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Abstract

We show that several global properties (attractivity, global asymptotic
stability and mortality) of discrete time dynamical systems defined by
iteration of piecewise-affine maps are undecidable. Such results had been
known only for local properties (e.g., point-to-point reachability). These
three properties are undecidable in dimension at least two, but turn out
to be decidable in one dimension for continuous maps.

Keywords: Dynamical systems, piecewise affine systems, piecewise
linear systems, hybrid systems, mortality, stability, decidability.

Résumé

Nous montrons que plusieurs propriétés globales (attractivité, stabilité
asymptotique globale et mortalité) sont indécidables pour des sytémes
dynamiques a temps discret définis par itération de fonctions affines par
morceaux. De tels résultats n’étaient connus auparavant que pour des
propriétés locales (comme par exemple I'atteignabilité point & point).
Les trois propriétés ci-dessus sont indécidables en dimension au moins
égale a deux, mais se trouvent étre décidables en dimension un pour des
fonctions continues.

Mots-clés: Sytemes dynamiques, systemes affines par morceaux,
systemes linéaires par morceaux, systémes hybrides, mortalité, décidabilité,
stabilité.
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Abstract

We show that several global properties (attractivity, global asymp-
totic stability and mortality) of discrete time dynamical systems de-
fined by iteration of piecewise-affine maps are undecidable. Such re-
sults had been known only for local properties (e.g., point-to-point
reachability). These three properties are undecidable in dimension at
least two, but turn out to be decidable in one dimension for continuous
maps.
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1 Introduction

This paper studies problems such as: given a discrete time dynamical system
of the form z(t + 1) = f(z(¢)) where f : R* — R" is a (possibly discontinu-
ous) piecewise affine function, decide whether all trajectories converge to 0.
We show in our main theorem (Theorem 2) that this Attractivity Problem
is undecidable as soon as n > 2. The same is true of two related prob-
lems: Stability (is the dynamical system globally asymptotically stable?)
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and Mortality (decide whether all trajectories go through 0). In section 4
we show that Attractivity and Stability become decidable in dimension 1
for continuous functions, and these two notions become in fact equivalent.
One can show with similar techniques that Mortality is also decidable for
piecewise affine continuous functions of one variable.

It is well-known that various types of dynamical systems, such as hybrid
systems or piecewise affine functions, can simulate Turing machines, see,
e.g., [11], [7]. In these simulations, a machine configuration is encoded by
a point of the dynamical system’s state space. It therefore follows for these
dynamical systems that the problem of determining if a given point of the
state space eventually reaches a point that encodes a halting state of the
machine, is undecidable. The results described in this contribution are of a
different nature in that they deal with global properties of dynamical sys-
tems. In order to prove our results, we will need to introduce a coding that
associates a legitimate machine configuration to all points of the dynamical
system’s state space.

This work was motivated by a question of Sontag [18]: is global asymp-
totic stability decidable for saturated linear systems? These are dynamical
systems of the form z(t + 1) = o(Az(t) + b) where z(¢) lives in the state
space R" and o denotes componentwise application of the saturated linear
function o : R — [—1,1] defined as follows: o(z) = z for |z| < 1, o(z) =1
for x > 1, o(z) = —1 for z < —1. Saturated linear system therefore fall
within the class of piecewise affine systems studied in this paper. They are
however much more restricted. Note in particular that the corresponding
transition function f : R* — R" is continuous since ¢ is continuous. We
plan to publish undecidability results for continuous piecewise affine systems
in a future paper. Note that discontinuous piecewise affine functions occur
naturally as models of simple hybrid systems; see [19] and [4] for discrete
time examples and [2] for an example in continuous time. Surveys of de-
cidability and complexity results available for hybrid and nonlinear systems
are given in [1], [7], [18], [3] and [4].

2 Basic definitions

In the sequel X denotes a metric space and 0 some arbitrary point of X
which is chosen as origin (when X C R", we assume that 0 is the usual
origin of R™).

