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Abstract

Future computing platforms will be distributed and heterogeneous. Such
platforms range from heterogeneous networks of workstations (NOWs)
to collections of NOWs and parallel servers scattered throughout the
world and linked through high-speed networks. Implementing tightly-
coupled algorithms on such platforms raises several challenging issues.
New data distribution and load balancing strategies are required to
squeeze the most out of heterogeneous platforms.

In this paper, we first summarize previous results obtained for hetero-
geneous NOWSs, dealing with the implementation of standard numerical
kernels such as finite-difference stencils or dense linear solvers.

Next we target distributed collections of heterogeneous NOWs, and we
discuss data allocation strategies for dense linear solvers on top of such
platforms. These results indicate that a major algorithmic and software
effort is needed to come up with efficient numerical libraries on the
computational grid.

Keywords: meta-computing, heterogeneous networks, computational grid, distributed-memory;,
different-speed processors, scheduling, mapping, finite-difference stencils, numerical libraries.
Résumé

Sans aucun doute, les machines paralleles du futur seront des machines
distribuées et hétérogenes. Cela va du simple réseau hétérogene de sta-
tions de travail (NOW), & l'interconnexion de tels réseaux et de ma-
chines paralleles répartis dans le monde entier et reliés par des réseaux
rapides. Dans ce rapport, tout d’abord, nous résumons les résultats
précédemment obtenus, relatifs au calcul linéaire ou aux probléemes de
différences finies, sur un simple NOW hétérogene. Ensuite, nous trai-
tons du probleme de ’allocation des données en algebre linéaire dans le
cas d’un réseau plus large, composé de sous réseaux, etc... Ces résultats
montrent la nécessité d’'un effort conséquent dans cette direction avant
de pouvoir, & terme, mettre en place une librairie d’algébre linéaire effi-
cace sur le réseau mondial des stations de travail.

Mots-clés: “meta-computing”, “computational grid”, plateforme hétérogéne, mémoire
distribuée, processeurs de vitesses différentes, ordonnancement, distribution, librairies de calcul
numérique, méthodes de différences finies.



1 Introduction

The future of computing is best described by the key-words distributed and heterogeneous. At
the low end of the field of distributed and heterogeneous computing, heterogeneous networks of
workstations or PCs are ubiquitous in university departments and companies, and they represent
the typical poor man’s parallel computer: running a large PVM or MPI experiment (possibly all
night long) is a cheap alternative to buying supercomputer hours. The idea is to make use of all
available resources, namely slower machines in addition to more recent ones.

At the high end of the field, linking the most powerful supercomputers of the largest supercom-
puting centers through dedicated high-speed networks will give rise to the most powerful computa-
tional science and engineering problem-solving environment ever assembled: the so-called compu-
tational grid [13]. Providing desktop access to this “grid” will make computing routinely parallel,
distributed, collaborative and immersive.

In the middle of the field, we can think of connecting medium-size parallel servers through fast
but non-dedicated links. For instance, each institution participating to a meta-computing project
could build its own specialized parallel machine equipped with application-specific databases and
application-oriented software, thus creating a “meta-system”. The user is then able to access all
the machines of this meta-system remotely and transparently, without each institution duplicating
the resources and the exploitation costs.

Whereas the architectural vision is clear, the software developments are not so well understood.
Even at the low end of the field, the programmer is faced with several challenges. The major
limitation to programming heterogeneous platforms arises from the additional difficulty of balancing
the load when using processors running at different speeds. Distributing the computations (together
with the associated data) can be performed either dynamically or statically, or a mixture of both.
Some simple schedulers are available, but they use naive mapping strategies such as master-slave
techniques or paradigms based upon the idea “use the past predict the future”, i.e. use the currently
observed speed of computation of each machine to decide for the next distribution of work [10, 9, 2].
Furthermore, data dependences may well lead to slowing the whole computing process down to the
pace of the slowest processor, as examples taken from standard linear algebra kernels demonstrate
(see below). In fact, extensions of parallel libraries such as ScaLAPACK are not yet available. A
major algorithmic effort must be undertaken to tackle heterogeneous computing resources. Block-
cyclic distribution is no longer enough: there is a challenge in determining a trade-off between the
data distribution parameters and the process spawning and possible migration policies. Redundant
computations might also be necessary to use a heterogeneous cluster at its best capabilities.

