds:

- $BR = \Sigma$.
- There is a curve $\hat{\nu}$ such that BR is a one-block region $(\hat{\nu}, R)$.
- There is a set of curves $\hat{\mathcal{C}}$ such that $BR = \text{RegBetween}(\hat{\mathcal{C}})$.
\end{definition}

\begin{remark}
According to our definition, block regions are always closed sets. \hfill \Box
\end{remark}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{block_regions.png}
\caption{Block regions}
\end{figure}

\begin{example}
In figure 2a, we have a block region (in grey) bordered by four Jordan curves. Figure 2b presents three interior-disjoint paths $\hat{\mu}_1$, $\hat{\mu}_2$ and $\hat{\mu}_3$ having the same endpoints. Consider the three curves $\hat{\nu}_1 = \hat{\mu}_2 \cup \hat{\mu}_3$, $\hat{\nu}_2 = \hat{\mu}_1 \cup \hat{\mu}_3$ and $\hat{\nu}_3 = \hat{\mu}_1 \cup \hat{\mu}_2$. Notice that the block-region between $\hat{\nu}_1$, $\hat{\nu}_2$ and $\hat{\nu}_3$ is exactly the union of the three paths. \hfill \Box

Consider a set $\hat{\mathcal{C}}$ of pairwise parallel Jordan curves of the plane. These curves split the plane into several block regions. Consider the set of all the block regions bordered by some elements of $\hat{\mathcal{C}}$. We are interested in the inclusion-minimal elements of this set, that we call minimal block regions formed by $\hat{\mathcal{C}}$. The following proposition comes directly from the definition of the minimal block-regions:

\end{example}
Proposition 8 Let $\hat{\mathcal{C}}$ be a set of pairwise parallel curves in the plane Σ. A set of points A of the plane are contained in a same minimal block-region formed by $\hat{\mathcal{C}}$ if and only if for any $\hat{v} \in \hat{\mathcal{C}}$, there is an one-block region $(\hat{v}, R(\hat{v}))$ containing A.

7 Minimal triangulations of G

Let G be a 3-connected planar graph and let H be a minimal triangulation of G. According to theorem 1, there is a maximal set of pairwise parallel separators $\Gamma \subseteq \Delta_G$ such that $H = G_\Gamma$. Let $\mathcal{C}(\Gamma) = \{\nu_S | S \in \Gamma\}$ be the cycles associated to the minimal separators of Γ and let $\hat{\mathcal{C}}(\Gamma) = \{\hat{\nu}_S | S \in \Gamma\}$ be the curves associated to these cycles. According to proposition 7, the cycles of $\mathcal{C}(\Gamma)$ are pairwise parallel. Thus, the curves of $\hat{\mathcal{C}}(\Gamma)$ split the plane into block regions. We show that any maximal clique Ω of H corresponds to the original vertices contained in a minimal block region formed by $\hat{\mathcal{C}}(\Gamma)$.

If BR is a block region, we denote by BR_G the vertices of G contained in BR.

Theorem 2 Let $H = G_\Gamma$ be a minimal triangulation of a 3-connected planar graph G. $\Omega \subseteq V$ is a maximal clique of H if and only if there is a minimal block region BR formed by $\hat{\mathcal{C}}(\Gamma)$ such that $\Omega = BR_G$.

Proof. Let BR be a minimal block region formed by $\hat{\mathcal{C}}(\Gamma)$, we show that $\Omega = BR_G$ is a clique of H. Suppose there are two vertices $x, y \in \Omega$, non adjacent in H. Thus, there is a minimal separator S of H separating x and y in H. Then S is also a minimal separator of G, separating x and y in G (cf. theorem 1). Therefore, $\hat{\nu}_S \in \hat{\mathcal{C}}(\Gamma)$ separates x and y in the plane, contradicting proposition 8.

Let Ω be a clique of H. For any minimal separator S of H there is a connected component $C(S)$ of $H \setminus S$ such that $\Omega \subseteq S \cup C(S)$. By theorem 1, $S \in \Gamma$ and $C(S)$ is a connected component of $G \setminus S$, so we deduce that the points of Ω are contained in a same one-block region $(\hat{\nu}_S, R(\hat{\nu}_S))$ defined by $\hat{\nu}_S$. This holds for each $S \in \Gamma$, because the minimal separators of H are exactly the elements of Γ. We conclude by proposition 8 that Ω is contained in some minimal block BR formed by $\hat{\mathcal{C}}(\Gamma)$.