Definition 1 Let f : X — X be an arbitrary map on a metric space X.

f is globally convergent if for every initial point o € X the trajectory
i1 = f(xz¢) converges to 0.

f is mortal if for every initial point xy € X there exists t > 0 such that

fH o) = 0.



f s locally asymptotically stable if for any neighborhood U of 0 there is
another neighborhood V' of 0 such that for every initial point zo € V the
trajectory xy11 = f(x) converges to 0 without leaving U (i.e., z; € U for
all t >0 and limy_, 4 oo ¢, = 0).

f is globally asymptotically stable if f is globally convergent and locally
asymptotically stable.

A map f: X — X which is not mortal is called immortal. Asymptotic sta-
bility is discussed for instance in [17], where in particular dynamical systems
with inputs (“control systems”) are studied.

Next we define what we mean by a piecewise affine function. Define the
sign function by

(z) = 1 when x>0
ST =1 0 when 2 <0

and consider the natural extension of this function to R” by applying the
function componentwise. Let n,m > 1 and consider 2 C R™ and {0,1}™ =
{e1,e2,...,eam}. Let C € Q™" and d € Q. For any given e; the set
H; ={z € Q:sgn(Cx +d) = e;} is a subset of {2 defined by an intersection
of finitely many halfspaces. The sets H; (i = 1,...,2™) form a partition of
Q, ie., Q = U?:1Hi and H; N H; = ) whenever ¢ # j. A piecewise affine
function on ) is a function given by

f:Q—=>Q:2+— Ajx+b; when z € H;

for some A; € Q" and b; € Q.

Observe that the composition of two piecewise affine functions is still a
piecewise affine function.

3 Stability and mortality for discontinuous piece-
wise affine functions

In this section we prove that mortality, attractivity and stability for dis-
continuous piecewise affine functions are undecidable. The proof consists
in first showing that mortality for 2-counters machines is undecidable, then
in proving that piecewise affine functions are able to simulate 2-counters
machine in a sense strong enough to deduce the undecidability of all three
properties for piecewise affine functions.

3.1 The mortality problem for 2-counter machines

We consider counter machines: a m-counter machine is an abstract, syn-
chronous, deterministic computing machine with a finite number of internal



states @ = {0,1,2,...,m—1}. It operates on a finite number of nonnegative
integer registers Ry, ..., R,. Depending upon its internal state and whether
the registers are equal to 0 it can perform one of the following operations:
leave the registers unchanged, increase some register R; by 1, or decrease
some register R; by 1 (assuming R; # 0).

The instructions for the counter machines are tuples

[i,bla---abnajaD?k]

where i € () represents the present state, b; € {true, false} represents
whether register R; is null, j the register which is modified by the instruc-
tion, D € {Increment, Decrement, NoChange} the operation, and k € @
the new internal state. For consistency, no two tuples begin with the same
n + 1 symbols. This definition of a counter machine is slightly different
from that given in [9] but is easily seen equivalent in terms of computational
power.

The value of the registers with the internal state of the machine consti-
tutes a configuration of the machine. If a configuration has a corresponding
instruction, the result of applying it is another configuration, a successor
of the original. A configuration for which there is no tuple is said to be a
halting configuration.

There is no loss of generality to assume that the only halting configu-
ration is the one where the internal state is 0 and where the registers have
value 0.

Extending the relation of successor to its transitive completion, each
configuration with a halting successor can be termed mortal, the others that
do not lead to halting configurations but rather run for ever are termed
immortal.

The configuration space of n-counters machines P can be considered as
C = N"x Q. n-counters machines are special cases of dynamical systems over
C: P = (C, fp) where fp : C — C is the function that maps non-halting
configurations to their successors, and the halting configuration (0,0) to
itself.

We will use the following result (this result is implied by the result of [8]
but we give here a full proof in the simpler case of 2-counter machines).

Theorem 1 The problem of determining if a given n-counters machine
halts on all possible configurations (the machine is then said to be mortal)
15 undecidable. This assertion remains true when n = 2.

Proof:

The proof is by reduction from the classical halting problem for counter
machines; see [9]. Consider a counter machine M with m internal states la-
beled ¢1, 42, . .., Gm, n registers Ry,..., R, and let s = (r1,7r2,...,7,q) bea
given configuration of M. Instructions of M have the form [g;, b1, b2, ..., by, j, D, qi].



