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Rigid mixin modules
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Abstract

Mixin modules are a notion of modules that allows cross-module recursion and
late binding, two features missing in ML-style modules. They have been well
defined in a call-by-name setting, but in a call-by-value setting, they tend to
conflict with the usual static restrictions on recursive definitions. Moreover, the
semantics of instantiation has to specify an order of evaluation, which involves
a difficult design choice. Previous proposals [12, 14] rely on the dependencies
between components to compute a valid order of evaluation. In such systems,
mixin module types must carry some information about the dependencies be-
tween their components, which makes them rather impractical. In this paper,
we propose a new design for mixin modules in a call-by-value setting, which
avoids this problem. The formalism we obtain is much simpler than previous
notions of mixin modules, although slightly less powerful.

Keywords: Programming languages, semantics, typing, modularity, mixin
modules.

Résumé

Les modules mixins sont une notion de modules qui permet la récursion entre
modules et la liaison tardive, deux traits manquant aux modules de ML. Néan-
moins, leur définition est plus aisée en appel par nom. Dans un contexte d’appel
par valeur, elle pose des problémes de définitions récursives illégales et d’ordre
d’évaluation au moment de l'instantiation. Des travaux précédents ont proposé
de s’appuyer sur les dépendances entre définitions pour calculer un ordre d’éva-
luation valide. Dans ces systémes, les types de modules mixins doivent contenir
de l'information sur les dépendances entre leurs composantes, ce qui les rend
inadaptés. Dans ce papier, nous proposons une nouvelle définition des modules
mixins en appel par valeur, qui évite ce probléme. Le formalisme obtenu est
beaucoup plus simple, bien que 1égérement moins puissant.

Mots-clés: Langages de programmation, sémantique, typage, modularité,
modules mixins.



1 Introduction

1.1 The problem

Modern languages provide a collection of features dedicated to modularity, called
module systems, which offer powerful abstractions and static verifications, lead-
ing to fewer errors, while still allowing the construction of rich libraries of mod-
ules. The ML module system [18, 19, 10, 15], remains one of the most expressive.
Nevertheless, this system is weak on at least two important points.

(Mutual recursion) Mutually recursive definitions cannot be split across sepa-
rate modules, which hinders modularization in several cases [8, 6].

(Modifiability) Once a module is defined, the language does not propose any
mechanism for modifying it. Instead, one has to copy the code manually,
and create a new module from scratch.

Our long-term goal is to devise a module system for ML featuring both
mutual recursion and modifiability, without loosing other important features of
current ML modules, such as parameterization, efficiency, separate compilation,
and data abstraction.

As a starting point, we notice that the two features we want to bring to
ML modules are notably provided by class-based, object-oriented languages.
Open recursion and abstract (or virtual) methods naturally allow one to de-
fine mutually recursive methods across classes, which are later merged together
by inheritance. Furthermore, inheritance features overriding and late binding,
which addresses the mentioned modifiability requirement.

So, why not simply adopt the object-oriented approach for module systems?
Essentially, because the components of an object are more or less restricted
to be functions. Instance variables and initializers' [16] slightly improve over
this restriction, but remain cumbersome and error-prone. Instead, it should
be possible to naturally interleave functional components with computational,
possibly side-effective components using the previous ones. However, extending
classes and objects this way raises the following important problems.

(Recursive definitions) Arbitrary recursive definitions can appear dynamically,
because of inheritance. In most call-by-value languages, recursive def-
initions are statically restricted, in order to be more efficiently imple-
mentable [3, 13], and to avoid some ill-founded definitions. Obviously, our
system should not force language designers to abandon these properties,
and thus needs guards on recursive definitions, at the level of both static
and dynamic semantics.

(Order of evaluation) In our system, classes will contain arbitrary, unevaluated
definitions, whose evaluation will be triggered by instantiation. Because
these definitions are arbitrary, the order in which they will be evaluated
matters. For instance, in a class ¢ defining x = 0 and y = = 4+ 1, £ must
be evaluated before y. Thus, the semantics of instantiation must define
an order of evaluation. Moreover, classes can be built by inheritance, so
the semantics of inheritance must also take the order of definitions into
account.

MHnitializers are methods that are automatically called once at initialization time.



From the standpoint of dynamic semantics, restricting recursive definitions
is simply done by syntactically constraining the set of terms. The second issue
is more difficult, because it involves a design decision. From the standpoint of
typing, the second issue reduces to the first one, since the existence of a valid
order of evaluation is governed by the absence of invalid recursive definitions.

