
HAL Id: hal-02101799
https://hal-lara.archives-ouvertes.fr/hal-02101799

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of automatic parallelization strategies for
HPF compilers

Pierre Boulet, Thomas Brandes

To cite this version:
Pierre Boulet, Thomas Brandes. Evaluation of automatic parallelization strategies for HPF compilers.
[Research Report] LIP RR-1995-44, Laboratoire de l’informatique du parallélisme. 1995, 2+13p. �hal-
02101799�

https://hal-lara.archives-ouvertes.fr/hal-02101799
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Evaluation of Automatic

Parallelization

Strategies for HPF Compilers

Pierre Boulet

Thomas Brandes
November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Evaluation of Automatic Parallelization

Strategies for HPF Compilers

Pierre Boulet

Thomas Brandes

November ����

Abstract

In the data parallel programming style the user usually speci�es the data parallelism
explicitly so that the compiler can generate e�cient code without enhanced analysis
techniques�

In some situations it is not possible to specify the parallelism explicitly or this might
be not very convenient� This is especially true for loop nests with data dependences
between the data of distributed dimensions�

In the case of uniform loop nests there are scheduling� mapping and partitioning tech�
niques available� Some di�erent strategies have been considered and evaluated with
existing High Performance Fortran compilation systems�

This paper gives some experimental results about the performance and the bene�ts of
the di�erent techniques and optimizations� The results are intended to direct the future
development of data parallel compilers�

Keywords� data parallelism� High Performance Fortran� loop nests� automatic parallelization�
compilation� optimization

R�esum�e

Dans le style de programmation data�parall�ele� l�utilisateur sp�eci�e habituellement le
data�parall�elisme explicitement de fa	con �a permettre au compilateur de g�en�erer du code
e�cace sans techniques d�analyse avanc�ees�

Dans certaines situations� il n�est pas possible de sp�eci�er le parall�elisme explicitement
ou ce n�est pas tr�es pratique� C�est particuli�erement vrai dans le cas des nids de boucles
avec des d�ependances entre les donn�ees des dimensions r�eparties�

Dans le cas des nids de boucles uniformes� des techniques d�ordonnancement� d�alloca�
tion et de partitionnement sont disponibles� Des strat�egies di��erentes ont �et�e consid�er�ees
et �evalu�ees avec des syst�emes de compilation d�High Performance Fortran existants�

Ce rapport donne des r�esultats exp�erimentaux de performance et quanti�e les b�en�e�ces
apport�es par les di��erentes techniques et optimisations� Ces r�esultats ont pour but
d�orienter le d�eveloppement futur des compilateurs data�parall�eles�

Mots�cl�es� data�parall�elisme� High Performance Fortran� nids de boucles parall�elisation automa�
tique� compilation� optimisation

Evaluation of Automatic Parallelization

Strategies for HPF Compilers

Pierre Boulet Thomas Brandes

LIP� ENS Lyon �y SCAI� GMD z

Pierre�Boulet�lip�ens�lyon�fr Thomas�Brandes�gmd�de

� Introduction

High Performance Fortran
HPF� is a language de�nition �
��
�� that allows to use the data parallel
programming style as a high level parallel programming model within Fortran applications� The
data parallelism can be speci�ed by array operations� by the FORALL statement and construct� by
new library procedures and through the INDEPENDENT directive�

Nevertheless many applications contain also implicit parallelism that should be detected and
utilized� e�g� some algorithms have inherent� input�independent con�icts between computation and
communication� In the example below both loops within the loop nest have data dependences� and
neither can be speci�ed as a parallel loop�

PARAMETER �N�����

REAL� DIMENSION �N�N� �� A

���

DO I � �� N��

DO J � �� N��

A�I�J� � �A�I�J���	A�I���J�	A�I�J	��	A�I	��J��
����

END DO

END DO

Automatic parallelization of such loop nests has been studied by many people and some tools
for automatic parallelization have been written� SUIF ���� PIPS �
��� the Omega Library �
���
LooPo ��� and PAF �
�� among others�

Research compilers for data parallel Fortran applications have been developed in the Superb
�
��� Kali �
��� Fortran ��D �

�� ADAPT �
��� and in the Fortran ��D�HPF ��� projects� The
�rst available commercial HPF compilers were the xHPF compiler from Applied Parallel Research
�
�� the pghpf compiler from the Portland Group �
�� and the DEC Fortran �� compiler� Other
compilers have been announced or are now available� Though some of these compilers are able to
identify parallel loops� none of them is currently dealing with the hyperplane method for loop nest
parallelization�

�Laboratoire de l�Informatique du Parall�elisme� CNRS URA ����� Ecole Normale Sup�erieure de Lyon� ��� All�ee

d�Italie� ����� Lyon Cedex 	
� France
ySupported by the ReMaP project jointly operated by CNRS and INRIA
zInstitute for Algorithms and Scienti�c Computing� German National Research Center for Information Technology�

Schloss Birlinghoven� P�O� Box �����
�

� St� Augustin� Germany

For this evaluation the Bouclettes parallelizer ��� and the ADAPTOR compilation system ���
have been coupled with each other in such a way that Bouclettes can generate HPF codes that
could be compiled e�ciently with the ADAPTOR tool� While ADAPTOR uses most advanced
optimization techniques� the particularities of Bouclettes in regards of the other tools are the
employed methodologies and the output language�

� Description of the Tools

��� Overview of the Bouclettes System

The Bouclettes loop parallelizer applies to perfectly nested loops where the loop bounds are a�ne
functions of the surrounding loop indices and of some parameters� All arrays must be fully dimen�
sional and data access functions must be translations�

After the parallelization� the loop nest is rewritten as an outermost sequential loop and inner
parallel loops� Furthermore� some HPF directives are included in the �nal code to specify the array
distribution and alignment�

The Bouclettes system is organized as a succession of stages�

� The input program is analyzed and translated into an internal representation�

�� Then the data dependences are analyzed by a simple custom dependence analyzer to get the
exact data dependences�

�� From there� a schedule is computed� It is a function that associates a time of execution to
each instance
iteration� of a statement� The user has the choice between two scheduling
functions�

the linear schedule is a linear function that associates a time t to an iteration point �i

�i �
i� j� k� if the loop nest is three dimensional� as follows�

t �

�
p

q
���i

�

where p� q are integers and � is a vector of integers of dimension the depth d of the loop
nest with all components prime with each other�

the shifted linear schedule is an extension of the linear schedule where each statement of
the loop nest body has its own scheduling function� All these functions share the same
linear part and some
possibly di�erent� shifting constant are added for each statement�
The time t for statement k is computed as follows�

t �

�
p

q
���i �

ck

q

�

where p� q� ck are whole numbers and � is a vector of whole numbers of dimension d with
all components prime with each other�

The computation of these schedules is done by techniques which guarantee that the result is
optimal in the considered class of schedules� Here �optimal� means that the total latency is
minimized�

�

�� The data arrays are then mapped in a compatible way with the schedule� Based on the
computation of the so called �communication graph�� a structure that represents all the
communications that can occur in the given loop nest� a projection M and some shifting
constants are computed� The base idea is to project the arrays
and the computations� on a
virtual processor grid of dimension d�
� Then� the arrays and the computations are aligned

by the shifting constants� to suppress some computations�

�� Finally� the HPF code with explicit parallel loops and a data distribution is generated follow�
ing the previously computed transformation�

Many problems appear here� In all the cases� the code generation involves rewriting the
loop nest according to a unimodular transformation� This rewriting technique is described
in ��� and involves calls to the PIP ���
Parallel Integer Programming� software� A complete
description of the rewriting process can be found in ����

The code generation basically produces a sequential loop� representing the iteration over the
time given by the schedule surrounding d�
 parallel
INDEPENDENT� loops scanning the active
processors� The arrays are distributed and aligned by HPF directives to respect the mapping
previously computed�

Some complications are induced in many cases�

the owner computes rule� when the mapping does not satisfy to this rule� some temporary
arrays are used to simulate it�

the projection direction� the expressivity of the DISTRIBUTE HPF directive is restricted to
projections along axes of the iteration domain� When the mapping projects the data in
an other direction� the data are redistributed� This redistribution is done by copying the
arrays in new temporary arrays �which are projected along one axis of the domain��
computing the loop nest with these new arrays and �nally copying back the results into
the original arrays�

the rationals and time shifting constants� these parameters complicate a lot the gener�
ated code� and we would need some control parallelism to fully express the parallelism
obtained by this kind of schedule�

the a�ne array access functions� a noticeable thing is that the redistribution imple�
mented in the case of non axis parallel projections induces a nearly inverse transfor�
mation on array access functions� They are then translations� So it is easier to optimize
the produced code� In the following study� we will compare the redistributed programs
and the non redistributed ones�

di�erent output� Bouclettes can generate its output in di�erent HPF subsets� The one
that respects the most the theoretical transformations uses INDEPENDENT directives to
tag the parallel loops� Bouclettes can also generate real world HPF with FORALL parallel
loops� This kind of HPF code indicates less parallelism but is compilable by current
HPF compilers� Furthermore� the best data distribution would distribute the arrays in
a BLOCK�CYCLIC manner� Bouclettes can generate any data distribution and as ADAP�
TOR only implements BLOCK distributions in its current release� we will only consider
BLOCK distributions in the following�

�

��� Overview of the ADAPTOR System

ADAPTOR
Automatic Data Parallelism Translator� is a system developed at GMD for compiling
data parallel programs to equivalent message passing programs� The system supports most features
of the data parallel languages that are used in the context of Fortran� Connection Machine Fortran

CMF� and High Performance Fortran
HPF� ����

ADAPTOR allows the use of the data parallel programming model for MIMD machines already
for over two years while commercial HPF compilers are just coming up� During the development
of the system� more attention has been paid to the reliability of the system and to the correctness
and e�ciency of the generated programs than to language completeness�

ADAPTOR has been made available as public domain software� The comments of many users
helped to improve the functionality and stability of the translation tool�

Data

Partitioning

Translation

ADAPTORData Parallel

SPMD

Program

Program

SPMD

Program

SPMDProgram

B
B

A
BA AAB

X Y
YX X Y X Y

Figure
� MIMD partitioning with ADAPTOR

By means of a source�to�source transformation� ADAPTOR translates the data parallel program
to an equivalent SPMD program
single program� multiple data� that runs on all available nodes�
The essential idea of the translation is to distribute the arrays of the source program onto the node
processors where the parallel loops and array operations are restricted to the local part owned by
the processor
see Figure
�� Communication statements for exchanging non local data is generated
automatically� The control �ow and statements with scalar code are replicated on all nodes�

With the latest ADAPTOR release
��
� a lot of optimizations have been implemented�
Regarding the target language of the generated SPMD program� ADAPTOR is very �exible� It

can not only generate Fortran �� or Fortran �� programs with message passing� but also Fortran ��
with some additional features
e�g� dynamic arrays� array operations��

Beside the translation system� a runtime system called DALIB
distributed array library� has
been developed that will be linked with the generated message passing program
see Figure ���
It realizes functions for global reductions� transposition� gather and scatter operations� circular
shifting� replication and redistribution of distributed and local arrays� Timing and tracing facilities
as well as a random number generator are also part of this library� As the runtime system is
available on most parallel systems� the generated message passing programs will run on all these
machines�

The evaluation of ADAPTOR for real applications and the development of optimization tech�
niques have been funded by the Esprit project PPPE
Portable Parallel Programming Environ�
ment��

�

Data Parallel Program

(High Performance or CM Fortran)

fadapt

SPMD (message passing) Program

(FORTRAN 77 + DALIB calls) compile, link Executable*
Parallel

ADAPTOR

System
DALIB

Figure �� Overview of the ADAPTOR tool

� Results

In this section it will be presented which e�ciency can be achieved with current compiler technology�
All results are measured on an IBM SP � with thin nodes� AIX version ���� PGHPF compiler
version
��� ADAPTOR version ��
� and the XL Fortran compiler version ����

We will present two examples� the Gauss�Seidel relaxation and a non�real world example we
have called �Mtest��

��� Gauss�Seidel Relaxation

����� The Serial Code

Here is the serial code that was used here�

PARAMETER �N�����

REAL� DIMENSION �N�N� �� A

���

DO I � �� N��

DO J � �� N��

A�I�J� � �A�I�J���	A�I���J�	A�I�J	��	A�I	��J��
����

END DO

END DO

Starting with this serial code� the PGI HPF compiler and the ADAPTOR system were not able
to detect any parallelism� Both compilers generate SPMD code like the following one�

DO J � �� N��

DO I � �� N��

c get local copies of non�local values A�I�J��� and A�I�J	��

IF �HAVE I A�I�J�� then

A�I�J� � �A�I�J���	A�I���J�	A�I�J	��	A�I	��J��
����

END IF

END DO

END DO

While the Portland compiler broadcasts the non�local values� the ADAPTOR compiler will
exchange the values between neighbor processors but with more overhead to compute ownerships

see table
��

The dramatical overhead caused by the sending�receiving of single non�local values and �xing
the ownerships dominates the computation in the program completely�

�

N � ���
 node � nodes � nodes � nodes

PGI HPF ��� s ��� s ��� s ��� s
ADAPTOR ��� s ��� s ��� s ��� s

Table
� Results of the serial code

����� The Bouclettes Generated Code

For the given loop nest the Bouclettes system generates the following code�

PARAMETER �N�����

REAL� DIMENSION �N�N� �� A

HPF� DISTRIBUTE A�
�BLOCK�

���

DO T � �� �
N��

FORALL �J�MAX���T�N	���MIN�N���T����

� A�T�J�J� � �A�T�J�J���	A�T�J���J�	A�T�J�J	��	A�T�J	��J��
����

END DO

The PGI HPF compiler was not able to take advantage of the data parallelism in the FORALL

loop and therefore the SPMD code is still using serial loops with nearly the same execution times
as before� The ADAPTOR system takes advantage of the parallelism within the FORALL statement�
Table � shows the results�

ADAPTOR
 node � nodes � nodes � nodes

N � ��� ���� s ��
� s ��
� s ��
� s
N � �
� ��

 s ���� s ���� s ���� s
N �
��� ���� s
��� s
��� s
��� s
N � ���� ���� s ���� s ���� s ���� s
N � ����
���� s ����� s
���� s
���� s

Table �� Results for the code generated by Bouclettes

The a�ne array access functions in the generated code have the e�ect that the HPF compiler
cannot optimize the code and exchanges more data in each time step�

����� Bouclettes Generated Code with Redistributions

By a redistribution that is also generated by the Bouclettes tool� it can be guaranteed that the
array access functions become translations� In this case the HPF compilers can optimize the
communication�

PARAMETER �N�����

REAL� DIMENSION �N�N� �� A

REAL� DIMENSION �N����
N� �� A�

HPF� DISTRIBUTE A��
�BLOCK�

���

FORALL �I���N�J���N� A��I�I	J� � A�I�J�

���

DO T � �� �
N��

FORALL ���MAX���T�N	���MIN�N���T����

�

� A��I�T� � �A��I�T���	A��I���T���	A��I�T	��	A��I	��T	���
����

END DO

���

FORALL �I���N�J���N� A�I�J� � A��I�I	J�

With the ADAPTOR system� the parallel execution of the loop nest on the redistributed array
gives the results shown in table �� If compared to the results without the redistribution� there is
now a rather good scalability� Also the PGI HPF compiler now generates e�cient code by taking
advantage of the data parallelism in the loop and by using e�cient communication�

ADAPTOR
 node � nodes � nodes � nodes

N � ��� ���� s ��

 s ��
� s ��
� s
N � �
� ��
� s ���� s ���� s ���� s
N �
��� ���
 s ���� s ���� s ���� s
N � ���� ���� s ���
 s
��� s
��� s
N � ���� mem ���� s ���
 s ���� s

Table �� Results for the code with redistributed array

Nevertheless� the redistribution itself and additional memory for the new array has also to be
taken into account� The PGI HPF compiler has serialized the whole redistribution and the total
execution times are like the serial ones� With ADAPTOR the redistribution is parallelized and
does not dominate the computation time� but is still not very e�cient� This is due to the fact that
the a�ne indexes do now appear in the redistribution�

��� Results for Mtest

In this section the advantages of shifted linear schedules will be presented�

����� The Serial Code

For our measurements we used a three�dimensional code
Mtest�� The computation time and the
size of the arrays are of the order O
N���

PARAMETER �N�����

REAL� DIMENSION �N�N�N� �� A� B� C� D

���

DO i � �� n��

DO j � �� n��

DO k � �� n��

a�i�j�k� � �b�i�j���k���	d�i���j	��k	���

b�i	��j���k� � c�i	��j	��k	��

c�i	��j���k��� � a�i�j���k�

d�i�j���k� � a�i�j���k	��

END DO

END DO

END DO

Table � shows the execution times for the serial code
using the XL Fortran compiler��

�

xlf
 node

N � �� ���
 s
N � �� ���� s
N �
�� ���� s
N �
��
��
� s

Table �� Results for the serial code Mtest

����� Linear Schedule with Redistribution

For the given loop nest the Bouclettes system generates the following code
linear schedule�� A
redistribution is necessary in any case because the projection matrix M computed for the mapping
does not correspond to a projection along one axis of the domain�

M �

�

 ��
� �

�
�

This comes from the linear schedule obtained�
�
�
� �
�
� ��

�
��

Here is the code generated by Bouclettes for this schedule�

REAL� DIMENSION ���
n�����
n���n� �� ROT���a� ROT���b

REAL� DIMENSION ���
n�����
n���n� �� ROT���c� ROT���d

HPF� TEMPLATE BCLT���template���
n	�����
n	����n	��

HPF� DISTRIBUTE BCLT���template�
�BLOCK�BLOCK�

HPF� ALIGN ROT���a�i��i��i�� WITH BCLT���template�i�	����i��i�	��

HPF� ALIGN ROT���b�i��i��i�� WITH BCLT���template�i�	���i�	���i�	��

HPF� ALIGN ROT���c�i��i��i�� WITH BCLT���template�i�	���i�	����i�	��

HPF� ALIGN ROT���d�i��i��i�� WITH BCLT���template�i��i�	����i��

���

FORALL �J� � ��n�J� � ��n�J� � ��n�

ROT���a��
n	�
J�	�
J���
J�����
n	J�	J���
J����J�� � a�J��J��J��

ROT���b��
n	�
J�	�
J���
J�����
n	J�	J���
J����J�� � b�J��J��J��

ROT���c��
n	�
J�	�
J���
J�����
n	J�	J���
J����J�� � c�J��J��J��

ROT���d��
n	�
J�	�
J���
J�����
n	J�	J���
J����J�� � d�J��J��J��

END FORALL

DO J� � ��
n	��� �
n���

FORALL �J� � ceiling�max���
n	�J�	��������

� �n	�J�	�������

� ���
n	�
J�	����������

� floor�min��n	J����������

� �J���������

� ��
J������������

� J� � ceiling�max������J�	�������J������

� �n	J���
J�	������

� floor�min�n������n	J���������J������

� J���
J��������

ROT���a��
n	J�����
n	J����J�� �

� ROT���b��
n	J�����
n	J����J����	

� ROT���d��
n	J������
n	J����J�	��

ROT���b��
n	J�����
n	J����J�� �

�

� ROT���c��
n	J�����
n	J����J�	��

ROT���c��
n	J�	����
n	J�	���J���� �

� ROT���a��
n	J�����
n	J����J��

ROT���d��
n	J�����
n	J����J�� �

� ROT���a��
n	J������
n	J�����J�	��

END FORALL

END DO

FORALL �J� � ��n�J� � ��n�J� � ��n�

a�J��J��J�� � ROT���a��
n	�
J�	�
J���
J�����
n	J�	J���
J����J��

b�J��J��J�� � ROT���b��
n	�
J�	�
J���
J�����
n	J�	J���
J����J��

c�J��J��J�� � ROT���c��
n	�
J�	�
J���
J�����
n	J�	J���
J����J��

d�J��J��J�� � ROT���d��
n	�
J�	�
J���
J�����
n	J�	J���
J����J��

END FORALL

ADAPTOR and PGI HPF compiler were not able to take advantage of the data parallelism�
Table � shows the results for a very small problem size
N�����

The following problems could be identi�ed with the generated code�

� The generated code needs very big arrays that need about
�� times
��
�� more memory
than the arrays of the serial version� For this reason the code runs only for very small problem
sizes�

� The redistribution is done very ine�ciently due to the a�ne indexes
e�g� ��J����J����J��
that prevents the compilers from generating e�cient code for the communication�

� In the computational part only the innermost of the two parallel loops is really parallelized�
As the innermost loop index J� depends on the outermost one J�� the iteration space is not
rectangular and the compiler did not generate e�cient code�

� The compiler did not bene�t from overlap areas�

ADAPTOR
 node � nodes � nodes � nodes

copy in
��� s

�� s
��� s

�� s
copy out
��� s

�� s
��
 s

�
 s

computation ��
 s ��� s ��� s ��
 s

total ���� s ���� s ���� s ���� s

PGI HPF
 node � nodes � nodes � nodes

copy in ��� s ��� s ��� s ��� s
copy out ��� s ��� s ��� s ��� s

computation ��� s ��� s ��� s ���� s

total
��� s
��� s ���� s ���
 s

Table �� Results for the code generated by Bouclettes
linear schedule�

If the two�dimensional distribution of the template is changed to a one�dimensional distribution�

HPF� DISTRIBUTE BCLT���template�
�
�BLOCK�

the generated code is more e�cient as now overlap areas are utilized and less communication
is generated�

�

����� Shifted Linear Schedule

This is the code with the linear shifted schedule without redistribution�

HPF� TEMPLATE BCLT���template�n	��n	��n�

HPF� DISTRIBUTE BCLT���template�BLOCK�BLOCK�
�

HPF� ALIGN a�i��i��i�� WITH BCLT���template�i��i�	��i��

HPF� ALIGN b�i��i��i�� WITH BCLT���template�i�	��i��i��

HPF� ALIGN c�i��i��i�� WITH BCLT���template�i�	��i�	��i��

HPF� ALIGN d�i��i��i�� WITH BCLT���template�i��i�	��i��

����

DO NT � �n	�� �n	�

FORALL �KT � max��n	��NT����NT���J� � ��n���J� � ��n���

� a�J��J���KT� � b�J��J�����KT���	d�J����J�	���KT	��

FORALL �KT � max��n	��NT��NT�J� � ��n���J� � ��n���

� b�J�	��J�����KT� � c�J�	��J�	���KT	��

FORALL �KT � max��n	��NT����NT���J� � ��n���J� � ��n���

� c�J�	��J�����KT��� � a�J��J�����KT�

FORALL �KT � max��n	��NT����NT���J� � ��n���J� � ��n���

� d�J��J�����KT� � a�J��J�����KT	��

END DO

DO NT � �n	�� ��

KT � NT��

FORALL �J� � ��n���J� � ��n���

� a�J��J���KT� � b�J��J�����KT���	d�J����J�	���KT	��

KT � NT

FORALL �J� � ��n���J� � ��n���

� b�J�	��J�����KT� � c�J�	��J�	���KT	��

KT � NT��

FORALL �J� � ��n���J� � ��n���

� c�J�	��J�����KT��� � a�J��J�����KT�

KT � NT��

FORALL �J� � ��n���J� � ��n���

� d�J��J�����KT� � a�J��J�����KT	��

END DO

DO NT � ��� �

FORALL �KT � NT���min����NT����J� � ��n���J� � ��n���

� a�J��J���KT� � b�J��J�����KT���	d�J����J�	���KT	��

FORALL �KT � NT�min����NT��J� � ��n���J� � ��n���

� b�J�	��J�����KT� � c�J�	��J�	���KT	��

FORALL �KT � NT���min����NT����J� � ��n���J� � ��n���

� c�J�	��J�����KT��� � a�J��J�����KT�

FORALL �KT � NT���min����NT����J� � ��n���J� � ��n���

� d�J��J�����KT� � a�J��J�����KT	��

END DO

ADAPTOR could generate very e�cient code
see table ��� It also scales very well� The PGI
HPF compiler was not able to generate this e�cient code�

One very nice result is that the code running on one node is faster than the serial counterpart�
This is given by the fact the innermost loops are running over the �rst index and so the cache
is better used
stride
 for array access�� It should be noted that it is nearly pure chance� This
comes form the linear part of the schedule which is
�� ���
� and the alignment matrix which is

M �

�
�
 �

 � �

�
�

�

ADAPTOR
 node � nodes � nodes � nodes

�� ���� s ��
� s ��

 s ��
� s
�� ���� s ���� s ���� s ���� s

�� ���� s ���� s ���� s ���� s

�� ���� s ���� s
�
� s ���� s
��� mem ���� s ���� s
��� s
��� mem mem ���
 s ���� s

PGI HPF
 node � nodes � nodes � nodes

�� ���� s ���� s ���� s ��
� s
�� ���� s ���� s ���� s ���� s

�� �
��� s
���� s
���� s ���
 s

�� ����� s ���
� s ����� s ����� s
��� mem

���� s
����� s ����� s

Table �� Results for the code with shifted linear schedule

In any case� the advantage of the shifted linear schedule is given by the fact that no a�ne
indexes are generated� It is not true in general� But� as the shifted linear schedule is more general
than the linear schedule
when all constants are null� the shifted linear schedule becomes a linear
schedule�� the probability to have a �simple� schedule is larger with the shifted linear schedule�
Indeed� the fastest integer linear part one can have is a vector with one

or �
� and the remaining
components �� And this kind of vector gives a very simple projection matrix which projects along
one axis� thus generating no a�ne indexes and making the redistribution needless�

����	 Code with Shifted Linear Schedule and Redistribution

The generated redistribution reverses only the �rst dimension�

FORALL �J� � ��n�J� � ��n�J� � ��n�

ROT���a�n�J�	��J��J�� � a�J��J��J��

ROT���b�n�J�	��J��J�� � b�J��J��J��

ROT���c�n�J�	��J��J�� � c�J��J��J��

ROT���d�n�J�	��J��J�� � d�J��J��J��

END FORALL

In fact the generated loops make only the task of the compiler more di�cult�

DO NT � �n	�� ��

KT � NT��

FORALL �J� � ��n���J� � ��n���

� ROT���a�n	KT	��J��J�� �

� ROT���b�n	KT	��J����J��	ROT���d�n	KT�J�	��J����

KT � NT

FORALL �J� � ��n���J� � ��n���

� ROT���b�n	KT	��J����J�	�� � ROT���c�n	KT���J�	��J�	��

KT � NT��

FORALL �J� � ��n���J� � ��n���

� ROT���c�n	KT	��J����J�	�� � ROT���a�n	KT	��J����J��

KT � NT��

FORALL �J� � ��n���J� � ��n���

� ROT���d�n	KT	��J����J�� � ROT���a�n	KT���J����J��

END DO

ADAPTOR fails to recognize that it can use overlap areas� Therefore it creates full copies of
the arrays which requires some more copying of data� The computation times are about a factor
of � longer than in the previous case� Also the redistribution itself needs some time�

ADAPTOR
 node � nodes � nodes � nodes

copy in
��� s
��� s ���� s ���� s
copy out
��� s
��� s
��� s ���� s

computation ���� s
��� s
�

 s ���� s

Table �� Shifted linear schedule with redistribution
N�
���

It should be mentioned that the redistribution for this code is much faster than the redistribution
for the code with the linear schedule�

What we can see from this example is that the theoretical superiority of shifted linear schedules
can be veri�ed in practise� But it should be mentioned that there is no general rule here� Indeed�
as the compiler may optimize more one version or the other� the opposite situation may arise on
another example� Though� we believe that shifted linear schedules are often better than linear
ones�

� Conclusions

The results verify the bene�ts of automatic loop parallelization� Current technology allows to take
advantage of this parallelism in HPF compilers�

We have also been able to identify where current HPF compilers have to be improved� The
main problem is to identify the communication between two time steps and to �nd closed formulas
for their computation� Especially the support of a�ne indexes might improve the performance of
Bouclettes generated code dramatically�

Redistributions make the task of the compiler easier but a big overhead is still present and
additional problems arise� e�g� overhead for redistributions� additional memory� Furthermore�
redistributions would be necessary for all aligned arrays� otherwise there will be problems in other
places in the parallel program�

Currently� the implemented methods in Bouclettes are not considering a pipelined execution of
the loops to combine messages of di�erent time steps� Comparison of these methods with pipelined
execution show that this should also be considered for future versions�

References

��� FORGE ��� xHPF ��� Automatic Parallelizer for High Performance Fortran on Distributed Memory
Systems � User�s Guide� Technical report� Applied Parallel Research� Inc�� April ���	�

�
� P� Boulet� The bouclettes loops parallelizer� Research Report ������ Laboratoire de l�informatique du
parall
elisme�
Ecole Normale Sup
erieure de Lyon� France� Nov �����

�	� P� Boulet and M� Dion� Code generation in bouclettes� Research report� Laboratoire de l�informatique
du parall
elisme�
Ecole Normale Sup
erieure de Lyon� France� Nov �����

��� Z� Bozkus� A� Choudhary� G� Fox� T� Haupt� and S� Ranka� Fortran ��D�HPF Compiler for Distributed
Memory MIMD Computers� Design� Implementation� and Performance Results� Technical Report�
Syracuse Center for Computational Science� April ���	�

�

��� Th� Brandes and F� Zimmermann� ADAPTOR � A Transformation Tool for HPF Programs� In K�M�
Decker and R�M� Rehmann� editors� Programming Environments for Massively Parallel Distributed

Systems� pages ������ Birkh�auser� April �����

��� Jean�Fran�cois Collard� Paul Feautrier� and Tanguy Risset� Construction of do loops from systems of
a�ne constraints� Parallel Processing Letters� ����� to appear�

��� Paul Feautrier and Nadia Tawbi� R
esolution de syst�emes d�in
equations lin
eaires� mode d�emploi du
logiciel PIP� Technical Report ���
� Institut Blaise Pascal� Laboratoire MASI �Paris�� January �����

��� Stanford Compiler Group� Suif compiler system� World Wide Web document� URL�
http���suif�stanford�edu�suif�suif�html�

��� The group of Pr� Lengauer� The loopo project� World Wide Web document� URL�
http���brahms�fmi�uni�passau�de�cl�loopo�index�html�

���� High Perforamnce Fortran Forum� High Performance Fortran Language Speci�cation� Final Version
���� Department of Computer Science� Rice University� May ���	�

���� S� Hiranandani� K� Kennedy� and C��W� Tseng� Evaluating Compiler Optimizations for Fortran D�
Journal of Parallel and Distributed Computing�
��
����� April �����

��
� C� Koelbel� D� Loveman� R� Schreiber� G� Steele� and M� Zosel� The High Performance Fortran Hand�

book� The MIT Press� Cambridge� MA� �����

��	� C� Koelbel and P� Mehrotra� Compiling global name�space parallel loops for distributed execution�
IEEE Transactions on Parallel and Distributed Systems� October �����

���� J� Merlin� ADAPTing Fortran �� Array Programs for Distributed Memory Architectures� In Proc� �st

International Conference of the Austrian Center for Parallel Computation� Salzburg� October �����

���� PGHPF� Reference Manual� User�s Guide� Technical report� The Portland Group� Inc�� November �����

���� William Pugh and the Omega Team� The omega project� World Wide Web document� URL�
http���www�cs�umd�edu�projects�omega�index�html�

���� PIPS Team� Pips �interprocedural parallelizer for scienti�c programs�� World Wide Web document�
URL�
http���www�cri�ensmp�fr��pips�index�html�

���� PRiSM SCPDP Team� Systematic construction of parallel and distributed programs� World Wide Web
document� URL�
http���www�prism�uvsq�fr�english�parallel�paf�autom us�html�

���� H� Zima� H� Bast� and M� Gerndt� Superb� A Tool for Semi�Automatic SIMD�MIMD Parallelizatin�
Parallel Computing� January �����

�

