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Consider shortest path interval routing, a popular memory-balanced method for solving the routing problem on arbitrary networks. Given a network G, let Irs(G) denote the maximum numb e r o f i n tervals necessary to encode groups of destinations on an edge, minimized over all shortest path interval routing schemes on G. In this paper, we establish tight w orst case bounds on Irs(G). More precisely for any n, w e construct a network G of n nodes with Irs(G) 2 (n), thereby improving on the best known lower b o u n d o f ( n= log n). We also establish a worst case bound on bounded degree networks: for any 3 and any n, w e construct a network G of n nodes and maximum degree with Irs(G ) 2 (n=(log n) 2 ).

Introduction

The shortest path routing problem for an arbitrary network of processors is to design a uniform strategy that the router of each processor will follow upon reception of a message to decide to which of its neighboring nodes the message should be sent n e x t s u c h that the message arrives at its destination after passing through as few nodes as possible. The routing strategy should be simple and distributed so as to limit the costs of routing (space, time and complexity) and uniform to reduce the costs of building hardware routers, over a potentially great number of nodes. We w ant to minimize the local memory requirement for a distributed routing strategy.

Table routing is a standard solution to the shortest path routing problem for arbitrary networks. At e a c h n o d e i n t h e n e t work is stored a table listing for each possible destination the output port that should be used to send a message to that node along a shortest path. That solution guarantees shortest paths but requires (n log ) bits of space per node, where n is the number of nodes and is the maximum degree of a node. To alleviate the space requirements of routing tables, compact routing schemes were introduced: in SK85] for arbitrary networks and in FJ88, FJ89, FJ90] for planar and c-decomposable networks.

Trade-o s between the space requirements for every node and the length of the routes were proposed in ABNLP90, AP92, PU88]. A popular compact routing method, interval routing, i s t o g r o u p together the destination nodes corresponding to the same output port of a given node in intervals.

Just as for table routing, this method requires that a header of only O(log n) bits be added to the forwarded message. This routing scheme was introduced in SK85], generalized in vLT87] and shortest path interval routing was discussed in BvLT91, FJ88, v L T87].

Let us model a network of processors as a connected, simple and loop-less symmetric digraph G = ( V E), where V denotes the set of vertices of G (corresponding to the routers) and E the set of arcs of G (corresponding to the set of directed links of the symmetric network). We assume that the cost of sending a message along any a r c o f G is uniform. An interval a b] of the set f1 : : : n g is the set of consecutive i n tegers fa : : : b g cyclically. F or example, 7 2] is the subset f7 8 1 2g of f1 : : : 8g. Given a symmetric digraph G = ( V E) o f n vertices, an interval routing scheme R = ( L I) for G consists of:

1. a one-to-one labeling function of the vertices, L : V ! f 1 : : : n g 2. a family I = fI e e 2 Eg, where I e is a set of intervals of f1 : : : n g associated with arc e Moreover L and I must be such that the following properties hold: i. for every x 2 V , L(x) f I (x y) j(x y) 2 Eg = f1 : : : n g (we k n o w h o w to route messages from x to every node in G) ii. for every two distinct arcs (x y) and (x z) o f E, I (x y) \ I (x z) = (the routing scheme is well-de ned)

We s a y that a routing R is a shortest path routing scheme if the node-to-node routes induced by R always use a shortest path in G. F rom now on, we will only consider shortest path interval routing schemes.

If such a n i n terval scheme R is de ned on a graph G, then message routing is performed as follows: upon reception of a message, vertex x rst compares the message header, L(y) w i t h i t s own label, L(x), to check if the message has arrived at its destination. If not, then the message and its header are forwarded through the unique arc (x z) s u c h that L(y) 2 I (x z) .

Consider Figure 1 as an example of a shortest path interval routing scheme. In this example, the labeling function L maps vertices a b e g d f c to integers 1 : : : 7 respectively. In this graph, which i s s h o wn with undirected edges, the set of intervals I (x y) assigned to arc (x y) is placed close to vertex x. F or example, the intervals 1 2] and 5] that are close to vertex 7 correspond to the set of integers f1 2 5g, and form the set I (7 1) that labels the arc (7 1). Accordingly, if the vertex b wants to send a message to vertex f under R, the message will follow arcs (b a), (a c) and (c f) in order. Note that in this model, the label of the node may o r m a y not belong to an interval of one of its outgoing arcs (e.g. for this graph, the node labeled 5 does, while the node labeled 3 does not).

Routing strategies that do not require shortest paths have been studied in BvLT91, FG94a, SK85], where the authors give a complete characterization of the graphs requiring a small number Given a graph G of n vertices and an interval routing scheme R for G, w e de ne Irs(R) to be the maximum over all the arcs of G of the numb e r o f i n tervals that is required to encode the destinations associated to that arc (Irs(R) = m a x e jI e j such that I e 2 I ). We de ne the compactness of a graph G, denoted Irs(G), as min R Irs(R) for all shortest path interval routing schemes R on G. I n a sense, Irs(G) is the maximum numb e r o f i n tervals required by the \most compact" shortest path interval routing scheme on G. Note that we consider in the following that graphs have at least one arc and thus the compactness of a graph is always greater than or equal to 1. Since interval routing was introduced in the hope of reducing the amount of space required, Irs(G) is an important parameter to consider. In fact, given a graph G, there is a node of G that requires (Irs(G) l o g n) bits of local memory under a shortest path interval routing scheme.
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Most of the work in the literature on shortest path interval routing has been concerned with nding Irs(G) for speci c networks: chordal rings in FGS94a], trees, hypercubes, d-meshes, dtori and r-complete-bipartite graphs in BvLT91, FG94c, KKR93], unit-interval and unit-circular networks in FG94c]. It is shown in FG94b, FvLS94, KKR93, Ru s88] that Irs(G) is not bounded by a constant in the general case. In this paper we a r e i n terested in nding a worst case graph G with a large compactness. For every integer n we de ne Irs(n) = max G Irs(G) such that G has n vertices. Irs(n) is the maximum compactness for graphs of n vertices.

It was shown in KKR93

] that Irs(n) 2 ( 3 p n). The result was then improved in FvLS94], where it was shown that Irs(n) 2 (n= log n). In this paper, we present a general technique for proving lower bounds on Irs(n) and for every n, w e exhibit a graph G of n nodes for which we can prove that Irs(G) 2 (n). We then extend the techniques introduced to construct for every xed and every n a g r a p h G of maximum degree 3 and of n nodes for which Irs(G ) 2 (n=(log n) 2 ).