To establish the first part of the result we describe how to construct
effectively a counter machine M’ on n + 2 registers Ry,..., R,,V,W such
that M’ halts on all possible configurations if and only if M halts on s.

The machine M’ has a special state denoted ¢o. Each time that M’
enters state ¢, it executes a sequence of instructions whose effect is to store
r; in R;, 2max(1,V) in W and 0 in V. After having done this, it moves into
state q;.

Then the machine starts a simulation of the machine M. The simulation
is such that, before performing any of the instructions of M, the machine
first increases the register’s content of V' by 1, decreases that of W by 1 and
performs the instruction of the machine M only if W is not equal to 0. If
W = 0 it returns to the special state qg.

Thus, the instructions of the machine M

[Qiablaan .- 'abnajaDan]

are all changed into sixteen instructions for M’;

[qi,b1,b2, ... b, by 1,07 o, n + 1, Increment, gj]
[q;,b1,b2, ..., by, by 1,7 o, n + 2, Decrement, q;]
lq],b1,b2, ..., by, by, True,n + 2, NoChange, qo]

[qi',b1,D2,. .., by, by, False,j, D, qi]

where by | and by , , range over all four possible combinations b}, ;,b; 5 €
{True, False}.

We claim that M’ halts on all possible configurations if and only if M
halts on s.

One of the implications is clear. If M’ halts on all possible configurations,
it must halt on the configuration (ry,...,7r,,v,0,qy) for all possible v > 0.
When started on (r1,...,7,,v,0,qo), the machine M’ simulates 2 max(1,V)
steps of M in starting state g, before returning to state go. Thus, if M’ halts
on all possible configurations, M must halt on (ry,...,7,,q).

Assume now that M halts on (r1,r9,...,7r,,q) and let & be the number
of steps after which it halts. We need to show that M’ halts on all possible
configurations. Let s’ = (rq,...,7r,,v,w,q,) be an arbitrary configuration of
M’. The register W is regularly decremented when executing instructions
of M'. Tt is therefore clear that, whatever w, the machine M’ will halt on s’
or W will reach 0 after finitely many steps. In the latter case, the machine
will restart a simulation of M with an increased register content for W.
After sufficiently many returns to qg, the register W will eventually contain



a value larger than k£ + 1 and the machine M’ will then halt since it will
simulate k steps of M on (ri,79,...,7n,q).

It remains to show how to reduce the number or registers to two. Let
M’ be a counter machine on n registers Ry, Rs,...,R,. We construct a
machine M" on two registers S and T such that M" halts on all possible
configurations if and only if M’ does. The content of the registers R; of M’
are stored in the register S of M” by the classical prime number encoding.
The nonnegative integers ri,r2,...,7, are encoded into the nonnegative
integer s by s = 235" ... w(n)" where 7(n) is the (n + 1)th prime
number. Incrementation (respectively, decrementation) of the register R;
can then be obtained by multiplying (respectively, dividing) s by 7(i). These
incrementing and decrementing operations can be performed on M" with the
help of the register T'. The register T' can also be used to test divisibility of
s by m(i) and hence equality to zero of the registers R; can be checked with
the machine M". Finally one can verify that this construction preserves
mortality of counter machines and so mortality is undecidable for 2-counter
machines.

O

3.2 Simulating a n-counters machine by a piecewise affine
function

In traditional simulations of counter machines or Turing machines by dy-
namical systems, a machine configuration is encoded by a single point of the
dynamical system’s state space [11, 16, 15, 14, 10, 6, 2]. Since we are inter-
ested in this section in the global behavior of dynamical system on R?, we
will instead assign the same machine configuration to all points in a subbox
of a certain box N'* C R2.

Lemma 1 Given a 2-counter m-state machine P with transition function
fp: C — C, one can construct a piecewise affine function gp : N* — N*
and an encoding function V' : N* — C such that the following conditions
hold.

(i) N* = [0,m[x[0,1] and v'(N*) = C.

(11) V'(z) is equal to the halting configuration (0,0,0) of P if and only if
z € [0,1/2[%, and in this case gp(x) = 0.