8 Triangulations of the dual graph G^*

Let G be a plane graph and \mathcal{C} be a set of pairwise parallel cycles of G_Γ. The family $\hat{\mathcal{C}}$ of curves associated to these cycles splits the plane into block regions. Let G^* be the dual of G. We show in this section how to associate to $\hat{\mathcal{C}}$ a triangulation $H(\mathcal{C})$ of G^* such that each clique of $H(\mathcal{C})$ corresponds to the face-vertices contained in some minimal block-region defined by $\hat{\mathcal{C}}$.

Definition 7 Consider a planar embedding of the graph $G = (V, E)$ and let $G^* = (F, E^*)$ the dual of G. Let \mathcal{C} be a set of pairwise parallel cycles of G_Γ. We define the graph $H(\mathcal{C}) = (F, E_H)$ with vertex set F, we place an edge between two face-vertices f and f' of H if and only if f and f' are in same a minimal block region defined by $\hat{\mathcal{C}}$.

Theorem 3 $H(\mathcal{C})$ is a triangulation of G^*. Moreover, for any clique Ω^* of $H(\mathcal{C})$ there is some minimal block region BR defined by $\hat{\mathcal{C}}$ such that Ω^* is formed by the face-vertices contained in BR.

Proof. We show that H is a supergraph of G^*. Let ff' be an edge of G^*, clearly no cycle of G_Γ crosses the edge ff' in the plane. Thus, for any cycle \hat{v} of $\hat{\mathcal{C}}$, \hat{v} does not separate the points f and f'. By proposition 8, f and f' are in same a block region formed by $\hat{\mathcal{C}}$, so ff' is an edge of $H(\mathcal{C})$. 9
We prove now that $H(\mathcal{C})$ is chordal. Suppose there is a chordless cycle ν_H of $H(\mathcal{C})$, having at least four vertices. Let f, f' be two non-adjacent vertices of ν_H. By proposition 8, there is a curve $\tilde{\nu} \in \mathcal{C}$ separating the points f and f' in the plane. Consider the two interior-disjoint paths μ_1 and μ_2 from f to f' in ν_H. We show that at least one face-vertex of each of these paths belongs to $\tilde{\nu}$. Let $\mu_1 = [f = f_1, f_2, \ldots, f_p = f']$. Let R and R' be the regions of $\Sigma \setminus \tilde{\nu}$ containing f, respectively f'. Let f_j the last point of μ_1 contained in R, so $1 \leq j < p$. We prove that $f_{j+1} \in \tilde{\nu}$. Indeed, if $f_{j+1} \notin \tilde{\nu}$, then $f_{j+1} \in R'$, so $\tilde{\nu}$ separates in the plane the points f_j and f_{j+1}. By proposition 8, f_j and f_{j+1} are not in a same minimal block region formed by \mathcal{C}, contradicting the fact that $f_j f_{j+1}$ is an edge of $H(\mathcal{C})$. We conclude that μ_1 has a face-vertex on $\tilde{\nu}$, and in a similar way μ_2 has a face-vertex on $\tilde{\nu}$. We denote f^1, respectively f^2 these face-vertices. Clearly f^1, f^2 are non-consecutive vertices of the cycle ν_H. Since we assumed that ν_H is chordless, f^1 and f^2 are not adjacent in $H(\mathcal{C})$. Therefore, by proposition 8, there is a cycle $\nu' \in \mathcal{C}$ separating f^1 and f^2 in the plane. So ν' separates two vertices of $\tilde{\nu}$, contradicting the fact that the curves of \mathcal{C} are pairwise parallel.

We show that any clique Ω' of $H(\mathcal{C})$ is contained in some minimal block region defined by \mathcal{C}. By proposition 8, for any cycle $\nu \in \mathcal{C}$, Ω' is contained in some one-block region $(\tilde{\nu}, R(\tilde{\nu}))$. It follows directly that Ω' is contained in some minimal block defined by \mathcal{C}.

Finally, for any minimal block-region BR formed by \mathcal{C}, the face-vertices of BR induce a clique in $H(\mathcal{C})$, by definition of $H(\mathcal{C})$. □

9 Main Theorem

In this section, we investigate more deeply the structure of the block regions defined by pairwise parallel cycles of G_L which will allow us to compare the number of vertices in G and G^* for all block regions. Before this, we need to state two technical lemmas. These lemmas are stated on an arbitrary 2-connected plane graph, but they will be used on the intermediate graph G_L.

Lemma 9 Let G be a 2-connected plane graph and let \mathcal{C} be a set of pairwise parallel cycles of G. For any block region BR formed by \mathcal{C}, the vertices contained in BR induce in G a 2-connected subgraph.