More precisely, i f w e let n(k) denote the number of nodes of the smallest network G for which Irs(G) k, w e s h o w that 2k + 1 n(k) 12k ; 11 for every integer k 2, and thus that Irs(n) n=12. The lower bound of 2k + 1 o n n(k) w as obtained in FG94a] with the following simple argument: by the pigeon hole principle, any i n teger labeling on n;1 nodes can give a t m o s t b(n ; 1)=2c wrap around intervals of consecutive i n tegers. This lower bound on n(k) proves that our bound on Irs(n) is asymptotically tight. Now l e t Irs(n ) denote the largest compactness of a graph of n vertices and of maximum degree . We adapt the construction to show that Irs(n ) is greater than n+4 log 2 n+5 4log 2 n(3 log 2 n+1) , for su ciently large n and for every 3. In next section, we i n troduce the matrices of constraints, which provide a general tool for proving lower bounds on Irs(n) and on Irs(n ). In the same section, we describe how to construct a graph of p + 2 q vertices from a p q boolean matrix such that if this matrix requires k blocks of consecutive ones in one of its columns, then the constructed graph G satis es Irs(G) k. I n section 3, we present results from coding theory that we apply to produce suitable matrices that we use together in section 4 with our construction of section 2.2 to establish a lower bound on Irs(n).

In section 5, we adapt the construction of section 2.2 to obtain a graph G of at most 6pq ;4p ;4q vertices and of maximum degree , from any p q boolean matrix. Then we use suitable matrices to establish a lower bound on Irs(n ), for any n and any 3.

2 Matrices, codes and graphs of constraints

Matrices and codes of constraints

Given an arbitrary connected graph G, computing Irs(G) is generally di cult. In fact, the problem has been shown to be NP-hard in FGS94b]. There seems to be no other way than checking the minimum number of intervals required by e a c h shortest path interval routing scheme on G. In this section, we i n troduce a tool that is helpful in establishing lower bounds on Irs(G). More precisely, this tool is a mean of reducing the problem of nding the compactness of a graph G to a problem on boolean matrices. This tool is based on the notion of a matrix of constraints, a concept that we now i n troduce. In general, for every triple of vertices (u v w) of a graph G where u and v are adjacent v ertices and u 6 = w, three cases may occur for shortest paths:

1. Every shortest path from u to w must use arc (u v). 2. Every shortest path from u to w must not use arc (u v). 3. There are shortest paths from u to w that use arc (u v) and there are shortest paths from u to w that do not use arc (u v).

For the rst two cases, arc (u v) forms a constraint for the vertex w on the graph G. Note that (u v) is not a constraint f o r v ertex u, since there is no shortest path from u to u. F rom a routing point of view, any s c heme can, in a rst step, checks if u = w and thus no adjacent arc of u must be used. It is the case for shortest path interval routing scheme, where the label of u may o r m a y not belong to intervals associated to each adjacent arcs of u.

A matrix of constraints of a symmetric digraph G = ( V E) i s a p q boolean matrix M = ( m i j ) whose rows are labeled with vertices of a subset fv 1 : : : v p g of V and whose columns are labeled with arcs of a subset fe 1 : : : e q g of E, such that:

1. m i j = 1 if and only if every shortest path from the tail of e j to vertex v i uses arc e j . 2. m i j = 0 if and only if no shortest path from the tail of e j to vertex v i uses arc e j .

Consider a column (u v) o f a p q matrix of constraints and suppose that the vertices of the graph have been labeled with integers by a shortest path interval routing scheme R = ( L I). If there is a 1 at the intersection of the column with the row labeled by v ertex w, then the label of w must be on arc (u v) i n R, i.e. L(w) 2 I (u v) . Similarly, if there is a 0 then the label of w cannot be on arc (u v) i n R, i . e . L(w) 6 2 I (u v) . I f w e permute the rows of the matrix such that the integer labels of the rows are placed in ascending order in the matrix, then clearly the number of blocks of consecutive 1's in column (u v) i s a l o wer bound on the numb e r o f i n tervals for that arc in R.

Table 1 shows a matrix of constraints for the graph of Figure 1.

M = (c a) (e b) (g d) (c f) (e g) (g e) (g f) 1 1 0 0 0 1 0 b 1 1 1 0 0 0 0 a 1 0 1 0 1 0 0 d 0 0 0 1 1 0 1 f
Table 1: A matrix of constraints for the graph of Figure 1.

Note that a matrix obtained by permuting the rows of a matrix of constraints is also a matrix of constraints for the same graph and corresponds to a relabeling of the vertices (the integer labels have to be in ascending order). If we can show that under any p e r m utation of the rows of the matrix there must be at least one column with a certain number k of blocks of consecutive 1 ' s , then the graph must require at least k intervals. Finding a matrix of constraints for a graph G and establishing a bound on the maximum number of blocks of consecutive 1's in a column, minimized over all permutations of the rows of the matrix, therefore yield a lower bound on Irs(G). We n o w formalize these ideas.

A (p,q)-code is a non empty family C of p q boolean matrices such that (i) if M is in C then any other matrix M 0 of C can be obtained by p e r m uting the rows and columns of M and (ii) all the matrices obtained by permuting the rows and columns of M are in C. A ( p q)-code can be seen as an equivalence class of the set of p q boolean matrices, using row and column permutation as a congruence operator. It therefore makes sense to specify a code C with a representative matrix from C.

Given a boolean matrix M, l e t I(M) denote the compactness of M, that is the maximum, over all columns of M, of the number of blocks of consecutive 1's cyclically (the rst and the last bit in the boolean word formed by a column of M are considered consecutive). For example, in the boolean matrix of Figure 2, the rst and second columns have one blocks of consecutive 1's, while the third has two. Therefore I(M 0 ) = 2 for this matrix, while I(M) = 1 for the matrix of constraints of table 1. Note that I(M) = 0 if and only if M = (0).

We extend our de nition of compactness to codes by de ning the compactness of a (p q)-code C, denoted I(C) to be the minimum of I(M) o ver all matrices M in C. I f M is a matrix of constraints

M 0 = (a 1 b 1 ) (a 2 b 2 ) (a 3 b 3 ) 1 1 1 v 1 1 0 0 v 2 0 0 1 v 3 0 1 0 v 4 a 2 2 b a 3 b 3 b 1 a 1 1 v v 2 v 4 v 3 Figure 2: A graph for a (4 3)-code of compactness 2.
of a graph G, then we call the family of matrices obtained by permuting the rows and columns of M a (p,q)-code of constraints of G. W e a r e n o w ready to introduce the main result of this section.

Lemma 1 ( FvLS94]) If C is a code of constraints of graph G then, Irs(G) I(C).
Proof. Let R be any shortest path interval routing for a graph G and let C be any c o d e o f constraints of G. Consider the set of integers used by R to label the vertices that label the rows of every matrix in the code. Let M b e a m a t r i x o f C for which t h e i n tegers, that now label the rows, are in ascending order from top to bottom. (Note that any matrix of C obtained by permuting only the columns of M satis es this condition). Since there is a column of M with at least I(C) blocks of consecutive 1 ' s b y de nition, it follows that the arc corresponding to the column has at least I(C) i n tervals under routing scheme R (there are at least I(C) \holes" when we list the integers corresponding to the arc). Since R is an arbitrary routing scheme for G, i t f o l l o ws that Irs(G) I(C).

Unfortunately we d o n o t k n o w of a better relation between the compactness of a graph and the compactness of the \less compact" code of constraints of the graph. The graph drawn on Figure 3 (page 11) is an example where there exists a code of constraints with the same compactness of the graph itself (it was already proved in FG94c] that the compactness of this graph is 2). But Proposition 1 of appendix B establishes that in general, there is no code of constraints with the same compactness as the graphs'. Also, it is not necessarily easy to compute I(C) in general. Indeed, in FGS93] i t i s p r o ved that given a (p q)-code C, computing I(C) is NP-hard. This result is derived from the consecutive ones submatrix NP-complete problem in GJ77]. However, it can be decided with a polynomial time algorithm if I(C) = 1 (see BL76]). Anyhow, the result of Lemma 1 is useful for constructing graphs for which w e w ant to guarantee a given number of intervals. This idea of matrix of constraints was independently introduced in FvLS94] where the authors deal with the concept of unique matrix of shortest path representation. With this concept, they construct a graph of n vertices that requires (n= log n) i n tervals on one speci c arc. In the following section we extend this concept to the idea of graphs of constraints, a more powerful tool to improve their lower bound.

Graphs of constraints

We present b e l o w h o w to construct a symmetric digraph G = ( V E) f r o m a p q boolean matrix M = ( m i j ) s u c h that M is a matrix of constraints of G. T o simplify presentation, we describe G as being undirected. Refer to Figure 2 for an example of the construction using a 3 4 matrix. We get:

Lemma 2 For every p q boolean matrix M, t h e r e exists a graph G of p + 2 q vertices such that M is a matrix of constraints of G.

Proof. Let M = ( m i j ) b e a n y p q boolean matrix. We construct a graph G composed of two layers. The bottom layer is a set of p independent v ertices, fv 1 : : : v p g, and the top layer consists of q copies of K 2 (the complete graph of two v ertices). We d e n o t e a j and b j the two v ertices of the jth copy o f K 2 , for 1 j q. Hence the set of vertices of G is fv 1 ::: v p a 1 b 1 ::: a q b q g G has p + 2 q vertices.

We connect the vertices belonging to di erent l a yers as follows. If m i j = 1 then add the edge1 hb j v i i and if m i j = 0 then add the edge ha j v i i. F or each o f t h e q edges ha j b j i, w e add exactly p edges and so G has pq + q edges. It is clear that G thus constructed is connected and has a diameter less than 3.

We prove that the graph G that we constructed from a boolean matrix M has M as matrix of constraints. We rst construct a p q matrix of constraints M 0 of G as follows: label column j of M 0 with arc (a j b j ), for 1 j q, and label row i of M 0 with vertex v i , f o r 1 i p. B y construction M 0 is a matrix of constraints of G and clearly M 0 = M. Therefore M is a matrix of constraints of the graph G.

Remark. Let (G) denote the maximum degree of graph G. L e t M be a p q boolean matrix, and G its graph of constraints built as in Lemma 2. It is easy to see that (G) maxfz=q p; z=qg, where z is the total number of 0 entries in the matrix M (consider any edge ha i b i i of the construction).

The graph built in the proof of Lemma 2 from a boolean matrix M is called a graph of constraints of the matrix M. Since a permutation of the rows and columns of a matrix of constraints of a graph can be seen as a relabeling of the vertices and arcs respectively, then for a code C and for any t wo matrices M and M 0 in C, i f G is a graph of constraints of matrix M then it is also a graph of constraints of matrix M 0 . T h us we can speak of a graph of constraints of a code C.

Codes with large compactness

In this section we present a method for constructing (p q)-codes C with a large value of I(C) a s a function of (p q). We rst extend our de nition of code as follows. An (p q d)-code C is a (p q)-code such that for every matrix M in C, e v ery two r o ws of M di er in at least d places (d may be 0). For example the well-known Gray codes of length p are the (2 p p 1)-codes. We u s e A(q d) to denote the largest value of p for which there is a (p q d)-code. Note that, in general the exact value of A(q d) is unknown, but tables can be found in the literature (e.g. MS77]). The following Lemma is useful in nding a lower bound on I(C) f o r a g i v en code C. Lemma 3 [START_REF] Flammini | Private communications in New York[END_REF]) For every (p q d)-code C, I(C) pd=(2q).

Proof. Consider a boolean matrix M of the (p q)-code C. For i 2 f 1 : : : p g, let d i be the Hamming distance between the two consecutive r o ws, i and i + 1 (modulo p, the last and the rst row are consecutive) of M, and for j 2 f 1 : : : q g let k j denote the number of blocks of consecutive 1's in column j of M. W e call D = P p i=1 d i the total Hamming distance over all rows of M and K = P q j=1 k j the total number of blocks of consecutive 1 ' s i n M. It is easy to see that each raising of a block of consecutive 1's provides an increment o f t wo on the total distance D, i.e 2K = D. Since d i d for every i, w e h a ve 2 P q j=1 k j = P p i=1 d i pd. By the pigeon hole principle, since M has q columns, there must be a column j, 1 j q, s u c h that k j pd=(2q).

The fact that the Hamming distance yields a lower bounds on the numb e r o f i n tervals was due to Fla94].

Corollary 1 For every integer k 2, i f t h e r e exist integers p q and d such that A(q d) p > 2q(k ; 1)=d, then there exists a (p q)-code C such that I(C) k.

Proof. Assume that for some integer k, k 2, there exists a triple (p q d) such that A(q d) p > 2q(k ; 1)=d. S i n c e p A(q d), then there exists, by de nition of A(q d), a (p q d)-code C. Applying Lemma 3, I(C) pd=(2q) k.

Therefore, to nd a code with large compactness using Lemma 3, we m a y u s e a ( p q d)-code maximizing pd=(2q). With the next lemma we will see that there exists a (p q)-code C with q 2 (p) and I(C) 2 (p). We u s e t h e w ell-known Hadamard code for that purpose.

Lemma 4 For every integer 1, there exists a (2 +2 2 +1 2 )-code.

Proof. We show here how to construct a representative matrix M of a (2 +2 2 +1 2 )-code, by induction. The basis, when is 1, is the following (8 4 2)-code M 1 = 2 6 6 6 6 6 6 6 6 6 6 6 6 4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 3 7 7 7 7 7 7 7 7 7 7 7 7 5 Suppose, as our inductive h ypothesis, that there exists a (2 +2 2 +1 2 ) Hadamard code C . Then let M be a representative matrix of C and let M +1 as follows:

M +1 = " M M M M #
where M is the matrix M with every bit complemented. Notice that if every two r o ws of M di er in exactly 2 bits, except for the pair of rows (000 : : : 0) and (111 : : : 1), i.e. the rst and third row o f M , then it is easy to see that this fact will also hold for M +1 . Since it is invariant under permutation of rows and columns, we can conclude that the family C +1 of matrices generated from M +1 , is indeed a (2 +3 2 +2 2 +1 )-code.

