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Abstract

Consider shortest path interval routing� a popular memory�balanced method for solving
the routing problem on arbitrary networks� Given a network G� let Irs�G� denote the
maximum number of intervals necessary to encode groups of destinations on an edge�
minimized over all shortest path interval routing schemes on G� In this paper� we
establish tight worst case bounds on Irs�G�� More precisely for any n� we construct a
network G of n nodes with Irs�G� � ��n�� thereby improving on the best known lower
bound of ��n� logn�� We also establish a worst case bound on bounded degree networks�
for any � � 	 and any n� we construct a network G� of n nodes and maximum degree
� with Irs�G�� � ��n��logn����

Keywords� communication on parallel and distributed networks� compact routing tables� interval
routing� shortest path routing
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Abstract

Consider shortest path interval routing� a popular memory�balanced method for solving the
routing problem on arbitrary networks� Given a network G� let Irs�G� denote the maximum
number of intervals necessary to encode groups of destinations on an edge� minimized over all
shortest path interval routing schemes on G� In this paper� we establish tight worst case bounds
on Irs�G�� More precisely for any n� we construct a network G of n nodes with Irs�G� � ��n��
thereby improving on the best known lower bound of ��n� logn�� We also establish a worst
case bound on bounded degree networks� for any � � 	 and any n� we construct a network G�

of n nodes and maximum degree � with Irs�G�� � ��n��logn����

� Introduction

The shortest path routing problem for an arbitrary network of processors is to design a uniform
strategy that the router of each processor will follow upon reception of a message to decide to
which of its neighboring nodes the message should be sent next such that the message arrives at its
destination after passing through as few nodes as possible� The routing strategy should be simple
and distributed so as to limit the costs of routing �space� time and complexity� and uniform to
reduce the costs of building hardware routers� over a potentially great number of nodes� We want
to minimize the local memory requirement for a distributed routing strategy�

Table routing is a standard solution to the shortest path routing problem for arbitrary networks�
At each node in the network is stored a table listing for each possible destination the output port
that should be used to send a message to that node along a shortest path� That solution guarantees
shortest paths but requires ��n log�� bits of space per node� where n is the number of nodes and
� is the maximum degree of a node�

To alleviate the space requirements of routing tables� compact routing schemes were introduced�
in �SK��� for arbitrary networks and in �FJ��� FJ��� FJ��� for planar and c�decomposable networks�
Trade�o�s between the space requirements for every node and the length of the routes were proposed
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in �ABNLP��� AP��� PU���� A popular compact routing method� interval routing� is to group
together the destination nodes corresponding to the same output port of a given node in intervals�
Just as for table routing� this method requires that a header of only O�logn� bits be added to
the forwarded message� This routing scheme was introduced in �SK���� generalized in �vLT��� and
shortest path interval routing was discussed in �BvLT��� FJ��� vLT����

Let us model a network of processors as a connected� simple and loop�less symmetric digraph
G � �V�E�� where V denotes the set of vertices of G �corresponding to the routers� and E the set
of arcs of G �corresponding to the set of directed links of the symmetric network�� We assume that
the cost of sending a message along any arc of G is uniform� An interval �a� b� of the set f�� � � � � ng
is the set of consecutive integers fa� � � � � bg cyclically� For example� ��� �� is the subset f�� �� �� �g of
f�� � � � � �g�
Given a symmetric digraph G � �V�E� of n vertices� an interval routing scheme R � �L� I� for

G consists of�

�� a one�to�one labeling function of the vertices� L � V � f�� � � � � ng
�� a family I � fIe� e � Eg� where Ie is a set of intervals of f�� � � � � ng associated with arc e

Moreover L and I must be such that the following properties hold�

i� for every x � V � L�x�� fI�x�y�j�x� y� � Eg � f�� � � � � ng
�we know how to route messages from x to every node in G�

ii� for every two distinct arcs �x� y� and �x� z� of E� I�x�y� � I�x�z� � �
�the routing scheme is well�de�ned�

We say that a routing R is a shortest path routing scheme if the node�to�node routes induced
by R always use a shortest path in G� From now on� we will only consider shortest path interval
routing schemes�

If such an interval scheme R is de�ned on a graph G� then message routing is performed as
follows� upon reception of a message� vertex x �rst compares the message header� L�y� with its
own label� L�x�� to check if the message has arrived at its destination� If not� then the message
and its header are forwarded through the unique arc �x� z� such that L�y� � I�x�z��

Consider Figure � as an example of a shortest path interval routing scheme� In this example�
the labeling function L maps vertices a� b� e� g� d� f� c to integers �� � � � � � respectively� In this graph�
which is shown with undirected edges� the set of intervals I�x�y� assigned to arc �x� y� is placed close
to vertex x� For example� the intervals ��� �� and ��� that are close to vertex � correspond to the
set of integers f�� �� �g� and form the set I����� that labels the arc ��� ��� Accordingly� if the vertex
b wants to send a message to vertex f under R� the message will follow arcs �b� a�� �a� c� and �c� f�
in order� Note that in this model� the label of the node may or may not belong to an interval of
one of its outgoing arcs �e�g� for this graph� the node labeled � does� while the node labeled 	 does
not��

Routing strategies that do not require shortest paths have been studied in �BvLT��� FG��a�
SK���� where the authors give a complete characterization of the graphs requiring a small number
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Figure �� A graph G and an interval routing scheme for G�

of intervals for di�erent restricted versions of interval routing� A hardware solution to the routing
problem based on intervals was proposed by INMOS with its C��� chip �see �DFL�	� and �MTW�	���

Given a graph G of n vertices and an interval routing scheme R for G� we de�ne Irs�R� to be the
maximum over all the arcs of G of the number of intervals that is required to encode the destinations
associated to that arc �Irs�R� � maxe jIej such that Ie � I�� We de�ne the compactness of a graph
G� denoted Irs�G�� as minR Irs�R� for all shortest path interval routing schemes R on G� In a
sense� Irs�G� is the maximum number of intervals required by the �most compact� shortest path
interval routing scheme on G� Note that we consider in the following that graphs have at least one
arc and thus the compactness of a graph is always greater than or equal to �� Since interval routing
was introduced in the hope of reducing the amount of space required� Irs�G� is an important
parameter to consider� In fact� given a graph G� there is a node of G that requires ��Irs�G� logn�
bits of local memory under a shortest path interval routing scheme�

Most of the work in the literature on shortest path interval routing has been concerned with
�nding Irs�G� for speci�c networks� chordal rings in �FGS��a�� trees� hypercubes� d�meshes� d�
tori and r�complete�bipartite graphs in �BvLT��� FG��c� KKR�	�� unit�interval and unit�circular
networks in �FG��c�� It is shown in �FG��b� FvLS��� KKR�	� Ru�s��� that Irs�G� is not bounded
by a constant in the general case� In this paper we are interested in �nding a worst case graph G
with a large compactness� For every integer n we de�ne Irs�n� � maxG Irs�G� such that G has n
vertices� Irs�n� is the maximum compactness for graphs of n vertices�

It was shown in �KKR�	� that Irs�n� � �� �

p
n�� The result was then improved in �FvLS����

where it was shown that Irs�n� � ��n� logn�� In this paper� we present a general technique
for proving lower bounds on Irs�n� and for every n� we exhibit a graph G of n nodes for which
we can prove that Irs�G� � ��n�� We then extend the techniques introduced to construct for
every �xed � and every n a graph G� of maximum degree � � 	 and of n nodes for which
Irs�G�� � ��n��logn����
More precisely� if we let n�k� denote the number of nodes of the smallest network G for which

Irs�G� � k� we show that �k � � � n�k� � ��k � �� for every integer k � �� and thus that
Irs�n� � n���� The lower bound of �k � � on n�k� was obtained in �FG��a� with the following
simple argument� by the pigeon hole principle� any integer labeling on n�� nodes can give at most

	



b�n � ����c wrap around intervals of consecutive integers� This lower bound on n�k� proves that
our bound on Irs�n� is asymptotically tight� Now let Irs�n��� denote the largest compactness of
a graph of n vertices and of maximum degree �� We adapt the construction to show that Irs�n���
is greater than n�� log

�
n��

� log
�
n�	 log

�
n���

� for su ciently large n and for every � � 	�
In next section� we introduce the matrices of constraints� which provide a general tool for proving

lower bounds on Irs�n� and on Irs�n���� In the same section� we describe how to construct a
graph of p � �q vertices from a p � q boolean matrix such that if this matrix requires k blocks
of consecutive ones in one of its columns� then the constructed graph G satis�es Irs�G� � k� In
section 	� we present results from coding theory that we apply to produce suitable matrices that we
use together in section � with our construction of section ��� to establish a lower bound on Irs�n��
In section �� we adapt the construction of section ��� to obtain a graph G� of at most !pq��p��q
vertices and of maximum degree �� from any p� q boolean matrix� Then we use suitable matrices
to establish a lower bound on Irs�n���� for any n and any � � 	�

� Matrices� codes and graphs of constraints

��� Matrices and codes of constraints

Given an arbitrary connected graph G� computing Irs�G� is generally di cult� In fact� the problem
has been shown to be NP�hard in �FGS��b�� There seems to be no other way than checking the
minimum number of intervals required by each shortest path interval routing scheme on G� In this
section� we introduce a tool that is helpful in establishing lower bounds on Irs�G�� More precisely�
this tool is a mean of reducing the problem of �nding the compactness of a graph G to a problem
on boolean matrices� This tool is based on the notion of a matrix of constraints� a concept that we
now introduce�

Consider vertex b in the graph G drawn on the left hand side of Figure �� Note �rst that the
shortest path from vertex b to vertices a� c� d� e and g is unique� The shortest path from b to a� c
and d must use arc �b� a�� and the shortest path from b to e and g must use arc �b� e�� There is a
shortest path from b to f that uses arc �b� a�� and another that uses arc �b� e�� Either path may be
used� and this choice depends on the routing scheme�

In general� for every triple of vertices �u� v� w� of a graph G where u and v are adjacent vertices
and u 	� w� three cases may occur for shortest paths�

�� Every shortest path from u to w must use arc �u� v��

�� Every shortest path from u to w must not use arc �u� v��

�� There are shortest paths from u to w that use arc �u� v� and there are shortest paths from u
to w that do not use arc �u� v��

For the �rst two cases� arc �u� v� forms a constraint for the vertex w on the graph G� Note that
�u� v� is not a constraint for vertex u� since there is no shortest path from u to u� From a routing
point of view� any scheme can� in a �rst step� checks if u � w and thus no adjacent arc of u must
be used� It is the case for shortest path interval routing scheme� where the label of u may or may
not belong to intervals associated to each adjacent arcs of u�
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A matrix of constraints of a symmetric digraph G � �V�E� is a p�q boolean matrixM � �mi�j�
whose rows are labeled with vertices of a subset fv�� � � � � vpg of V and whose columns are labeled
with arcs of a subset fe�� � � � � eqg of E� such that�

�� mi�j � � if and only if every shortest path from the tail of ej to vertex vi uses arc ej �

�� mi�j � � if and only if no shortest path from the tail of ej to vertex vi uses arc ej �

Consider a column �u� v� of a p � q matrix of constraints and suppose that the vertices of the
graph have been labeled with integers by a shortest path interval routing scheme R � �L� I�� If
there is a � at the intersection of the column with the row labeled by vertex w� then the label of w
must be on arc �u� v� in R� i�e� L�w� � I�u�v�� Similarly� if there is a � then the label of w cannot
be on arc �u� v� in R� i�e� L�w� 	� I�u�v�� If we permute the rows of the matrix such that the integer
labels of the rows are placed in ascending order in the matrix� then clearly the number of blocks
of consecutive ��s in column �u� v� is a lower bound on the number of intervals for that arc in R�
Table � shows a matrix of constraints for the graph of Figure ��

M �

�c� a� �e� b� �g� d� �c� f� �e� g� �g� e� �g� f�
� � � � � � � b
� � � � � � � a

� � � � � � � d
� � � � � � � f

Table �� A matrix of constraints for the graph of Figure ��

Note that a matrix obtained by permuting the rows of a matrix of constraints is also a matrix
of constraints for the same graph and corresponds to a relabeling of the vertices �the integer labels
have to be in ascending order�� If we can show that under any permutation of the rows of the
matrix there must be at least one column with a certain number k of blocks of consecutive ��s�
then the graph must require at least k intervals� Finding a matrix of constraints for a graph G and
establishing a bound on the maximum number of blocks of consecutive ��s in a column� minimized
over all permutations of the rows of the matrix� therefore yield a lower bound on Irs�G�� We now
formalize these ideas�

A �p�q��code is a non empty family C of p� q boolean matrices such that �i� if M is in C then
any other matrix M � of C can be obtained by permuting the rows and columns of M and �ii� all
the matrices obtained by permuting the rows and columns ofM are in C� A �p� q��code can be seen
as an equivalence class of the set of p� q boolean matrices� using row and column permutation as
a congruence operator� It therefore makes sense to specify a code C with a representative matrix
from C�

Given a boolean matrix M � let I�M� denote the compactness of M � that is the maximum� over
all columns of M � of the number of blocks of consecutive ��s cyclically �the �rst and the last bit
in the boolean word formed by a column of M are considered consecutive�� For example� in the
boolean matrix of Figure �� the �rst and second columns have one blocks of consecutive ��s� while
the third has two� Therefore I�M �� � � for this matrix� while I�M� � � for the matrix of constraints
of table �� Note that I�M� � � if and only if M � ����

We extend our de�nition of compactness to codes by de�ning the compactness of a �p� q��code C�
denoted I�C� to be the minimum of I�M� over all matricesM in C� If M is a matrix of constraints
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Figure �� A graph for a ��� 	��code of compactness ��

of a graph G� then we call the family of matrices obtained by permuting the rows and columns of
M a �p�q��code of constraints of G� We are now ready to introduce the main result of this section�

Lemma � ��FvLS���	 If C is a code of constraints of graph G then� Irs�G� � I�C��

Proof
 Let R be any shortest path interval routing for a graph G and let C be any code of
constraints of G� Consider the set of integers used by R to label the vertices that label the rows of
every matrix in the code� Let M be a matrix of C for which the integers� that now label the rows�
are in ascending order from top to bottom� �Note that any matrix of C obtained by permuting
only the columns of M satis�es this condition�� Since there is a column of M with at least I�C�
blocks of consecutive ��s by de�nition� it follows that the arc corresponding to the column has
at least I�C� intervals under routing scheme R �there are at least I�C� �holes� when we list the
integers corresponding to the arc�� Since R is an arbitrary routing scheme for G� it follows that
Irs�G� � I�C�� �

Unfortunately we do not know of a better relation between the compactness of a graph and the
compactness of the �less compact� code of constraints of the graph� The graph drawn on Figure 	
�page ��� is an example where there exists a code of constraints with the same compactness of
the graph itself �it was already proved in �FG��c� that the compactness of this graph is ��� But
Proposition � of appendix B establishes that in general� there is no code of constraints with the
same compactness as the graphs��

Also� it is not necessarily easy to compute I�C� in general� Indeed� in �FGS�	� it is proved that
given a �p� q��code C� computing I�C� is NP�hard� This result is derived from the consecutive
ones submatrix NP�complete problem in �GJ���� However� it can be decided with a polynomial
time algorithm if I�C� � � �see �BL�!��� Anyhow� the result of Lemma � is useful for constructing
graphs for which we want to guarantee a given number of intervals�

This idea of matrix of constraints was independently introduced in �FvLS��� where the authors
deal with the concept of unique matrix of shortest path representation� With this concept� they
construct a graph of n vertices that requires ��n� logn� intervals on one speci�c arc� In the following
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section we extend this concept to the idea of graphs of constraints� a more powerful tool to improve
their lower bound�

��� Graphs of constraints

We present below how to construct a symmetric digraph G � �V�E� from a p � q boolean matrix
M � �mi�j� such that M is a matrix of constraints of G� To simplify presentation� we describe G
as being undirected� Refer to Figure � for an example of the construction using a 	� � matrix� We
get�

Lemma � For every p� q boolean matrix M � there exists a graph G of p � �q vertices such that
M is a matrix of constraints of G�

Proof
 Let M � �mi�j� be any p � q boolean matrix� We construct a graph G composed of two
layers� The bottom layer is a set of p independent vertices� fv�� � � � � vpg� and the top layer consists
of q copies of K� �the complete graph of two vertices�� We denote aj and bj the two vertices of the
jth copy of K�� for � � j � q� Hence the set of vertices of G is fv�� ���� vp� a�� b�� ���� aq� bqg" G has
p� �q vertices�

We connect the vertices belonging to di�erent layers as follows� If mi�j � � then add the edge�

hbj� vii and if mi�j � � then add the edge haj � vii� For each of the q edges haj� bji� we add exactly
p edges and so G has pq � q edges� It is clear that G thus constructed is connected and has a
diameter less than 	�

We prove that the graph G that we constructed from a boolean matrix M has M as matrix
of constraints� We �rst construct a p � q matrix of constraints M � of G as follows� label column
j of M � with arc �aj� bj�� for � � j � q� and label row i of M � with vertex vi� for � � i � p� By
construction M � is a matrix of constraints of G and clearly M � � M � Therefore M is a matrix of
constraints of the graph G� �

Remark
 Let ��G� denote the maximum degree of graph G� Let M be a p� q boolean matrix�
and G its graph of constraints built as in Lemma �� It is easy to see that ��G� � maxfz�q� p�
z�qg� where z is the total number of � entries in the matrix M �consider any edge hai� bii of the
construction��

The graph built in the proof of Lemma � from a boolean matrixM is called a graph of constraints
of the matrix M � Since a permutation of the rows and columns of a matrix of constraints of a graph
can be seen as a relabeling of the vertices and arcs respectively� then for a code C and for any two
matrices M and M � in C� if G is a graph of constraints of matrix M then it is also a graph of
constraints of matrix M �� Thus we can speak of a graph of constraints of a code C�

� Codes with large compactness

In this section we present a method for constructing �p� q��codes C with a large value of I�C� as
a function of �p� q�� We �rst extend our de�nition of code as follows� An �p� q� d��code C is a

�To avoid a confusion with intervals� we denote ha� bi the edge connecting vertices a and b�
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�p� q��code such that for every matrix M in C� every two rows of M di�er in at least d places �d
may be ��� For example the well�known Gray codes of length p are the ��p� p� ���codes� We use
A�q� d� to denote the largest value of p for which there is a �p� q� d��code� Note that� in general
the exact value of A�q� d� is unknown� but tables can be found in the literature �e�g� �MS����� The
following Lemma is useful in �nding a lower bound on I�C� for a given code C�

Lemma � ��FvLS���	 For every �p� q� d��code C� I�C� � pd���q��

Proof
 Consider a boolean matrix M of the �p� q��code C� For i � f�� � � � � pg� let di be the
Hamming distance between the two consecutive rows� i and i� � �modulo p� the last and the �rst
row are consecutive� of M � and for j � f�� � � � � qg let kj denote the number of blocks of consecutive
��s in column j of M � We call D �

Pp
i
� di the total Hamming distance over all rows of M and

K �
Pq

j
� kj the total number of blocks of consecutive ��s in M � It is easy to see that each raising
of a block of consecutive ��s provides an increment of two on the total distance D� i�e �K � D�
Since di � d for every i� we have �

Pq
j
� kj �

Pp
i
� di � pd� By the pigeon hole principle� since M

has q columns� there must be a column j� � � j � q� such that kj � pd���q�� �

The fact that the Hamming distance yields a lower bounds on the number of intervals was due
to �Fla����

Corollary � For every integer k � �� if there exist integers p� q and d such that A�q� d� � p �
�q�k � ���d� then there exists a �p� q��code C such that I�C� � k�

Proof
 Assume that for some integer k� k � �� there exists a triple �p� q� d� such that A�q� d� �
p � �q�k � ���d� Since p � A�q� d�� then there exists� by de�nition of A�q� d�� a �p� q� d��code C�
Applying Lemma 	� I�C� � pd���q� � k� �

Therefore� to �nd a code with large compactness using Lemma 	� we may use a �p� q� d��code
maximizing pd���q�� With the next lemma we will see that there exists a �p� q��code C with
q � ��p� and I�C� � ��p�� We use the well�known Hadamard code for that purpose�

Lemma � For every integer � � �� there exists a ������ ����� ����code�

Proof
 We show here how to construct a representative matrix M� of a ��
���� ����� ����code� by

induction� The basis� when � is �� is the following ��� �� ���code

M� �

�
�������������

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

�
�������������

�



Suppose� as our inductive hypothesis� that there exists a ������ ����� ��� Hadamard code C�� Then
let M� be a representative matrix of C� and let M��� as follows�

M��� �

�
M� M�

M� M�

�

where M� is the matrix M� with every bit complemented� Notice that if every two rows of M�

di�er in exactly �� bits� except for the pair of rows ���� � � ��� and ���� � � ���� i�e� the �rst and third
row of M�� then it is easy to see that this fact will also hold for M���� Since it is invariant under
permutation of rows and columns� we can conclude that the family C��� of matrices generated from
M���� is indeed a ��

��	� ����� ������code� �

The ������ ����� ����code constructed in the proof of Lemma � will be denoted C� from now on�
Lemma 	� we know that I�C�� � ��� In appendix A� we will prove that in fact� I�C�� � �

��

Actually� MacWilliams and Sloane in �MS��� proved that a ���� ��� ����code exists if there exists
an Hadamard matrix of dimensions ������ According to them� Hadamard matrices were known in
���� for every � less than ��� Lemma � is in fact a corollary of the existence of Sylvester matrices�

� A lower bound for Irs�n�

Lemma  Let n�k� be the minimum order of a graph G such that Irs�G� � k� Then for all k � ��
n�k� � �dlog� ke�� � �k � 	�

Proof
 Let k � �� By Corollary � there exists an �p� q� d��code C with I�C� � k if A�q� d� � p �
�q�k� ���d� Let M be a p� q boolean matrix of such a �p� q� d��code C� Lemma � guarantees the
existence of a graph of constraints G of the matrixM and� applying Lemma �� such that Irs�G� �
I�C� � k� Hence the number of vertices of G is an upper bound on n�k�� i�e� n�k� � minp�q jV �G�j�
if I�C� � k� Therefore


k � �� n�k� � min
p�q�d
�p� �q� where �p� q� d� satis�es A�q� d� � p � �q�k� ���d

Using the ������ ����� ����code C� of Lemma � with � � dlog� ke� q � ���� and d � ��� we obtain
A�q� d� � p � �q�k � ���d if and only if ���� � p � ��k � ��� Indeed� Lemma � shows that
A������ ��� � ���� and� by applying Plotkin�s bound �MS���� which states that A��i� i� � �i for i
even� we get that A������ ��� � ����� As p should be the smallest integer such that ���� � p �
��k � ��� we can choose p � �k � 	 �we can remove three rows at least of C�� to yield the desired
result� �

Lemma � is enough to prove that n�k� � ��k� for all k � �� because we have shown �k�� � n�k��
The following theorem is a direct consequence of Lemma ��

Theorem � For every integer n � �� Irs�n� � n����

�



Proof
 Since for any k � �� �dlog� ke � ��k � ��� from Lemma � we get that n�k� � ��k � ��� By
de�nition of n�k�� we derive that for every integer n � � there exists a graph G with n vertices
such that Irs�G� � k � b�n� ������c� Therefore Irs�G� � n���� �

Remark
 We can see that the graph G built in Lemma � has an unbounded maximum degree� G
was obtained using the ������ ������code C�� which contains the same number of � and � entries�
Thus� applying the remark of section ���� we get ��G� � �� ����� Indeed we remove some rows of
C�� but at least ������ � � rows of C� are left� and thus at least ����������� � ���� � or � entries
are left� Since the number of vertices of G is n � ���� � �k � 	 and k is such that ���� � k � ���
then ��G� � n���

We now show that it is possible to tighten the upper bound on n�k�� For k a power of �� we
obtained n�k� � �k � 	 in Lemma �� If we consider the case where k � � for example� the upper
bound on n��� of Lemma � is obtained by using a ��� �� ���code� d � �dlog� �e � �� q � �d � � and
p � �k � 	 � �� Thus the bound of Lemma � states that n��� � p � �q � � � � � � � �	� But
if instead we would use the ��� 	� ���code of Figure �� then we would �nd� by applying Lemma 	�
that n��� � p � �q � � � � � 	 � ��� an improvement� As another example� consider the case
k � �� The bound of Lemma � gives n��� � �� by using a ���� !� 	��code� But we can use a
���� !� ���code instead �the readers are welcome to convince themselves that such a code exists� to
�nd n��� � p� �q � �� � � � ! � 	�� Therefore� Lemma � does not provide an optimal result and
it can be improved upon�

We can compute a smaller upper bound on n�k� using the construction of a graph of constraints
of Lemma �� based on the fact that n�k� � minp�q�d�p � �q� such that A�q� d� � p � �q�k � ���d�
Using a table of the best lower bounds known on A�q� d� taken from �MS���� we �nd the following
upper bounds on n�k�� for k � �� �see table ��� by applying the above minimization on a computer
with a systematic search� This table also gives the values �p� q� d� of the �p� q� d��code C used for
the construction of a graph of constraints of code C� The graph corresponding to the �rst row of
this table� k � � using an ��� 	� ���code and given n��� � ��� is shown in Figure ��

k d q p Upper Bound n�k�

� � 	 � ��

	 � � �� ��

� � � �! ��

� � ! �� ��

! � ! 	� ��

� � �� 	� �

� � �� 	! �

� ! �� 	� ��

�� ! �� �	 ��

�� ! �� �� �

k d q p Upper Bound n�k�

�� ! �� �� ��

�	 ! �� �� �

�� ! �� !� ��

�� � �� !� ���

�! ! �� �! ���

�� ! �� �� ���

�� ! �� �! ���

�� ! �� �� ���

�� ! �� �! ���

�� ! �� ��� ���

Table �� Upper bound on n�k� for small values of k�

Remark
 We showed that� by using techniques from coding theory� we were able to obtain
asymptotically tight bounds on the size of the smallest graph which requires at least k intervals to
route along shortest paths using interval routing� Nevertheless� we believe that our bound can be
improved upon� For example� consider once more the case k � �� Applying the general result of
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Lemma �� we showed that n��� � ��� However it was shown by a case analysis that there exist a
graph of seven vertices �see section ��� and Figure 	� of compactness �� and therefore that n��� � ��
In appendix C we prove that in fact n��� � �� Though asymptotically tight� there still exist a small
gap between our upper bounds and the exact values of n�k��

C �

�b� g� �d� g� �f� g�
� � � g
� � � e

� � � a
� � � c

a

e c

bf

g

d

Figure 	� A code of constraints C for a graph G with Irs�G� � I�C� � ��

� Worst case graphs of bounded degree

We have seen that our lower bound on Irs�n�� in Lemma �� is achieved with a graph of constraints
of order n with a maximum degree in ��n�� In this section� we establish a lower bound on Irs�n���
for shortest path interval routing schemes on graphs of order n and of maximum degree �� We
will prove that Irs�n��� � ��n��logn���� for every integer n and for every integer � � 	� We
assume� in the following� that � � 	 because graphs with maximum degree less than 	 clearly have
a compactness of � �see �SK��� for Trees and �vLT��� for Rings�� In this section� we will construct
a graph of constraints G with maximum degree � from an arbitrary p� q boolean matrix M � such
that M is a matrix of constraints of G� We will then prove our bound on Irs�n��� by using the
results of sections ����

Refer to Figure � for an illustration of the construction� Assume that we are given a p�q boolean
matrix M and an integer � � 	� The symmetric digraph G� that we describe as undirected� is
composed of three main levels of vertices denoted Low� Medium and High� and of intermediary
vertices �drawn in black in Figure ��� The Low level is a set of p independent vertices that we
denote vi� � � i � p" the High level consists of q copies of K�� that we denote haj� bji� � � j � q"
the Medium level is composed of pq vertices labeled wi�j� � � i � p and � � j � q�

These three levels are connected with trees of maximum degree �� Let us �rst describe how
the Low and the Medium levels are connected� At every vertex vi of the Low level� we root a tree
Tvi whose leaves are the wi�j�s� for j � f�� � � � � qg� All the trees Tvi �s are isomorphic� They are
minimal undirected trees of maximum degree � with exactly q leaves� In each Tvi �s� i � f�� � � � � pg�
the leaves wi�j� j � f�� � � � � qg� are all at a distance h� � � � dlog����q���e from the root vi� We
denote by r the number of vertices in any tree Tvi � i � f�� � � � � pg �all trees have the same number
of vertices��

To connect the Medium and High levels� we use a second type of tree� At vertex aj �resp� bj��
j � f�� � � � � qg� we root a ������ary tree Taj �resp� Tbj� the root has maximum degree �� � while
the other vertices have maximum degree �� In Taj �resp� Tbj�� j � f�� � � � � qg� the leaves are the
vertices wi�j� for every i such that mi�j � � �resp� mi�j � ��� Furthermore� every leaf of the tree
Taj �resp� Tbj� is at distance h � dlog���maxi�maxfzi� p� zig�e from aj �resp� bj�� where zi is the

��



number of ��s in column i of the p� q matrix M � Taj and Tbj have the smallest possible number of
vertices necessary to satisfy these requirements� We denote by raj and rbj respectively the number
of vertices of trees Taj and Tbj � j � f�� � � � � qg�
In fact� the vertices wi�j can be seen as a grid� where the wi�j�s of row i are connected by tree

Tvi� while some of the wi�j of column j are connected by tree Taj and the others by tree Tbj � The
total number of vertices in graph G is equal to

Pq
j
��raj � rbj� � pr � pq �the wi�j�s are counted

twice��

Lemma � For every p � q boolean matrix M and every integer � � 	� there exists a graph of
constraints of matrix M of maximum degree � and with !pq � �p� �q vertices at most�

Proof
 Let us consider the preceding construction of the graph of constraints G of M � The trees
Taj and Tbj can be constructed as follows� starting from the leaves �at most p�� construct a full
������ary tree� adding intermediary nodes as required� From the root of that tree� construct a
path to aj �or bj�� so that Taj �and Tbj� has height h� To built Tvi� we start from the root vi with
� children �or q if q � �� and then we root� in each child� q full ������ary trees of height h � ��
Then we can remove ���� ��h�� � q leaves from the last stage� Tvi� Taj and Tbj therefore always
exist� and so the above construction guarantees that we obtain a graph G that is connected and
has a maximum degree ��

We now prove that M is a matrix of constraints of G� We will �rst construct a p � q matrix
of constraints of G� M �� and we will then show that M � and M are equal� Label the p rows of
M � � �m�

i�j� with the p vertices of the Low level �the vi�s� and label the q columns of M
� with the

arcs �aj� bj��s of the High level� For each j � f�� � � � � qg� let Aj �resp� Bj� be the set of vi�s such
that wi�j is a leaf of the tree Taj �resp� Tbj�� Clearly trees Taj and Tbj are disjoint and thus Aj and
Bj partition the Low level vertices�

We now compute the entries of matrix M �� according to the de�nition of matrix of constraints�
We �rst show that if vi � Bj � then every shortest path from aj to vi must use the arc �aj� bj��
Indeed� the path from aj to vi has a length of h � h� � � �go to bj in one step� take h steps down
Tbj to reach wi�j� and then h

� steps up Tvi to vi�� If we assume� for the sake of contradiction� that
the shortest path between aj and vi leaves through an arc of Taj � then the length of the path must
be at least� h using tree Taj to reach a vertex wi��j � then � at least using tree Tv�

i
to reach a vertex

wi��j�� then � at least using tree Taj� or Tbj� to reach vertex wi�j�� and �nally h�� using tree Tvi to
reach the vertex vi� The path would therefore at least be of length h�h

���� greater than h�h����
Hence m�

i�j is ��

Now� suppose that vertex vi � Aj� We will show that the shortest path from aj to vi must use
an arc of Taj � i�e� it must not use arc �aj� bj�� First� it is simple to see that there is a path from aj
to vi of length h�h

�� take h steps down Taj to vertex wi�j� and then h
� steps up Tvi to vi� Following

an argument similar to the one given above �about the path of length h� h� � �� one can see that
a path from aj to vi that uses arc �aj� bj� must have a length of � � h� � � � � h� at least� Hence
m�

i�j is �� Therefore M
� is a matrix of constraints of G since all its entries are well�de�ned� It is

now easy to see that M � � M � if vi � Bj �and m�
i�j � ��� then by de�nition of the set Bj � vertex

wi�j is a leaf of Tbj � But by construction of G� this is possible only if mi�j � �� Similarly� if vi � Aj

�and m�
i�j � �� then mi�j � ��

Let us now compute the number of vertices of G� We �rst consider Tvi� the smallest tree with
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q leaves at equal distance from the root� with maximum degree � �Tvi di�ers from a ������ary
tree in that its root can have degree ��� This tree can have at most ��� � ��i�� nodes a level i
away from the root� and thus r � � � �Ph���

i
� ��� ��i � q� By choosing h� � � � dlog����q���e
and � � 	� then r � 	 � �h��� � q � �� Note that to have a �p� q��code with compactness k � � we
must have p � � and q � 	� The reader can check the fact that no smaller boolean matrix has a
compactness of k � �� But since 	 � q � 	 � �dlog��q�	�e � ��q � ��� it follows that r � 	q � ��
We now need to bound the value of raj � rbj � j � f�� � � � � pg� Taj is the smallest ������ary

tree of height h � dlog����p�e with z leaves� each at distance h from the root� where z is the
maximum number of ��s in a column of M � over all columns of M �z � p�� We already described
Taj and Tbj at the beginning of the proof� In a ������ary tree there are at most ��� ��i nodes
a level i� and thus p � �� � ��h �we remove some vertices to the last level if necessary�� Let zj
be the number of ��s in column j of M � The height of the tree Taj is haj � dlog����zj�e or � if
zj � �� and the height of tree Tbj is hbj � dlog����p� zj�e or � if zj � p� Note that haj � hbj � ��
Hence raj �

Phaj��

i
� ��� ��i � zj � h � haj � where h � haj is the length of the added path from

the root of the full tree to aj � Similarly� rbj �
Phbj��

i
� ��� ��i � p � zj � h � hbj � Set � � 	� If
� � zj � p� then we have raj � rbj � �dlog��zj�e � �dlog��p�zj �e � � � p � �dlog� pe � �� And since
log� p � p��� raj�rbj � ��zj������p�zj����p����dp��e� Since �dp��e � p��� it follows that
raj � rbj � �p� �� If zj � � or if zj � p� then �haj ��hbj � ����p� ��� and thus raj � rbj � �p� ��
In any case� raj � rbj � ��p � �� and r � 	q � �� Thus we obtain the desired result on the

number of vertices of G� �

The following lemma gives a construction of �p� q��codes for particular values of p and q�

Lemma � For every integer � � �� there exists a ������ �� ���code�

Proof
 Let P � �v�� � � � � v��� be a Hamiltonian path in the Hypercube of dimension � � �� Let C
be the ������ ���code such that row ri of C� i � f�� � � � � ����g� is the standard binary representation
of the vertex v�i�� of P � By construction� any two rows ri and rj of C� i 	� j� di�er by at least
� places� since two adjacent vertices in the Hypercube are at an odd distance in P � Thus C is a
������ �� ���code� �

Finally we derive the following theorem�

Theorem � For any su�ciently large integer n �n � ��� and for every � � 	�

Irs�n��� � n� � log� n� �

� log� n�	 log� n � ��
� ��n��logn���

Proof
 Let n be a su ciently large integer� let p � �q�� and let q such that !pq � �p � �q �
	q�q � �q�� � �q � n � 	�q � ���q�� � �q�� � ��q � ��� Applying Lemma !� for every �p� q��code
C there exists a graph of constraints G of the code C of maximum degree � and with n� vertices�
n� � n� We construct a graph G� with a maximum degree � from G with exactly n vertices by
adding a path of n� n� vertices connected to one of the wi�j�s vertices of G� which are all of degree
two� Clearly Irs�G�� � Irs�G�� since G is a subgraph of shortest paths of G� �see �FG��c��� Hence�
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Figure �� Graph of constraints of the matrix M with n � �� vertices and with a maximum degree
� � 	�

for every � � 	� Irs�n��� � Irs�G�� Thus by applying Lemma �� for every ��q��� q��code C�
Irs�n��� � I�C�� Applying Lemma �� let C be a ��q��� q� ���code for q � �� Therefore� applying
Lemma 	� I�M� � I�C� � �q���q�

n � 	�q����q����q�����q��� � n��q�� � �
q��

q
�q�	q��� � n� �

�q�	q � ��
�

�

	q � �
� I�C�

By assumption� n � 	q�q � �q�� � �q � �q� for q � 	 and n � ��� Therefore log� n � q and
�nally�

Irs�n��� � n � �

� log� n�	 log� n � ��
�

�

	 log� n � �
� ��n��logn���

�

The same techniques as in section � can be used to improve the general upper bound for n��k��
the number of vertices of the smallest graph G� with maximum degree � for which Irs�G�� � k�
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We would have to compute minp�q jV �G�j such that I�C� � k and such that G is a graph of
constraints of �p� q��code C with maximum degree ��

� Conclusion

From a local memory requirement point of view� we have seen that for a graph G of n vertices� the
minimum number of intervals required to perform shortest path interval routing on G� Irs�G�� is
an important parameter to consider� since at least one router of G needs to store ��Irs�G� logn�
bits of information� By proving upper bounds on n�k�� the smallest number of vertices of a graph
of compactness greater than k� we showed that there exist a worst case graph that requires a router
to have ��n logn� bits of local memory� Therefore� interval routing schemes are not better than
routing tables in the general case of unbounded degree graphs� However for bounded maximum
degree graphs� our worst case still uses only ��n� logn� bits locally� compared to O�n� bits for
routing tables� It would be interesting to determine whether or not there is a graph G� of n
vertices and of maximum degree � such that Irs�G�� � ��n� logn�� If no such graph exists� then
the class of bounded degree graphs is a large class of graphs for which interval routing schemes are
better than tables�
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A Compactness of Hadamard codes

The lower bound on Irs�n� is based on the lower bound on I�C��� where C� is de�ned in the proof
of Lemma �� We showed in Lemma � that I�C�� � ��� We now show� by proving an upper bound
on I�C��� that the lower bound on Irs�n� cannot be improved using this code�

Theorem � For any � � �� I�C�� � �
��

Proof
 Since we already know that I�C�� � ��� we prove by induction on � that there is a matrix
M� of the ��

���� ����� ����code C� such that I�M�� � �
�� As our base case� we use the matrix M�

that is the same matrix as in the proof of Lemma �� A sequence of matrices M�� � � �� is obtained
as follows� Given M�� � � �� partition the rows of M� in blocks of four consecutive rows starting
with the top of the code� and number these groups in order� starting at �� We say that a block
is even �or odd� if its label is even �or odd respectively�� We obtain matrix M��� from matrix M�

with the following three steps�

�� �Shu#e step� In each block of four vectors� exchange the position of the two middle rows�
This step groups together the rows that are complements� For example� using the matrixM�

above� the shu#e step yields the following matrix�

�
�������������

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

�
�������������

�� �Doubling step� Replace every row �A� of M� with the row �AA�� For example� replace the
row ������ above with �����������

�� �Extend step� After the doubling step� groups of two consecutive rows consist of a binary
vector �AA� and its complement �AA�� Now� insert row �AA� after row �AA�� and insert row
�AA� after row �AA�� For example� the block of two rows

�
� � � � � � � �
� � � � � � � �

�

becomes the following block of four rows�

�
����
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
����

�!