Proof. Let $BR = \cap_{i=1}^{k}(\tilde{v}_i, R(\tilde{v}_i))$ be a block-region of G, we proceed by induction on k, the number of cycles bordering the block region.

If $k = 0$, then $BR_G = G$ and the result is obvious.

Suppose now $k > 0$. Let x and y two vertices of BR_G, by induction hypothesis there exists a cycle ν' containing x and y inside $\cap_{i=2}^{k}(\tilde{v}_i, R(\tilde{v}_i))$. If ν' intersects v_1 in at most one vertex then the cycle ν' is inside BR.

Otherwise, let μ_x (resp. μ_y) be the path of ν' that contains x (resp. y) and whose the only vertices in common with v_1 are its ends x_1 and x_2 (resp. y_1 and y_2). If $\mu_x = \mu_y$ then we can complete μ_x in a simple cycle that belongs to $(\tilde{v}_1, R(\tilde{v}_1))$ by following v_1 from x_1 to x_2. If $\mu_x \neq \mu_y$, on the cycle v_1, the vertices x_1 and x_2 and the vertices y_1 and y_2 are juxtaposed (see figure 3). There are two disjoint paths μ_1 and μ_2 of v_1 whose ends are x_1 and x_2, respectively y_1 and y_2. The four paths μ_1, μ_2, μ_x and μ_y form a simple cycle that lies inside $(\tilde{v}_1, R(\tilde{v}_1))$.

Moreover in both cases, since v_1 also lies inside $\cap_{n=2}^{k}(\tilde{v}_i, R(\tilde{v}_i))$ the new cycle lies inside $\cap_{i=2}^{n}(\tilde{v}_i, R(\tilde{v}_i))$ and so inside BR.

In any case, we can exhibit a cycle inside BR passing through x and y so BR_G is 2-connected. □
Lemma 10 Let $G = (V, E)$ be a 2-connected planar graph, consider a family \mathcal{C} of pairwise parallel cycles. Let BR be a block-region defined by a subfamily \mathcal{C}' of \mathcal{C} and $\nu \in C'$.

Either all vertices BR_G are on ν or there exists a path $\mu \subseteq BR_G$ which intersects ν only in its extremities.

Proof. Suppose there exists a vertex $x \in BR_G$ which is not on ν. We know by lemma 9 that BR_G is 2-connected. Take two vertices y and z on ν, applying Dirac’s fan lemma to x and $\{y, z\}$, we get two disjoint paths except in x, μ_y and μ_z in BR_G, connecting respectively x to y and x to z. Cutting μ_y (resp. μ_z) at the first vertex y' (resp. z') on ν, we obtain two paths μ_y' and μ_z' which intersect ν only in y' and z'. Then the concatenation of μ_y' and μ_z' is a suitable path μ.

Theorem 4 Let $G = (V, E)$ be a 3-connected planar graph. Let \mathcal{C} be an inclusion maximal family of pairwise parallel cycles of G_I. Consider a minimal block-region BR of G_I defined by \mathcal{C} then either $BR_{G_I} = \nu$ or $BR_{G_I} = \nu \cup \mu$, where ν is in \mathcal{C} and μ is a path which touches ν only in its ends.

Proof. If BR_{G_I} is not a cycle, we know by lemma 10 that there exists a path μ inside BR_{G_I} that intersects ν only on its extremities x and y. The vertices x and y define two subpaths ν_1 and ν_2 of ν, so we have three cycles contained in BR_{G_I}, namely ν, ν_1 and ν_2. These cycles are pairwise parallel and parallel to the cycles of \mathcal{C}, so by maximality of C they are in \mathcal{C}. These three cycles define a block-region BR' which is exactly $\nu_1 \cup \nu_2$. Since $BR' = \nu \cup \mu \subseteq BR$ and BR is a minimal block-region we can conclude that $BR' = BR$.