The (2 +2 2 +1 2 )-code constructed in the proof of Lemma 4 will be denoted C from now o n .

Lemma 3, we know that I(C ) 2 . In appendix A, we will prove that in fact, I(C ) = 2 . Actually, MacWilliams and Sloane in MS77] proved that a (8 4 2 )-code exists if there exists an Hadamard matrix of dimensions 8 4 . According to them, Hadamard matrices were known in 1977 for every less than 70. Lemma 4 is in fact a corollary of the existence of Sylvester matrices.

A l o wer bound for Irs(n)

Lemma 5 Let n(k) be the minimum order of a graph G such that Irs(G) k. T h e n f o r a l l k 2, n(k) 2 dlog 2 ke+2 + 4 k ; 3.

Proof. Let k 2. By Corollary 1 there exists an (p q d)-code C with I(C) k if A(q d) p > 2q(k ; 1)=d. Let M be a p q boolean matrix of such a ( p q d)-code C. Lemma 2 guarantees the existence of a graph of constraints G of the matrix M and, applying Lemma 1, such that Irs(G) I(C) k. Hence the numb e r o f v ertices of G is an upper bound on n(k), i.e. n(k) min p q jV (G)j, if I(C) k. Therefore 8k 2 n (k) min p q d (p + 2 q) where (p q d) satis es A(q d) p > 2q(k ; 1)=d Using the (2 +2 2 +1 2 )-code C of Lemma 4 with = dlog 2 ke, q = 2 +1 and d = 2 , w e obtain A(q d) p > 2q(k ; 1)=d if and only if 2 +2 p > 4(k ; 1). Indeed, Lemma 4 shows that A(2 +1 2 ) 2 +2 and, by applying Plotkin's bound MS77], which states that A(2i i) 4i for i even, we get that A(2 +1 2 ) = 2 +2 . A s p should be the smallest integer such t h a t 2 +2 p > 4(k ; 1), we can choose p = 4 k ; 3 ( w e can remove three rows at least of C ) to yield the desired result.

Lemma 5 is enough to prove that n(k) 2 (k) for all k 2, because we h a ve shown 2k+1 n(k).

The following theorem is a direct consequence of Lemma 5.

Theorem 1 For every integer n 2, Irs(n) n=12.

Proof. Since for any k 2, 2 dlog 2 ke 2(k ; 1), from Lemma 5 we get that n(k) 12k ; 11. By de nition of n(k), we derive that for every integer n 2 there exists a graph G with n vertices such that Irs(G) k b (n + 1 1 ) =12c. Therefore Irs(G) n=12.

Remark. We can see that the graph G built in Lemma 5 has an unbounded maximum degree. G was obtained using the (2 +2 2 +1 )-code C , which contains the same number of 0 and 1 entries. Thus, applying the remark of section 2.2, we g e t ( G) 2 + 1 =2. Indeed we remove some rows of C , but at least 2 +2 =2 + 1 r o ws of C are left, and thus at least 2 +1 (2 +2 =2 + 1 ) =2 0 o r 1 e n tries are left. Since the number of vertices of G is n = 2 +2 + 4 k ; 3 and k is such that 2 ;1 < k 2 , then (G) n=8.

We n o w s h o w that it is possible to tighten the upper bound on n(k). For k a p o wer of 2, we obtained n(k) 8k ; 3 in Lemma 5. If we consider the case where k = 2 for example, the upper bound on n(2) of Lemma 5 is obtained by u s i n g a ( 5 4 2)-code: d = 2 dlog 2 2e = 2 , q = 2 d = 4 a n d p = 4 k ; 3 = 5 . T h us the bound of Lemma 5 states that n(2) p + 2 q = 5 + 2 4 = 13. But if instead we w ould use the (4 3 2)-code of Figure 2, then we w ould nd, by applying Lemma 3, that n(2) p + 2 q = 4 + 2 3 = 1 0 , a n i m p r o vement. As another example, consider the case k = 5 . The bound of Lemma 5 gives n(5) 49 by using a (17 6 3)-code. But we can use a (25 6 2)-code instead (the readers are welcome to convince themselves that such a code exists) to nd n(5) p + 2 q = 2 5 + 2 6 = 37. Therefore, Lemma 5 does not provide an optimal result and it can be improved upon.

We can compute a smaller upper bound on n(k) using the construction of a graph of constraints of Lemma 2, based on the fact that n(k) min p q d (p + 2 q) such that A(q d) p > 2q(k ; 1)=d. Using a table of the best lower bounds known on A(q d) t a k en from MS77], we nd the following upper bounds on n(k), for k 21 (see table 2), by applying the above minimization on a computer with a systematic search. This table also gives the values (p q d) of the (p q d)-code C used for the construction of a graph of constraints of code C. The graph corresponding to the rst row o f this table, k = 2 using an (4 3 2)-code and given n(2) 1 0 , i s s h o wn in Figure 2. k d q p Upper Bound n(k) Remark. We showed that, by using techniques from coding theory, w e w ere able to obtain asymptotically tight bounds on the size of the smallest graph which requires at least k intervals to route along shortest paths using interval routing. Nevertheless, we b e l i e v e that our bound can be improved upon. For example, consider once more the case k = 2. Applying the general result of Lemma 5, we s h o wed that n(2) 10. However it was shown by a case analysis that there exist a graph of seven vertices (see section 2.1 and Figure 3) of compactness 2, and therefore that n(2) 7.

In appendix C we prove that in fact n(2) = 7. Though asymptotically tight, there still exist a small gap between our upper bounds and the exact values of n(k). 

Worst case graphs of bounded degree

We h a ve seen that our lower bound on Irs(n), in Lemma 5, is achieved with a graph of constraints of order n with a maximum degree in (n). In this section, we establish a lower bound on Irs(n ) for shortest path interval routing schemes on graphs of order n and of maximum degree . We will prove that Irs(n ) 2 (n=(log n) 2 ), for every integer n and for every integer 3. We assume, in the following, that 3 because graphs with maximum degree less than 3 clearly have a compactness of 1 (see SK85] for Trees and vLT87] for Rings). In this section, we will construct a graph of constraints G with maximum degree from an arbitrary p q boolean matrix M, such that M is a matrix of constraints of G. W e will then prove our bound on Irs(n ) by using the results of sections 2.1.

Refer to Figure 4 for an illustration of the construction. Assume that we are given a p q boolean matrix M and an integer 3. The symmetric digraph G, t h a t w e describe as undirected, is composed of three main levels of vertices denoted Low, Medium and High, and of intermediary vertices (drawn in black in Figure 4). The Low l e v el is a set of p independent v ertices that we denote v i , 1 i p the High level consists of q copies of K 2 , t h a t w e denote ha j b j i, 1 j q the Medium level is composed of pq vertices labeled w i j , 1 i p and 1 j q.