At the high end of the field, the first task is to logically assemble the distributed computer:
given the network infrastructure, configure the distributed collection of machines to which access is
given. Software of this category includes low-level communication protocols that enable distributed
resources to efficiently communicate. Extensions of PVM and MPI such as Plus [17], PACX-MPI[11]
or PVMPI[12] are needed. Once this software layer is built, the user must be provided with meta-
computing tools and libraries, i.e software that is able to split the computation into tasks that will
be dynamically allocated to the different resources available. Current strategies to allocate tasks
to resources are very simple (similar to those previously discussed). We discuss more elaborate
strategies in this paper.

The ultimate goal would be to use the computing resources remotely and transparently, just
as we do with electricity: without knowing where it comes from. Before reaching this ambitious
goal, there are several layers of software to be provided. Lots of efforts in the area of building
and operating meta-systems are targeted to infrastructure, services and applications. Not so many



efforts are devoted to algorithm design and programming tools, while (we believe) they represent
the major conceptual challenge to be tackled.

In this paper, we first target heterogeneous NOWSs, and we report both theoretical results and
PVM experiments on the implementation of standard numerical kernels such as finite-difference
stencils or dense linear solvers. It turns out that refined static allocation strategies lead to good
results for such kernels. Owing to these strategies, quite satisfactory results can be obtained with
little software efforts on a single heterogeneous NOW. Next we target distributed collections of
heterogeneous NOWs, and we discuss both static and dynamic data allocation strategies for dense
linear solvers on top of such platforms. These results indicate that a major algorithmic and software
effort is needed to come up with efficient numerical libraries on the computational grid.

2 Three case studies on a heterogeneous NOW

In this section we demonstrate that static allocation strategies are the key to efficiently implement-
ing tightly-coupled algorithms on a dedicated heterogeneous NOW.
Dynamic strategies are likely to prove useful in the following two situations:

e when targeting non-dedicated workstations with unpredictable workload and possible failures.
e when programming a large application made up of several loosely-coupled tasks.

However, when implementing a tightly-coupled algorithm (such as a linear system solver), carefully
tuned scheduling and mapping strategies are required. At first sight, we may think that dynamic
strategies are likely to perform better, because the machine loads will be self-regulated, hence
self-balanced, if processors pick up new tasks just as they terminate their current computation.
However, data dependences, communication costs and control overhead may well lead to slow the
whole process down to the pace of the slowest processors. On the other hand, static strategies will
suppress (or at least minimize) data redistributions and control overhead during execution.

To be successful, static strategies must obey a more refined model than standard block-cyclic
distributions: such distributions are well-suited to processors of equal speed but would lead to a
great load imbalance with processors of different speed. To show that the design of static strategies
that achieve a good load balance on a heterogeneous NOW can be achieved for a variety of problems,
we briefly sketch three case studies hereafter.

Tiling We start with a simple example where dependences prevent dynamic strategies to reach
a good efficiency: consider a tiled computation over a rectangular iteration space as represented in
Figure 1 (see [14] and [7] for further information on tiling).

There are p available processors, numbered from 1 to p, which are assigned columns of tiles.
When targeting a homogeneous NOW, a natural way to allocate tile columns to physical processors
using a pure cyclic allocation [15, 14, 1]. For heterogeneous NOWs, we use a refined periodic
allocation (see [6]) which proves efficient both theoretically and experimentally: we have run several
MPI experiments. We point out that purely cyclic allocations do not perform well, while they would
be the outcome of a greedy master-slave strategy. Indeed, processors will be allocated the first p
columns in any order. Re-number processors according to this initial assignment. Then throughout
the computation, P; will return after P;j_; and just before P;; (take indices modulo p) , because
of the dependences. Hence computations would only progress at the speed of the slowest processor.
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Figure 1: A tiled iteration space with horizontal and vertical dependences.

In a word, our solution consists in allocating panels of B tile columns to the p processors in a
periodic fashion. Inside each panel, processors receive an amount of columns inversely proportional
to their speed. Within each panel, the work is weell-balanced, and dependences do not slow down
the execution. See [6] for details.

Finite-difference stencil computations In this example we study a tiled version of the Fermi-
Pasta-Ulam one-dimensional relaxation problem [18].
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Figure 2: The Fermi-Pasta-Ulam model of a one dimensional crystal.

Figure 2 illustrates this model. Let z! denote the coordinate of the it" molecule at time t.
According to the model, we have
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After some compiler transformations, we end up with a a tiled iteration space whose shape is a
parallelogram and whose dependence vectors are the pair (0,1)! and (1,0)*. This turns out to be a
very general situation when solving finite-difference problems.