Theorem 5 Let $G = (V, E)$ be a 3-connected planar graph without loops. Then

$$tw(G) - 1 \leq tw(G^*) \leq tw(G) + 1$$

Proof. By duality, it is sufficient to prove the second inequality. Since G is 3-connected without loops, G, G^* and, by proposition 1, G_I are 2-connected without loops. Let \mathcal{C} be a family of cycles of G_I that gives a triangulation H of G with $\omega(H) - 1 = tw(G)$. We complete \mathcal{C} into a maximal family \mathcal{C}' of pairwise parallel cycles of G_I. According to theorem 3, the family \mathcal{C}' defines a triangulation H^* of G^*. Let BR be a minimal block-region with respect to \mathcal{C}'. By theorem 4, either $BR_{G_I} = \nu$ or $BR_{G_I} = \nu \cup \mu$. In the first case, since G_I is bipartite we have $|BR_{G_I} \cap V| = |BR_{G_I} \cap V^*|$. In the later case, the difference between the number of vertices of G and G^* of BR_{G_I} comes from μ. Once again, since G_I is bipartite the difference can be at most one. But each minimal block-region formed by \mathcal{C}' is contained in a minimal block-region formed by \mathcal{C}, so, by theorem 2, $BR_{G_I} \cap V$ is a clique of H. Therefore the maximal cardinality of a clique in H^* is the maximal cardinality of a clique in H plus one and the second inequality is proved.
10 Planar graphs which are not 3-connected

We have proved that, for any 3-connected planar graph G, the treewidth of its dual is at most the treewidth of G plus one. We extend this result to arbitrary planar graphs.

The following lemma is a well-known result, see for example [12] for a proof:

Lemma 11 Let $G = (V, E)$ be a graph (not necessarily planar) and S be a separator of G such that $G[S]$ is a complete graph. Let $V_1, V_2 \subseteq V$ such that S, V_1 and V_2 form a partition of V and S separates each vertex of V_1 from each vertex of V_2. Then $\text{tw}(G) = \max(\text{tw}(G[S \cup V_1]), \text{tw}(G[S \cup V_2])).$

Lemma 12 Let $G = (V, E)$ be a graph, not necessarily planar. Suppose that G has a minimal separator $S = \{x, y\}$ of size two. Let $G_{xy} = (V, E \cup \{xy\})$ be the graph obtained from G by adding the edge xy. Then $\text{tw}(G_{xy}) = \text{tw}(G)$.

Proof. If xy is an edge of G, then $G_{xy} = G$. Suppose that xy is not an edge of G. Since G is a minor of G_{xy}, we have $\text{tw}(G) \leq \text{tw}(G_{xy})$, so it remains to show that $\text{tw}(G) \geq \text{tw}(G_{xy})$

S is also a minimal separator of G', so let C be a full component associated to S in G and let $V_2 = V \setminus (C \cup S)$. Let $G_1 = G_{xy}[S \cup C]$ and $G_2 = G[S \cup V_2]$. By lemma 12, we have $\text{tw}(G_{xy}) = \max(\text{tw}(G_1), \text{tw}(G_2))$. It is sufficient to prove that $\text{tw}(G_1) \leq \text{tw}(G)$ and $\text{tw}(G_2) \leq \text{tw}(G)$. We show that G_1 and G_2 are minors of G.

By lemma 1, there is a full component D associated to S different from C, so $D \subseteq V_2$. There is a path μ from x to y in $G[D \cup \{x, y\}]$, and the interior of μ avoids the vertices of G_1. Therefore, G_1 is a minor of $G[S \cup C \cup \mu]$, so G_1 is a minor of S. In a similar way, there is a path μ' from x to y in $G[C \cup \{x, y\}]$, so G_2 is a minor of $G[V_2 \cup S \cup \mu']$ and thus a minor of G. We conclude that $\text{tw}(G) \geq \max(\text{tw}(G_1), \text{tw}(G_2)) = \text{tw}(G_{xy})$. □

Lemma 13 Suppose there is a plane graph G not satisfying $\text{tw}(G^*) \leq \text{tw}(G) + 1$ and there is a separator $S = \{x, y\}$ of G. Then G_S also contradicts $\text{tw}(G_S^*) \leq \text{tw}(G_S) + 1$.

Proof. By lemma 12, $\text{tw}(G_S) = \text{tw}(G)$. We also have that G_S is planar and G^* is a minor of G_S. Indeed, if xy is not an edge of G, let C be a full component of $G \setminus S$ and $v_S(C)$ the cycle associated to S and C, close to C. Then $v_S(C) = \{x, f_1, y, f_2\}$, so x, y are incident to a same face f. We obtain a plane drawing of G_S by adding the edge xy in the face f. The new edge will split the face f into two faces f_1 and f_2, and clearly the dual of G is obtained from the dual of G_S by contracting the edge $f_1 f_2$ into a single vertex f. Therefore, $\text{tw}(G^*) \leq \text{tw}(G_S^*)$. Consequently, if $\text{tw}(G_S^*) \leq \text{tw}(G_S) + 1$, then $\text{tw}(G^*) \leq \text{tw}(G) + 1$. □

Theorem 6 For any plane graph G,

$$\text{tw}(G^*) \leq \text{tw}(G) + 1.$$

Proof. Suppose there is a graph G such that $\text{tw}(G^*) > \text{tw}(G) + 1$. We take G with minimum number of vertices. It is easy to check that G must have at least four vertices.