These three levels are connected with trees of maximum degree . Let us rst describe how the Low and the Medium levels are connected. At e v ery vertex v i of the Low l e v el, we root a tree T vi whose leaves are the w i j 's, for j 2 f 1 : : : q g. All the trees T vi 's are isomorphic. They are minimal undirected trees of maximum degree with exactly q leaves. In each T vi 's, i 2 f 1 : : : p g, the leaves w i j , j 2 f 1 : : : q g, are all at a distance h 0 = 1 + dlog ;1 (q= )e from the root v i . W e denote by r the number of vertices in any tree T vi , i 2 f 1 : : : p g (all trees have the same number of vertices).

To connect the Medium and High levels, we use a second type of tree. At v ertex a j (resp. b j ), j 2 f 1 : : : q g, w e r o o t a ( ;1)-ary tree T aj (resp. T bj ) the root has maximum degree ; 1 while the other vertices have maximum degree . In T aj (resp. T bj ), j 2 f 1 : : : q g, the leaves are the vertices w i j , f o r e v ery i such that m i j = 0 (resp. m i j = 1 ) . F urthermore, every leaf of the tree T aj (resp. T bj ) is at distance h = dlog ;1 max i (maxfz i p ; z i g)e from a j (resp. b j ), where z i is the number of 0's in column i of the p q matrix M. T aj and T bj have the smallest possible number of vertices necessary to satisfy these requirements. We denote by r aj and r bj respectively the number of vertices of trees T aj and T bj , j 2 f 1 : : : q g. In fact, the vertices w i j can be seen as a grid, where the w i j 's of row i are connected by tree T vi , while some of the w i j of column j are connected by t r e e T aj and the others by t r e e T bj . The total number of vertices in graph G is equal to P q j=1 (r aj + r bj ) + pr ; pq (the w i j 's are counted twice).

Lemma 6 For every p q boolean matrix M and every integer 3, there exists a graph of constraints of matrix M of maximum degree and with 6pq ; 4p ; 4q vertices at most.

Proof. Let us consider the preceding construction of the graph of constraints G of M. The trees T aj and T bj can be constructed as follows: starting from the leaves (at most p), construct a full ( ;1)-ary tree, adding intermediary nodes as required. From the root of that tree, construct a path to a j (or b j ), so that T aj (and T bj ) has height h. T o built T vi , w e start from the root v i with c hildren (or q if q ) and then we root, in each c hild, q full ( ;1)-ary trees of height h ; 1. Then we c a n r e m o ve ( ; 1) h;1 ; q leaves from the last stage. T vi , T aj and T bj therefore always exist, and so the above construction guarantees that we obtain a graph G that is connected and has a maximum degree .

We n o w p r o ve that M is a matrix of constraints of G. W e will rst construct a p q matrix of constraints of G, M 0 , and we will then show that M 0 and M are equal. Label the p rows of M 0 = ( m 0 i j ) with the p vertices of the Low level (the v i 's) and label the q columns of M 0 with the arcs (a j b j )'s of the High level. For each j 2 f 1 : : : q g, let A j (resp. B j ) be the set of v i 's such that w i j is a leaf of the tree T aj (resp. T bj ). Clearly trees T aj and T bj are disjoint a n d t h us A j and B j partition the Low l e v el vertices.

We n o w compute the entries of matrix M 0 , according to the de nition of matrix of constraints. We rst show that if v i 2 B j , then every shortest path from a j to v i must use the arc (a j b j ). Indeed, the path from a j to v i has a length of h + h 0 + 1 (go to b j in one step, take h steps down T bj to reach w i j , and then h 0 steps up T vi to v i ). If we assume, for the sake o f c o n tradiction, that the shortest path between a j and v i leaves through an arc of T aj , then the length of the path must be at least: h using tree T aj to reach a v ertex w i 0 j , then 2 at least using tree T v 0 i to reach a v ertex w i 0 j 0 , then 2 at least using tree T a j 0 or T b j 0 to reach v ertex w i j 0 , and nally h 0 , using tree T vi to reach the vertex v i . The path would therefore at least be of length h+h 0 +4, greater than h+h 0 +1. Hence m 0 i j is 1. Now, suppose that vertex v i 2 A j . W e will show that the shortest path from a j to v i must use an arc of T aj , i.e. it must not use arc (a j b j ). First, it is simple to see that there is a path from a j to v i of length h+h 0 : take h steps down T aj to vertex w i j , and then h 0 steps up T vi to v i . F ollowing an argument similar to the one given above (about the path of length h + h 0 + 4) one can see that a path from a j to v i that uses arc (a j b j ) m ust have a l e n g t h o f 1 + h + 2 + 2 + h 0 at least. Hence m 0 i j is 0. Therefore M 0 is a matrix of constraints of G since all its entries are well-de ned. It is now e a s y t o s e e t h a t M 0 = M: i f v i 2 B j (and m 0 i j = 1), then by de nition of the set B j , v ertex w i j is a leaf of T bj . But by construction of G, this is possible only if m i j = 1. Similarly, i f v i 2 A j (and m 0 i j = 0) then m i j = 0 .

Let us now compute the number of vertices of G. W e rst consider T vi , the smallest tree with q leaves at equal distance from the root, with maximum degree (T vi di ers from a ( ;1)-ary tree in that its root can have degree ). This tree can have at most ( ; 1) i;1 nodes a level i away from the root, and thus r 1 + P h 0 ;2 i=0 ( ; 1) i + q. B y c hoosing h 0 = 1 + dlog ;1 (q= )e and = 3, then r 3 2 h 0 ;1 + q ; 2. Note that to have a ( p q)-code with compactness k 2 w e must have p 4 and q 3. The reader can check the fact that no smaller boolean matrix has a compactness of k 2. But since 3 q 3 2 dlog 2 (q=3)e 2(q ; 1), it follows that r 3q ; 4.

We n o w need to bound the value of r aj + r bj , j 2 f 1 : : : p g. T aj is the smallest ( ;1)-ary tree of height h = dlog ;1 (p)e with z leaves, each at distance h from the root, where z is the maximum number of 0's in a column of M, o ver all columns of M (z p). We already described T aj and T bj at the beginning of the proof. In a ( ;1)-ary tree there are at most ( ; 1) i nodes a level i, a n d t h us p ( ; 1) h (we r e m o ve some vertices to the last level if necessary). Let z j be the number of 0's in column j of M. The height of the tree T aj is h aj = dlog ;1 (z j )e o r 1 i f z j = 0, and the height of tree T bj is h bj = dlog ;1 (p ; z j )e or 1 if z j = p. Note that h aj + h bj 2. Hence r aj Ph a j ;1 i=0 ( ; 1) i + z j + h ; h aj , where h ; h aj is the length of the added path from the root of the full tree to a j . Similarly, r bj Ph b j ;1 i=0 ( ; 1) i + p ; z j + h ; h bj . Set = 3. If 1 < z j < p , then we h a ve r aj + r bj 2 dlog 2 (zj)e + 2 dlog 2 (p;zj)e ; 2 + p + 2 dlog 2 pe ; 2. And since log 2 p p=2, r aj +r bj 2(z j ;1)+2(p;z j ;1)+p;4+2dp=2e. Since 2dp=2e p+1, it follows that r aj + r bj 4p ; 7. If z j 1 o r i f z j = p, then 2 ha j + 2 hb j 1 + 2 ( p ; 1), and thus r aj + r bj 4p ; 4.