It is easy to show by induction that for every � � �� M� has the property that rows � and 	 and
rows � and � of every group of four rows are the complement of each other� It is also easy to see
that the matrix M��� thus obtained is the same as the one of Lemma �� with its rows permuted
i�e�� M��� � C���� We are therefore only left with proving that I�M�� � ���

We now consider how the procedure above transforms a given column of M� �note that the
doubling step has no e�ect here�� Without loss of generality� consider only one of the �� leftmost
columns of the matrix� We assume� as our inductive hypothesis� that the columns of M� satisfy
the following two properties�

�� In every column� the even groups of four bits have the pattern ������ or ������� in every
column� the odd groups have the pattern ������ or �������

�� Every column has exactly �� blocks of consecutive ��s �cyclically��

These properties can easily be seen to hold for matrix M�� We have already seen that after the
shu#ing step� the bits of every block of two bits �rows �i and �i��� in a column �ofM�� now being
transformed� di�er� Therefore� after the extend step of the construction� the blocks of four bits in
a column of M��� �obtained from the blocks of two bits after the shu#ing step� with an even label
will have the patterns ������ �from ����� or ������ �from ����� since for these we only insert a copy
of each bit� For the blocks of four with an odd label� the extend step of our construction inserts
after each bit the complement of that bit� We therefore obtain the patterns ������ �from ����� or
������ �from ������ Property � therefore holds for M����

We can now prove that property � above holds for M���� We �rst show that the shu#e step
adds ���� to the total number of intervals of each column� and then we show that the extend step
also adds ���� to the total number of intervals of each column� Each column of the matrix M���

therefore has ���� � ���� � �� �inductive hypothesis� � ���� intervals�

Suppose again� without loss of generality� that we consider one of the �� leftmost columns of
M�� Partition the column in blocks of eight bits� starting from the top� The �rst four bits of each
block corresponds to an even block of four� By property �� there are only four possible patterns for
the blocks of eight bits�

a� ����� �����

b� ����� �����

c� ����� �����

d� ����� �����

After the shu#e step� each of the four patterns gets transformed to�

a�� ����� �����

b�� ����� �����

c�� ����� �����

d�� ����� �����

��



In each case� exactly one interval gets added to the column since the boundaries of every block
remain unchanged� The shu#e step therefore adds exactly ������ � ���� intervals to each column
in total�

Now� re�partition the column obtained from the shu#e step into blocks of eight bits such that
the �rst four bits of each block correspond to an odd block of four� We obtain the following four
patterns�

A� ����� �����

B� ����� �����

C� ����� �����

D� ����� �����

After the extend step� these patterns get transformed to the following �e�g� pattern A gets
transformed to pattern A���

A�� ����� ���� ���� �����

B�� ����� ���� ���� �����

C�� ����� ���� ���� �����

D�� ����� ���� ���� �����

Each of A�� B�� C� and D� has the same boundaries as A� B� C and D respectively� and since
each has one interval more than its counterpart� we can conclude that the extend step together add
���	��! � ���� new intervals to each column� The results extend to the last �� columns of M� by
changing the partitions� Therefore� property � holds for M���� which conclude the proof� �

B Compactness of codes and graphs

Proposition � There exists a graph G such that Irs�G� � I�C� for every code of constraints C of
G�

Proof
 Consider the graph G of � vertices drawn in Figure �� We have to construct all the codes
of constraints of G and check that each code has a compactness of at most �� In fact it is enough
to check for �p� q��codes with p � � and q � 	 since it is easy to see that any smaller code has a
compactness of at most �� Furthermore� we only need to check for p � ! because� we assumed that
any arc �u� v� is not a constraint for the vertex u� Therefore the number of rows p of any code of
constraint of G is at most !� We leave it to the reader to check that every �p� q��code of constraints
C of G with � � p � ! and 	 � q has a compactness of at most one� i�e� I�C� � ��
We now prove that Irs�G� � �� Assume that there exists a shortest path interval routing

scheme on G� R � �L� I�� with Irs�R� � �� To simplify the presentation of the proof� we set
x � L�x�� for x � fa� b� c� d� e� f� gg� Also� if X and Y are two subsets of vertices of G� we say
that X � Y if for every �x� y� � X � Y � x � y� Since vertices b and c are isomorphic� assume
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without loss of generality that b � c� The order d � b � a � c �circular order modulo �� is
impossible because the interval assigned to arc �g� d�� I�g�d�� must contain d and a but neither b nor
c� Thus we have fa� dg � b � c� Arcs �d� a� and �d� g� establish the condition fe� f� gg � fa� b� cg�
Therefore fa� e� f� g� dg� b � c� Ig�f must contain f and c but neither d nor b� thus f � d � b � c�
Moreover Ig�e must contain e and b but neither d nor c� thus d � e � b � c� And �nally we have
f � d � e � b � c� Now we must have f � fd� gg� e � b � c� since Ia�d must contain d and g but
neither f nor e nor b nor c� Similarly we must have f � fa� d� gg � e � b � c� because Ig�d must
contain d and a but neither f nor e nor b nor c� But this last condition is incompatible with the
condition fe� f� gg� fa� b� cg� This contradiction shows that Irs�G� � �� Figure � gives a shortest
path interval routing scheme R with Irs�R� � �� and therefore Irs�G� � �� �

C Smallest graphs of compactness �

In this appendix we prove that the minimum graph of compactness � has � vertices� i�e� n��� � ��
For this� we use the list of all graphs of order less than �� which can be found in �Har!��� The
following lemmas will reduce the number of cases to consider� In the following� all graphs are
described as symmetric digraphs�

Lemma � Let G be a ��vertex�connected graph� The compactness of G is the maximum of the
compactness overall subgraph of G composed of one ��vertex�connected component of G and of its
neighbor cutvertices in G�

Proof
 Let G � �V�E� be a ��vertex�connected graph� A subgraph of G composed of one ��vertex�
connected component of G and of its neighbor cutvertices in G� is denoted a ��component of G� Let
A be a ��component of G� Clearly A is a subgraph of shortest paths �FG��c� of G� i�e� a subgraph
that contains all the shortest paths between any pair of vertices of A� Let k � maxS Irs�S�� for any
��component S of G� Therefore� applying Theorem � of �FG��c�� we get that Irs�G� � k � Irs�A��

We now prove that Irs�G� � k� The proof is constructive� �� decompose G in ��components�
�� successively merge these ��components and their shortest path interval routing scheme to obtain
an shortest path interval routing scheme on G� Phase �� merge two ��components at the �rst step�
It results a subgraph of G that is no more a ��component of G� In fact� in the remaining merging�
we merge subgraphs that are non ��component of G but that have a cutvertex in common� Let us
show how to do a merging in general�

Since G is a ��vertex�connected graph� there exists a cutvertex x of G and we can decomposed
G in two subgraphs� A � �VA� EA� and B � �VB� EB�� such that VA � VB � V and VA � VB � fxg�
We assume by induction that A and B are of compactness at most k� and we will prove that
Irs�G� � k�

Let nA � jVAj and nB � jVBj� Let RA � �IA�LA� and RB � �IB �LB� be two shortest path
interval routing schemes on graphs A and B respectively� such that LA�x� � nA and LB�x� � ��
Conditions LA�x� � nA and LB�x� � � are not restrictive� since clearly every circular permutation
composed with the labeling function de�nes an interval routing scheme with same compactness and
isomorphic set of routing paths�
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We de�ne a shortest interval routing scheme R � �L� I� on G as follows� L�v� � LA�v� for all
vertices v of graph A� and L�w� � LB�w��nA� �� for all vertices w 	� x of graph B� We shift also
any single interval �a� b� � IB to get a new set I�

B of intervals of the form �a� nA � �� b� nA � ���
We extend sets IA and I�

B to obtain a set of intervals I for G as follows � for any single interval
I � �a� b� of IA or of I�

B containing the integer nA� let I
� � I � �nA� nA�nB � ��� I � is composed of

only one interval since all its elements are consecutive� We �nally set I as the union of extended
intervals sets of IA and I�

B� It is easy to see that the shortest path de�ned by R between two
vertices of the same subgraphs A or B are the same as in RA or RB� and any shortest path between
a vertex u of A and a vertex w of B� must travel the cutvertex x� which belongs to set of vertices
of A and of B�

The compactness of R is less than maxfIrs�A�� Irs�B�g� therefore Irs�G� � k� �

The following lemma will be useful to check quickly if a graph with many edges has compactness
��

Lemma � Let G be a connected graph of n vertices having d vertices of degree n� �� Let m be the
number of edge�connected components having at least two vertices in the complement graph of G�
If d � �n�m��� then the compactness of G is ��

Proof
 Let G be a connected graph of n vertices� Assume that G has d vertices of degree n��� Let
G denote the complement graph of G� G is composed of m connected components A�� � � � � Am of
order at least two and of d single vertices� Assume that d � �n�m���� Without loss of generality�
we assume that m � �� since otherwise G is simply the complete graph� For each connected
component Ai� i � f�� � � � � mg� we root a spanning tree Ti at any vertex of Ai� Let ni denote the
number of vertices of Ai�

We now construct a shortest path interval routing scheme R � �L� I� on G� For i � f�� � � � � mg
and for every vertex x of Ai� we set L�x� � �j � � � Pi��

k
� nk in a depth �rst search scheme
according to Ti� for all j � f�� � � � � nig� Since n � d � �m� m � � and d � �n � m���� then
d � n� d�m � �� and thus we can label n� d�m of the d single vertices y of G with L�y� � �j�
for all j � f�� � � � � n� d�mg� For the other single vertices y� of G� if they exist� we set L�y�� � k�
for all k � f��n� d�m� � �� � � � � ng� The set I is de�ned as follows�

i� For the d vertices x of G of degree n � �� we assign I�x�y� � �L�y�� for the n � � vertices y�s
connected to x�

ii� For vertices of G with a degree strictly lower than n � �� we assign intervals as follows� let
i � f�� � � � � mg and x be a vertex of Ai� For every arc �x� y� of G� we assign the interval
I�x�y� � �L�y�� ��L�y�� if x and y are not adjacent in G� and I�x�y� � �L�y�� otherwise�

Hence all vertices of G are labeled and the compactness of R is ��

To prove that R is connected and de�ne a shortest path routing scheme� consider any two
vertices x and y of G� Since n � d � �� i�e� G has at least one vertex of degree n � � and
G 	� Kn� then G has diameter �� Hence either x and y are adjacent or there is a third vertex z of
G such that z is connected to both x and y� If x and y are adjacent� then we have L�y� � I�x�y�
in both cases �i� and �ii�� and by symmetry L�x� � I�y�x�� Otherwise x and y are not adjacent in
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G and thus� there exists an i � f�� � � � � mg such that x and y together belong to Ai� Therefore
L�y� � I�x�y� � �L�z� � L�y�� ��L�y��� by �ii� since neither x nor y are of degree n � �� And by
symmetry we also get that L�x� � I�y�x�� We have thus proved thus that all paths built by R are
shortest paths� �

Theorem � n��� � ��

Proof
 We have already showed that n��� � � �Figure � and refer to Proposition ��� Moreover
n��� � � since n�k� � �k� � for any k � �� We will check for every graphs of � and ! vertices that
they admit a shortest path interval routing scheme of compactness �� Since outerplanar graphs
have a compactness of � �FJ���� we need not check them� Since any connected graph of � vertices
or less has a compactness of �� then� applying Lemma � and Lemma �� only � graphs of � vertices
must be checked� K��	 and the graph composed of a cycle of � vertices with K��	 connected by
its three vertices� Referring to the representation of these graphs pages ��� of �Har!��� a circular
labeling and a straightforward assignment of intervals give a shortest path interval routing scheme
of compactness �� Hence n��� � !� Similarly� since every connected graph of � vertices has
a compactness of �� then� applying Lemma � and Lemma �� only �	 graphs of ! vertices� on
pages ���$��� of �Har!��� must be checked� A circular labeling and a straightforward assignment of
intervals give a shortest path interval routing scheme of compactness � for all these graphs� except
for the one� composed of a cycle of � vertices and a path of length 	 connecting two non adjacent
vertices� For this graph� we can label the vertices ��� �� !� �� �� 	� given the circular representation
of this graph on page ��� �Har!��� Therefore n��� � �� �
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