(11i) The following diagram commutes:

c I, ¢

T

N* gp N*

6



i.e., for all z € N*, fp(V'(z)) = V' (gp(z)).

Proof: We first define v/. This encoding maps a point (z1,x2) € N* to the
unique configuration (w1, ws, q) such that x5 € [1 —1/2%2,1 —1/2%2F1[ and
1 —q € [1—1/2¥1 1 —1/2¥1F!, Note that /(N*) = C as required, and
x (respectively, z1) encodes an empty counter if and only if zo € [0,1/2]
(respectively, z; — ¢ € [0,1/2]).

The piecewise affine function gp will be affine on each box B of the form
l[q+a,q+a+1/2[x[B,B+1/2] where q € {0,...,m—1} and «, 3 € {0,1/2}.
By definition of ¢/ all points in this box encode a configuration in state ¢
and the emptiness status of each counter is also uniquely defined (by the
values of @ and 3). The next state ¢’ and the operations to be applied to
the counters are therefore the same for all configurations in v/(B).

In the box [0,1/2[?> corresponding to the halting configuration (0,0, 0)
of P we set gp(z1,z2) = (0,0). In other boxes we proceed as follows. For
(z1,29) € B, we take gp(z1,z2) = (2}, 2}) where 1 — 2}, = a(l — z3) and
1— (2} —¢) = b1 — (z1 — q)). Each constant a and b is set to 2 if the
corresponding counter is decremented, to 1/2 if it is incremented, or to 1 if
it is unchanged. Tt is clear that the map gp : N* — N* thus defined makes
the diagram commutative.

O

3.3 Undecidability in two dimensions

Theorem 2 The three problems below are all undecidable.
Let a piecewise affine function g : R2 — R? be given.

1. Mortality Problem: is g mortal?
2. Attractivity Problem: is g globally convergent?

3. Stability Problem: is g globally asymptotically stable?

Proof: We first show that problem 1 is undecidable by a reduction
from the immortality problem for 2-counter machines. Assume a 2-counter
machine P is given. Let g}, be the extension to R? of map gp of Lemma, 1
obtained by setting g (z) = 0 for z¢N*. We shall prove that P has an
immortal configuration iff ¢}, has an immortal trajectory: i.e. iff there
exists some sequence z!T! = g, (z!) with z* # 0 for all ¢ > 0.

Assume first that such an immortal trajectory exists. Since g is zero
outside N*, zt € N* for all ¢ > 0. ;From the commutative diagram of
Lemma 1, we see that the sequence ¢! = /(z!) is a sequence of successive
configurations of P. ;From condition (ii) in the same lemma, ¢! # (0,0,0)
for all + > 0. Configuration c° is therefore immortal.

Conversely, assume P to be immortal: there exists an infinite sequence
of configurations ¢; with ¢;41 = fp(ct), ¢ # (0,0,0). By condition (i) of



Lemma, 1, there exists z° € N* such that v/(z°) = c’. We claim that the
trajectory z/t! = gp(z?) is immortal. Indeed, by the commutative diagram
we have /(z') = ¢! # 0 for all t > 0, hence z' # 0 by condition (ii) of
Lemma 1.

The undecidability of problems 2 and 3 now follows from a simple obser-
vation. On the one hand, an immortal trajectory of gj» does not converge to
the origin since it remains in A* \ [0,1/2[2. On the other hand, any mortal
trajectory of g% satisfies z; = 0 for ¢ large enough since 0 is a fixed point
of ¢g%>. That is, for gj, mortality is equivalent to global convergence and to
global stability.

O

Remarks.

1. Tt is easily seen that these three problems remain undecidable for piece-
wise affine functions g : R* — R" whenever n > 2.

2. We do not know if these problems remain undecidable for a fixed
number of partitions.

3. A related problem is the point-to-fixed-point problem, i.e., the problem
of determining, for a given piecewise affine function g : R* — R" and
initial point zy € R™, if the iterates x;11 = g(z;) eventually reach a
fixed point. This problem is known to be undecidable for n = 2 and
for less than 800 partitions; see [11]. The decidability of the case n = 1
was proposed as an open problem in the same paper, and it seems to
be open to this date. In fact, we are not aware of a decision algorithm
for the case n = 1 even when there are only two partitions.