Our solution is similar to that for the rectangular-shaped problem: columns of tiles are dis-
tributed to the processors. More precisely, the panel size B is chosen such that the load is best
balanced and that some idle time is not created by too large blocks of columns. However, because
the domain has been skewed, dependences further constrain the problem, and there is a technical
condition to enforce so that no processor is kept idle. See [5] for more details.



Figure 3: The task graph of LU and QR decompositions.

Dense linear system solvers The last kernels that we deal with are the (blocked) LU and QR
decompositions taken from the ScaLapack library [8]. We report both theoretical results and PVM
experiments in a companion paper [4]. Static strategies are much more efficient than dynamic ones
because they dramatically reduce the amount of data redistributions during the execution.

First we find an optimal allocation of the column blocks, i.e. such that each phase of updates
(a row of task labeled U in Figure 3) is best balanced. In this solution the only communications are
the broadcasts of the pivot block at each phase (after each task labeled F in Figure 3). Then we
address the more complicated problem where the pivot block factorization is taken into account for
load balancing the block: we propose an algorithm such that each pivot factorization is executed
by the fastest processor. This induces a few more communications, but the algorithm is perfectly
load-balanced.

3 Semi-static strategies for collections of heterogeneous NOWs

Here we target distributed collections of heterogeneous NOWs, and we discuss data allocation
strategies for dense linear solvers on top of such platforms. These results indicate that a ma-
jor algorithmic and software effort is needed to come up with efficient numerical libraries on the
computational grid.

The machine and network models are the following: we hierarchically define a (d + 1)-deep
grid as a homogeneous network of heterogeneous d-deep grids. Of course a 1-deep grid simply is a
heterogeneous NOW. Then a 2-deep grid is a collection of heterogeneous NOWs, where the inter-
NOW communication links are assumed to have the same speed, typically one order of magnitude
slower than the intra-NOW communication links. For instance two local networks in Europe and
in the US may be connected by a slower (non-dedicated) link.

We first address the problem of finding an optimal allocation for the LU and QR factorizations
on a 2-deep grid. To this purpose, we assume that in each NOW, a processor is dedicated to handle
the communications between NOWs, as shown in Figure 4.



Figure 4: Modeling a 2-deep grid.

Because of the characteristics of the 2-deep grid, we have to increase the granularity of the
computations. The basic chunk of data that is allocated to a given NOW is a panel of B blocks of r
columns, where 7 is chosen to ensure Level 3 BLAS performance [3] and B is a machine-dependent
parameter. The basic idea is to overlap inter-NOW communications (typically the broadcast of a
panel) with independent computations. Updating a panel requires nB?r?7, units of time, where
T 18 the elemental computation time. Communicating a panel between NOWSs requires nBrr,
units of time, where 7. is the inter-NOW communication rate. Of course 7. is several orders of
magnitude greater than 7,, but letting B large enough (in fact B > ;=) will indeed permit the
desired communication-computation overlap. Note that such an overlap cannot usually be achieved
within a single NOW.

We report in the Appendix several strategies to implement LU and QR factorizations on a
2-deep grid. These strategies are prospective: they are intended to balance computations while
overlapping communications. Actual experiments are needed to validate our implementation skele-
tons. However, we can already draw the conclusion that a major software effort is needed. Some
basic tools to write the factorization routines, such as the BLAS3 operations, are still there. Some
other tools such as the BLACS subroutines need to be extended to cope with several NOWs, using
packages such as those in [17, 11, 12]. What seems unavoidable is a change in the philosophy: we
would access pointers to local arrays rather than addressing a shared-memory global matrix as in
the current ScaLAPACK distribution. Such a major change is a sine-qua-non to tackle the imple-
mentation of ScaLAPACK on d-deep grids, where d > 2: it does not seem reasonable to emulate a
global addressing on a collection of heterogeneous NOWs or parallel servers that are scattered all
around the world.

4 Conclusion

The main objectives of this paper have been:

e to survey existing algorithm design methods for heterogeneous platforms, mainly at the low
end of the field, i.e. targeting a single heterogeneous NOW

e to demonstrate that refined static allocation strategies are very efficient for a variety of stan-
dard computational kernels



e to point out that a major algorithmic effort is needed to efficiently implement tightly-coupled

applications on meta-systems (collections of NOWs).

We believe that squeezing the most out of meta-computing systems will require to solve chal-

lenging algorithmic problems. We insist that the community should tackle these problems very
rapidly to make full use of the many hardware resources that already are at its disposal.
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Appendix

We discuss in this section several strategies to implement the LU and QR factorizations on a
collection of heterogeneous NOWs. Section 4 of the companion research report RR-1999-17 [4]
deals with the same problem on a single heterogeneous NOW. The reading of Section 4 of [4] is a
prerequisite to this Appendix.