In any case, r aj + r bj 4(p ; 1) and r 3q ; 4. Thus we obtain the desired result on the number of vertices of G.

The following lemma gives a construction of (p q)-codes for particular values of p and q.

Lemma 7 For every integer 2, there exists a (2 ;1 2)-code.

Proof. Let P = ( v 1 : : : v 2 ) be a Hamiltonian path in the Hypercube of dimension 2. Let C be the (2 ;1 )-code such t h a t r o w r i of C, i 2 f 1 : : : 2 ;1 g, is the standard binary representation of the vertex v 2i;1 of P. By construction, any t wo r o ws r i and r j of C, i 6 = j, di er by at least 2 places, since two adjacent v ertices in the Hypercube are at an odd distance in P. T h us C is a (2 ;1 2)-code.

Finally we derive the following theorem: Theorem 2 For any su ciently large integer n (n 44) and for every 3,

Irs(n ) n + 4 l o g 2 n + 5 4 log 2 n(3 log 2 n + 1 ) 2 (n=(log n) 2 )
Proof. Let n be a su ciently large integer, let p = 2 q;1 and let q such that 6pq ; 4p ; 4q = 3q2 q ; 2 q+1 ; 4q n < 3(q + 1 ) 2 q+1 ; 2 q+2 ; 4(q + 1). Applying Lemma 6, for every (p q)-code C there exists a graph of constraints G of the code C of maximum degree and with n 0 vertices, n 0 n. W e construct a graph G 0 with a maximum degree from G with exactly n vertices by adding a path of n ; n 0 vertices connected to one of the w i j 's vertices of G, which are all of degree two. Clearly Irs(G 0 ) Irs(G), since G is a subgraph of shortest paths of G 0 (see FG94c]). Hence, 4: Graph of constraints of the matrix M with n = 8 0 v ertices and with a maximum degree = 3 . for every 3, Irs(n ) Irs(G). Thus by applying Lemma 1, for every (2 q;1 q )-code C, Irs(n ) I(C). Applying Lemma 7, let C b e a ( 2 q;1 q 2)-code for q 2. Therefore, applying Lemma 3, I(M) I(C) 2 q;1 =q. n < 3(q+1)2 q+1 ;2 q+2 ;4(q+1) ) n+4q+5 2 q;1 q 4q(3q+1) ) n + 5 4q(3q + 1 ) + 1 3q + 1 I(C)

0 0 1 1 0 1 v 1 1 0 0 1 1 0 v 2 0 1 1 0 0 1 v 3 1 0 0 1 0 0 v 4 0 1 1 0 1 0 v 5 Figure
By assumption, n 3q2 q ; 2 q+1 ; 4q 2 q , for q 3 and n 44. Therefore log 2 n q and nally,

Irs(n ) n + 5 4 log 2 n(3 log 2 n + 1 ) + 1 3 l o g 2 n + 1 2 (n=(log n) 2 )
The same techniques as in section 4 can be used to improve the general upper bound for n (k), the number of vertices of the smallest graph G with maximum degree for which Irs(G ) k.

We w ould have to compute min p q jV (G)j such that I(C) k and such that G is a graph of constraints of (p q)-code C with maximum degree .

Conclusion

From a local memory requirement point of view, we h a ve seen that for a graph G of n vertices, the minimum number of intervals required to perform shortest path interval routing on G, Irs(G), is an important parameter to consider, since at least one router of G needs to store (Irs(G) l o g n) bits of information. By proving upper bounds on n(k), the smallest number of vertices of a graph of compactness greater than k, w e showed that there exist a worst case graph that requires a router to have ( n log n) bits of local memory. Therefore, interval routing schemes are not better than routing tables in the general case of unbounded degree graphs. However for bounded maximum degree graphs, our worst case still uses only (n= log n) b i t s l o c a l l y , compared to O(n) b i t s f o r routing tables. It would be interesting to determine whether or not there is a graph G of n vertices and of maximum degree such that Irs(G ) 2 (n= log n). If no such graph exists, then the class of bounded degree graphs is a large class of graphs for which i n terval routing schemes are better than tables.

A Compactness of Hadamard codes

The lower bound on Irs(n) is based on the lower bound on I(C ), where C is de ned in the proof of Lemma 4. We showed in Lemma 4 that I(C ) 2 . W e n o w show, by p r o ving an upper bound on I(C ), that the lower bound on Irs(n) cannot be improved using this code.

Theorem 3 For any 1, I(C ) = 2 .

Proof. Since we already know that I(C ) 2 , w e prove b y induction on that there is a matrix M of the (2 +2 2 +1 2 )-code C such that I(M ) = 2 . As our base case, we use the matrix M 1 that is the same matrix as in the proof of Lemma 4. A sequence of matrices M , 1, is obtained as follows. Given M , 1, partition the rows of M in blocks of four consecutive r o ws starting with the top of the code, and number these groups in order, starting at 0. We s a y that a block is even (or odd) if its label is even (or odd respectively). We obtain matrix M +1 from matrix M with the following three steps:

1. (Shu e step) In each b l o c k of four vectors, exchange the position of the two middle rows.

This step groups together the rows that are complements. For example, using the matrix M 1 above, the shu e step yields the following matrix: 2 6 6 6 6 6 6 6 6 6 6 6 6 4 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 3 7 7 7 7 7 7 7 7 7 7 7 7 5 2. (Doubling step) Replace every row ( A) o f M with the row ( AA). For example, replace the row (0011) above with (00110011).

3. (Extend step) After the doubling step, groups of two consecutive r o ws consist of a binary vector (AA) and its complement ( AA). Now, insert row ( AA) after row ( AA), and insert row (AA) after row ( AA). For example, the block o f t wo r o ws " 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 # becomes the following block o f f o u r r o ws: 2 6 6 6 4 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 It is easy to show b y induction that for every 1, M has the property that rows 1 and 3 and rows 2 and 4 of every group of four rows are the complement o f e a c h other. It is also easy to see that the matrix M +1 thus obtained is the same as the one of Lemma 4, with its rows permuted i.e., M +1 2 C +1 . W e are therefore only left with proving that I(M ) = 2 . We n o w consider how the procedure above transforms a given column of M (note that the doubling step has no e ect here). Without loss of generality, consider only one of the 2 leftmost columns of the matrix. We assume, as our inductive h ypothesis, that the columns of M satisfy the following two properties:

1. In every column, the even groups of four bits have the pattern (0011) or (1100). in every column, the odd groups have the pattern (0110) or (1001).