4 Decidability in one dimension

Theorem 3 Let f : R — R be a continuous map from such that f(0) = 0.
Then, the following properties are equivalent:

(a) f is globally convergent.

(b) For every x > 0 we have f(x) < z and f*(x) < =, and for every x < 0
we have z < f(x) and x < f?(x).

(c) f is globally asymptotically stable.

Proof: We first prove that (a) implies (b). Suppose that f is globally con-
vergent. Furthermore, suppose, in order to derive a contradiction, that there
exists some x > 0 such that f(z) > z. If we have f(y) >y for all y > 0, then
the sequence f¥(z) is nondecreasing, which contradicts global convergence.
Therefore, there exists some y > 0 such that f(y) < y. Using continuity,
there exists some z > 0 such that f(z) = z, which again contradicts global



convergence. This shows that f(z) < z for all z > 0. Since f is globally
convergent, it is clear that f? is also globally convergent, and the preceding
argument also establishes that f?(x) < z for all z > 0. The conditions for
the case where x < 0 are established by a symmetrical argument.

We now assume that the conditions in (b) hold, and proceed to establish
property (c). For > 0, we define F_(x) = minp<,<, f(2). Since f(0) =0,
it follows that F_(z) < 0 for any = > 0. We claim that f maps the interval
I = [F_(z),z] into [F_(z),z). Indeed, for any positive z € I, we have
F (z) < f(z) < z <z If z € I is negative, then F_(z) < z < f(z). Also,
using the continuity of f and the definition of F_(x), a negative z € I must
be the image f(y) of some y € [0,z]. Therefore, f(z) = f?(y) < y < =,
which completes the proof of the claim.

The property established in the preceding paragraph implies that if
f¥(z) > 0, then f**(z) < f¥(z), for all I > 1. Thus, the subsequence
of {f*(z)} obtained by restricting to k for which f¥(z) is positive, is mono-
tonically decreasing. It must therefore converge, and the only possible limit
is zero, due to the continuity of f. By an entirely symmetrical argument, we
also conclude that the subsequence obtained by restricting to k for which
f*(z) is negative is monotonically increasing. Hence, f*(x) must converge to
zero. Furthermore, since the positive and negative subsequences of {f*(z)}
are monotonic, for every initial xz, it is easily seen that there exist arbitrar-
ily small invariant neighborhoods of 0. This establishes global asymptotic
stability as well.

The fact that (c) implies (a) is an immediate consequence of the defini-
tions.

O

A decision algorithm follows immediately from Theorem 3. For this
algorithmic application we assume that our piecewise affine function f is
defined by equations with rational coefficients (i.e. the endpoints of intervals
where f is affine and the corresponding slopes are rational numbers). A
generalization to a larger class of “finitely representable” coefficients (e.g.
algebraic numbers) is straightforward (and arbitrary real coefficients can be
allowed if we work with an algebraic model of computation). Generalizing
to a larger class than piecewise affine functions (e.g. to piecewise polynomial
functions) is also straightforward.

Corollary 1 Let f : E — E be a piecewise affine continuous function,
where E is either R or a compact interval in R that contains 0. There is an
algorithm for deciding the global asymptotic stability of f.

Proof: For the case where E = R, it suffices to test the conditions (b) in
Theorem 3, which is straightforward. For the case where F is an interval of
the form [a, b], we note that Theorem 3 remains valid, and the same decision
procedure applies. Alternatively, we could extend the function f to outside



[a,b] (e.g. by f(z) = f(b) for z > b and f(z) = a for z < a), and note that
f and its extension share the same stability and convergence properties.

a

Without a continuity assumption the situation is quite different. For

instance, the map f : [0,1] — [0,1] defined by: f(x) =2z for 0 < z < 1/2,
f(z) = 0 for 1/2 < z < 1 is globally convergent but it is not globally
asymptotically stable. We leave it as an open problem whether there is a
decision algorithm for discontinuous piecewise affine functions.
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