We target a 2-deep grid, as described in Section 3 and in Figure 4. There is a (slow) serial
link between any pair of NOWs. To communicate to a processor of the cluster B (in Figure 4), a
processor of cluster A has to send its message to the dedicated processor of its own cluster. Then
the message will be forwarded to the dedicated processor of cluster B; this communication can take
place in parallel with independent computations within the clusters A and B Finally, the receiver
in cluster B receives its data from the dedicated processor.

Static strategy

We decompose our matrix into panels of size B: a panel is a slice of B column blocks. The size of
the panels is the same for all the clusters. The value for B is discussed below.

Roughly speaking, the number of panels allocated to each cluster is inversely proportional to
its speed: we compute the time needed to update a panel of B column blocks for each cluster.
These times are the “cycle-time” of the clusters. For example, consider a cluster A with 3 machines
whose cycle-times are 2, 3 and 4, and a cluster B with 3 machines whose cycle-times are 3, 5
and 8. Suppose that the size of the panels is B = 5. The optimal allocation for the cluster A is
24232 (meaning that the processor of cycle-time equal to 2 receives the first, third and fifth blocks,
starting the numbering from the right, and so on). The optimal allocation for B is 35383. Hence
the “cycle-time” for cluster A is 6 and the “cycle-time” for the cluster B is 9.



We distribute the panels as if we had machines with these “cycle-times”. In the example, we
would use the optimal allocation of [4]with two machines of cycle-times 6 and 9, leading to a periodic
allocation of panels as ... | BAABA|BAABA|BAABA. In fact we can do slightly better and con-
tinue the optimized distribution inside each cluster from one panel to the next one. In the example,
the allocation of the first five panels is AAABA (as stated above, starting the numbering from the
I'ight), and inside the clusters we have the distribution BgB5BngB5|A3A2A4A2A3|A2A3A2A4A3 |BgB8B3B5Bg|A24
Finally, we can further improve this solution by re-evaluating the “cycle-times” of the clusters. In-
deed, in our example, the time needed to compute the second panel of cluster B is 10 and not 9.
So to speak, to refine the allocation of the panels we may take the “cycle-times” of the clusters into
account on the fly.

As explained in Section 3, the size of the panels is chosen so that updating a given panel takes
less time than communicating a panel to another cluster. The scheduling corresponds to the look-
ahead strategy for the pointwise algorithm [16]. It is illustrated in Figure 5. Each task in Figure 5
represents a panel (and not a single column block as in Figure 3). After the factor task at step 2
is completed, all processors of cluster B gather the current panel on the dedicated processor. The
broadcast of the panel can take place while cluster A updates its third panel and cluster B updates
its second panel at step 3.

Figure 5: Scheduling with 2 clusters A and B. Exponents represent the nature of the tasks (factoring
or updating a panel). Indices represent the steps at which the tasks are processed.

Dynamic strategy

As above, we decompose the matrix into panels of size B and we compute the “cycle-time” of the
different clusters. We still distribute the panels to the different clusters as explained, using an
optimal allocation inside the clusters. However, we decide that the factor task and the preceding
update task is always executed by the fastest cluster. In the initial distribution of panels, we
suppress the first two occurrences of the fastest cluster to take into account the factor and update
tasks.

For example, if we have 3 clusters of relative speeds 3, 5 and 8, the allocation will be 33|85335385.
The two panels on the left correspond to the factor task and its corresponding update. As before,
the scheduling strategy is “update, factor and broadcast ASAP”. The fastest cluster will indeed
compute the next pivot as soon as possible, and broadcast it to the other clusters, before computing
its last updates. There are additional communications due to the fact that all the pivot panels must
be processed by the fastest cluster, as illustrated in Figure 6 which corresponds to the example
above with 3 clusters. The short communications labeled “Ga” are local gathers within a cluster
(the dedicated communication processor gathers the panel) whereas the long communications stand



for inter-cluster communications, either the receiving of the pivot panel before its factorization by
the fastest cluster, or the broadcast of the pivot panel after factoring. The cost of an inter-cluster
communication remains remains smaller than the time needed for an update because of the choice

of B.

3 8 5 Cluster 3

Cluster 8

,,,,,,,,

Figure 6: Scheduling the tasks and the communications with the dynamic strategy.