2. Every column has exactly 2 blocks of consecutive 1's (cyclically).

These properties can easily be seen to hold for matrix M 1 . W e h a ve already seen that after the shu ing step, the bits of every block o f t wo bits (rows 2i and 2i+1) in a column (of M , n o w being transformed) di er. Therefore, after the extend step of the construction, the blocks of four bits in a column of M +1 (obtained from the blocks of two bits after the shu ing step) with an even label will have the patterns (0011) (from (01)) or (1100) (from (10)) since for these we only insert a copy of each bit. For the blocks of four with an odd label, the extend step of our construction inserts after each bit the complement of that bit. We therefore obtain the patterns (0110) (from (01)) or (1001) (from (10)). Property 1 therefore holds for M +1 .

We can now prove that property 2 a b o ve holds for M +1 . W e rst show that the shu e step adds 2 ;1 to the total number of intervals of each column, and then we show that the extend step also adds 2 ;1 to the total number of intervals of each column. Each column of the matrix M +1 therefore has 2 ;1 + 2 ;1 + 2 (inductive h ypothesis) = 2 +1 intervals. Suppose again, without loss of generality, that we consider one of the 2 leftmost columns of In each case, exactly one interval gets added to the column since the boundaries of every block remain unchanged. The shu e step therefore adds exactly 2 +2 =8 = 2 ;1 intervals to each column in total. Now, re-partition the column obtained from the shu e step into blocks of eight b i t s s u c h that the rst four bits of each block correspond to an odd block of four. We obtain the following four patterns:

A. ( 0110 Each o f A 0 , B 0 , C 0 and D 0 has the same boundaries as A, B, C and D respectively, and since each has one interval more than its counterpart, we can conclude that the extend step together add 2 +3 =16 = 2 ;1 new intervals to each column. The results extend to the last 2 columns of M by changing the partitions. Therefore, property 2 holds for M +1 , which conclude the proof.

B Compactness of codes and graphs

Proposition 1 There exists a graph G such that Irs(G) > I(C) for every code of constraints C of G.

Proof. Consider the graph G of 7 vertices drawn in Figure 1. We h a ve to construct all the codes of constraints of G and check that each code has a compactness of at most 1. In fact it is enough to check f o r ( p q)-codes with p 4 a n d q 3 since it is easy to see that any smaller code has a compactness of at most 1. Furthermore, we only need to check f o r p 6 because, we assumed that any arc (u v) is not a constraint for the vertex u. Therefore the number of rows p of any c o d e o f constraint o f G is at most 6. We leave it to the reader to check that every (p q)-code of constraints C of G with 4 p 6 and 3 q has a compactness of at most one, i.e. I(C) 1.

We n o w p r o ve that Irs(G) = 2 . Assume that there exists a shortest path interval routing scheme on G, R = ( L I), with Irs(R) = 1 . To simplify the presentation of the proof, we set x = L(x), for x 2 f a b c d e f g g. Also, if X and Y are two subsets of vertices of G, w e s a y that X < Y if for every (x y) 2 X Y , x < y . Since vertices b and c are isomorphic, assume without loss of generality that b < c . The order d < b < a < c (circular order modulo 7) is impossible because the interval assigned to arc (g d), I (g d) , m ust contain d and a but neither b nor c. T h us we h a ve fa dg < b < c . Arcs (d a) and (d g) establish the condition fe f gg < fa b cg. Therefore fa e f g dg < b < c . I g f must contain f and c but neither d nor b, t h us f < d < b < c . Moreover I g e must contain e and b but neither d nor c, t h us d < e < b < c . And nally we h a ve f < d < e < b < c . N o w w e m ust have f < fd gg < e < b < c , since I a d must contain d and g but neither f nor e nor b nor c. Similarly we m ust have f < fa d gg < e < b < c , because I g d must contain d and a but neither f nor e nor b nor c. But this last condition is incompatible with the condition fe f gg < fa b cg. This contradiction shows that Irs(G) > 1. Figure 1 gives a shortest path interval routing scheme R with Irs(R) = 2, and therefore Irs(G) = 2 .

C Smallest graphs of compactness 2

In this appendix we prove that the minimum graph of compactness 2 has 7 vertices, i.e. n(2) = 7.

For this, we use the list of all graphs of order less than 7, which can be found in Har69]. The following lemmas will reduce the number of cases to consider. In the following, all graphs are described as symmetric digraphs.

Lemma 8 Let G be a 1-vertex-connected g r aph. The compactness of G is the maximum of the compactness overall subgraph of G composed of one 2-vertex-connected c omponent of G and of its neighbor cutvertices in G. We n o w p r o ve that Irs(G) k. The proof is constructive: 1) decompose G in 2-components,

2) successively merge these 2-components and their shortest path interval routing scheme to obtain an shortest path interval routing scheme on G. Phase 2) merge two 2-components at the rst step. It results a subgraph of G that is no more a 2-component o f G. In fact, in the remaining merging, we merge subgraphs that are non 2-component o f G but that have a cutvertex in common. Let us show h o w to do a merging in general.

Since G is a 1-vertex-connected graph, there exists a cutvertex x of G and we can decomposed G in two subgraphs, A = ( V A E A ) a n d B = ( V B E B ), such that V A V B = V and V A \ V B = fxg. We assume by induction that A and B are of compactness at most k, and we will prove that Irs(G) k.

Let n A = jV A j and n B = jV B j. Let R A = ( I A L A ) a n d R B = ( I B L B ) b e t wo shortest path interval routing schemes on graphs A and B respectively, s u c h that L A (x) = n A and L B (x) = 1 . Conditions L A (x) = n A and L B (x) = 1 are not restrictive, since clearly every circular permutation composed with the labeling function de nes an interval routing scheme with same compactness and isomorphic set of routing paths.

We de ne a shortest interval routing scheme R = ( L I) o n G as follows: L(v) = L A (v) for all vertices v of graph A, and L(w) = L B (w) + n A ; 1, for all vertices w 6 = x of graph B. W e shift also any single interval a b] 2 I B to get a new set I 0 B of intervals of the form a + n A ; 1 b + n A ; 1]. We extend sets I A and I 0 B to obtain a set of intervals I for G as follows : for any s i n g l e i n terval I = a b] o f I A or of I 0 B containing the integer n A , let I 0 = I n A n A + n B ; 1]. I 0 is composed of only one interval since all its elements are consecutive. We nally set I as the union of extended intervals sets of I A and I 0 B . It is easy to see that the shortest path de ned by R between two vertices of the same subgraphs A or B are the same as in R A or R B , and any shortest path between a v ertex u of A and a vertex w of B, m ust travel the cutvertex x, which belongs to set of vertices of A and of B.

The compactness of R is less than maxfIrs(A) Irs(B)g, therefore Irs(G) = k.

The following lemma will be useful to check quickly if a graph with many edges has compactness 1.

Lemma 9 Let G be a c onnected g r aph of n vertices having d vertices of degree n ; 1. L et m be the number of edge-connected c omponents having at least two vertices in the complement graph of G. If d (n ; m)=2 then the compactness of G is 1.

Proof. Let G be a connected graph of n vertices. Assume that G has d vertices of degree n;1. Let G denote the complement graph of G. G is composed of m connected components A 1 : : : A m of order at least two a n d o f d single vertices. Assume that d (n ; m)=2. Without loss of generality, we assume that m 1, since otherwise G is simply the complete graph. For each connected component A i , i 2 f 1 : : : m g, w e root a spanning tree T i at any v ertex of A i . L e t n i denote the number of vertices of A i .

We n o w construct a shortest path interval routing scheme R = ( L I) o n G. F or i 2 f 1 : : : m g and for every vertex x of A i , w e s e t L(x) = 2 j ; 1 + P i;1 k=1 n k in a depth rst search s c heme according to T i , for all j 2 f 1 : : : n i g. Since n ; d 2m, m 1 a n d d (n ; m)=2, then d n ; d ; m 1, and thus we can label n ; d ; m of the d single vertices y of G with L(y) = 2 j, for all j 2 f 1 : : : n ; d ; mg. F or the other single vertices y 0 of G, if they exist, we set L(y 0 ) = k, for all k 2 f 2(n ; d ; m) + 2 : : : n g. The set I is de ned as follows:

i. For the d vertices x of G of degree n ; 1, we a s s i g n I (x y) = L(y)] for the n ; 1 v ertices y's connected to x. ii. For vertices of G with a degree strictly lower than n ; 1, we assign intervals as follows: let i 2 f 1 : : : m g and x be a vertex of A i . For every arc (x y) o f G, w e assign the interval I (x y) = L(y) ; 1 L(y)] if x and y are not adjacent i n G, a n d I (x y) = L(y)] otherwise.

Hence all vertices of G are labeled and the compactness of R is 1.

To prove that R is connected and de ne a shortest path routing scheme, consider any t wo vertices x and y of G. Since n > d 1, i.e. G has at least one vertex of degree n ; 1 a n d G 6 = K n , t h e n G has diameter 2. Hence either x and y are adjacent or there is a third vertex z of G such that z is connected to both x and y. I f x and y are adjacent, then we h a ve L(y) 2 I (x y) in both cases (i) and (ii), and by symmetry L(x) 2 I (y x) . Otherwise x and y are not adjacent i n G and thus, there exists an i 2 f 1 : : : m g such that x and y together belong to A i . Therefore L(y) 2 I (x y) = L(z) = L(y) ; 1 L(y)], by (ii) since neither x nor y are of degree n ; 1. And by symmetry we also get that L(x) 2 I (y x) . W e h a ve t h us proved thus that all paths built by R are shortest paths.

Theorem 4 n(2) = 7.

Proof. We h a ve already showed that n(2) 7 (Figure 1 and refer to Proposition 1). Moreover n(2) 5 since n(k) 2k + 1 f o r a n y k 2. We w i l l c heck f o r e v ery graphs of 5 and 6 vertices that they admit a shortest path interval routing scheme of compactness 1. Since outerplanar graphs have a compactness of 1 FJ88], we need not check them. Since any connected graph of 4 vertices or less has a compactness of 1, then, applying Lemma 8 and Lemma 9, only 2 graphs of 5 vertices must be checked: K 2 3 and the graph composed of a cycle of 4 vertices with K 1 3 connected by its three vertices. Referring to the representation of these graphs pages 217 of Har69], a circular labeling and a straightforward assignment o f i n tervals give a shortest path interval routing scheme of compactness 1. Hence n(2) 6. Similarly, since every connected graph of 5 vertices has a compactness of 1, then, applying Lemma 8 and Lemma 9, only 43 graphs of 6 vertices, on pages 220{224 of Har69], must be checked. A circular labeling and a straightforward assignment o f intervals give a shortest path interval routing scheme of compactness 1 for all these graphs, except for the one, composed of a cycle of 4 vertices and a path of length 3 connecting two non adjacent vertices. For this graph, we can label the vertices (1 2 6 5 4 3) given the circular representation of this graph on page 220 Har69]. Therefore n(2) 7.
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 1 Figure 1: A graph G and an interval routing scheme for G.

  Consider vertex b in the graph G drawn on the left hand side of Figure 1. Note rst that the shortest path from vertex b to vertices a c d e and g is unique. The shortest path from b to a c and d must use arc (b a), and the shortest path from b to e and g must use arc (b e). There is a shortest path from b to f that uses arc (b a), and another that uses arc (b e). Either path may b e used, and this choice depends on the routing scheme.
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 3 Figure 3: A code of constraints C for a graph G with Irs(G) = I(C) = 2 .

  b 1 ) (a 2 b 2 ) (a 3 b 3 ) (a 4 b 4 ) (a 5 b 5 ) (a 6 b 6 )

M

  . P artition the column in blocks of eight bits, starting from the top. The rst four bits of each block corresponds to an even block of four. By property 1, there are only four possible patterns for the blocks of eight bits: a. (0011 0110) b. (0011 1001) c. (1100 0110) d. (1100 1001) After the shu e step, each of the four patterns gets transformed to:

  step, these patterns get transformed to the following (e.g. pattern A gets transformed to pattern A 0 ): A'. (0110 1100 0110 0011) B'. (1001 0011 0110 0011) C'. (0110 1100 1001 1100) D'. (1001 0011 1001 1100)

  Proof. Let G = ( V E) b e a 1 -v ertex-connected graph. A subgraph of G composed of one 2-vertexconnected component o f G and of its neighbor cutvertices in G, i s d e n o t e d a 2-component of G. Let A be a 2-component o f G. Clearly A is a subgraph of shortest paths FG94c] o f G, i.e. a subgraph that contains all the shortest paths between any p a i r o f v ertices of A. L e t k = m a x S Irs(S), for any 2-component S of G. Therefore, applying Theorem 2 of FG94c], we get that Irs(G) k Irs(A).

Table 2 :

 2 Upper bound on n(k) for small values of k.

	2 2 3 4 3 2 5 11 4 2 5 16 5 2 6 25 6 2 6 31 7 4 10 31 8 4 10 36 9 6 14 38 10 6 14 43 11 6 14 47	10 21 26 37 43 51 56 66 71 75	k d q p Upper Bound n(k) 12 6 14 52 80 13 6 14 57 85 14 6 14 61 89 15 8 18 64 100 16 6 15 76 106 17 6 15 81 111 18 6 15 86 116 19 6 15 91 121 20 6 15 96 126 21 6 15 101 131

To a void a confusion with intervals, we denote ha bi the edge connecting vertices a and b.
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