By theorem 5, G is not 3-connected, so let S be a minimal separator of G with at most two vertices. According to lemma 13, we can consider that S is a clique in G. Let C be a connected component of $G \setminus S$, we denote $G_1 = G[S \cup C]$ and $G_2 = G[V \setminus C]$ (if G is not connected, then $S = \emptyset$ and C is a connected component of G). By lemma 11, $\text{tw}(G) = \max(\text{tw}(G_1), \text{tw}(G_2))$.

12
The graphs G_1 and G_2 are clearly planar and they have less vertices that G, so $\text{tw}(G_1) \leq \text{tw}(G_1) + 1$ and $\text{tw}(G_2) \leq \text{tw}(G_2) + 1$. It remains to prove that $\text{tw}(G^*) \leq \max(\text{tw}(G_1), \text{tw}(G_2))$.

Consider the case when G is 2-connected. By proposition 3 there is a cycle $\nu_\mathcal{S}(C)$ of G_1 associated to S and C, close to C. The cycle contains four vertices, $\tilde{v}_S(C) = [x, y, f', f]$. Let R_1 (respectively R_2) be the region of $\Sigma \setminus \nu_\mathcal{S}(C)$ containing C (respectively $V \setminus (S \cup C)$). Notice that the vertices of G_1 (respectively G_2) are exactly the original vertices of $(\tilde{v}_S(C), R_1)$ (respectively $(\tilde{v}_S(C), R_2)$). Let F_1 and F_2 be the face-vertices of G_1 contained in R_1, respectively R_2. We denote $S_f = \{ f, f' \}$. Let G_f^1 be the graph obtained from $G^*[S_f \cup F_1]$ by adding the edge $f f'$. Consider the plane drawing of G_1 obtained by restricting the drawing of G at the one-block region $(\tilde{v}_S(C), R_1)$ and by adding the edge xy through the region R_2. It is easy to see that G_f^1 is exactly the dual of G_1. In a similar way, we define the graph G_f^2 obtained from $G^*[S_f \cup F_2]$ by adding the edge ff'. If we consider the plane drawing of G_2 obtained by restricting the drawing of G to the one-block region $(\tilde{v}_S(C), R_2)$ and by adding the edge xy through R_2, then G_f^2 is the dual of G_2. By the minimality of G, we have $\text{tw}(G_f^1) \leq \text{tw}(G_1) + 1$ and $\text{tw}(G_f^2) \leq \text{tw}(G_2) + 1$.

Observe now that in the graph G_f^1, obtained from G^* by adding the edge xy, S_f separates F_1 from F_2. By lemma 11, $\text{tw}(G_{S_f}^*) = \max(\text{tw}(G_f^1), \text{tw}(G_f^2))$, so $\text{tw}(G_{S_f}^*) \leq \max(\text{tw}(G_1), \text{tw}(G_2)) + 1 = \text{tw}(G) + 1$. We conclude that $\text{tw}(G^*) \leq \text{tw}(G) + 1$.

The case when G is not 2-connected is similar. Suppose that G is connected but no 2-connected, so S has a unique vertex x. There is a face f of G_1 such that we can draw a Jordan curve \tilde{v}_S passing through x and f, contained in the face f (except the point x), and the curve separates C from $V \setminus (C \cup \{ x \})$. If G is not connected, we can take a connected component C and a face f such that a Jordan curve \tilde{v}_S contained in the face f, passing through f, separates C from $V \setminus C$. As in the case of 2-connected graphs, we consider the regions R_1 (respectively R_2) of $\Sigma \setminus \tilde{v}_S$ containing C (respectively $V \setminus (C \cup S)$). We take $S_f = \{ f \}$ and we denote F_1 (respectively F_2) the face-vertices of G_f^1 contained in R_1 (respectively R_2). Then $G_f^1 = G^*[S_f \cup F_1]$ is the dual of G_1 and $G_f^2 = G^*[S_f \cup F_2]$ is the dual of G_2. We conclude that $\text{tw}(G^*) = \max(\text{tw}(G_f^1), \text{tw}(G_f^2)) \leq \max(\text{tw}(G_1), \text{tw}(G_2)) + 1$, so $\text{tw}(G^*) \leq \text{tw}(G) + 1$. \hfill \square

References