1.2 Flexible call-by-value mixin modules

Hirschowitz, Leroy, and Wells [12, 14] adopt the following approach, in their MM
language of call-by-value mixin modules. Mixin modules contain unordered def-
initions. Only at instantiation does the system compute an order for them,
according to their inter-dependencies [12, 14], and to programmer-supplied an-
notations that fix some bits of the final order [14]. This solution is very ex-
pressive w.r.t. code reuse, since components can be re-ordered according to the
context. However, it appears somewhat heavy in some respects.

(Instantiation) In particular, instantiation is too costly, since it involves
computing the strongly-connected components of a graph whose size is
quadratic in the input term, plus a topological sort of the result.

(Type safety) When recursive definitions are guarded, typing mixin modules
is difficult, because invalid recursive definitions can appear dynamically.
In order to prevent this, the proposed solution [12] is to enrich mixin
module types with some information about the dependencies between def-
initions. Unfortunately, this makes mixin module types heavy, and also
over-specified. Indeed, the least change in the dependencies between com-
ponents forces the type of the mixin module to change.

The first problem is not so annoying in the context of a module system: it
only has to do with linking operations, and thus should not affect the over-
all efficiency of programs. The second problem makes the proposed language
impractical without dedicated graph support.

1.3 Rigid mixin modules

In this paper, we propose a completely different approach, from scratch. We
introduce Miz, a new language of call-by-value mixin modules, where mixin
module components are ordered, in a rigid way. They can be defined either as
single components (briefly called “singles”) or as blocks of components. Blocks
contain mutually recursive definitions, and are restricted to a certain class of
values. Conversely, singles can contain arbitrary, non-recursive computations.
Composition preserves the order of both of its arguments, and instantiation
straightforwardly translates its argument into a module.

With respect to side effects, annotations are no longer needed, since side
effects always respect the syntactic order. Moreover, instantiation is less costly
than in MM, since it runs in O(n log n), where n is the size of the input. Con-
cerning typing, mixin module types have the same structure as mixin modules
themselves: they are sequences of specifications, which can be either singles or
blocks. Hence, they avoid the use of explicit graphs, which improves over MM .
Compared to ML module types, the only differences are that the order matters
and that mutually recursive specifications must be explicitly grouped together.



Finally, the meta theory of Mix is much simpler than the one of MM, which
makes it more likely to scale up to a full-featured language like ML. The price
to pay for these advantages is a reduced flexibility. Deciding whether Miz is
still expressive enough is outside the scope of this paper.

The rest of the paper is organized as follows. Section 2 presents an informal
overview of Miz by example. Section 3 formally defines Miz and its dynamic
semantics. Section 4 defines a sound type system for Miz. Finally, sections 5
and 6 review related and future work, respectively. The proofs are relegated in
appendix for readability.

2 Intuitions

As a simplistic introductory example, consider a program that defines two mu-
tually recursive functions for testing whether an integer is even or odd, and
then tests whether 56 is even, and whether it is odd. Assume now that it is con-
ceptually obvious that everything concerning oddity must go into one program
fragment, and everything concerning evenness must go into another, clearly
distinct fragment. Here is how this can be done in an informal programming
language based on Miz, with a syntax mimicking OCaml [16].
First, define two mixin modules Even and 0dd as follows.

mixin Even = mix
let rec 7 odd : int -> bool
! even x = x = 0 or odd (x-1)
let ! evenb6 = even 56
end
mixin 0dd mix
let rec

Nl

even : int -> bool
! odd x = x > 0 and even (x-1)
let ! oddb6 = odd 56
end

Each of these mixin modules declares the missing function (marking it
with ?) and defines the other one (marking it with !), inside a let rec which
delimits a recursive block. Then, outside of this block, each mixin module
performs one computation.

In order to link them, and obtain the desired complete mixin module, one
composes Even and 0dd, by writing mixin OpenNat = 0dd >> Even. This has
the effect of somehow passing 0dd through Even, with Even acting as a filter,
stopping the components of 0dd when they match one of its own components.
This filtering is governed by some rules: the components of 0dd go through Even
together, until one of them, say component ¢, matches some component of Even.
Then, the components of 0dd defined to the left of ¢ are stuck at the current
point. The other components continue their way through Even. Additionally,
when two components match, they are merged into a single component.

In our example, odd and even both stop at Even’s recursive block mentioning
them, so the two recursive blocks are merged. Further, odd56 continues until
the end of Even. The obtained mixin module is thus equivalent to



mixin OpenNat = mix
let rec ! even x = x = 0 or odd (x-1)
! odd x = x > 0 and even (x-1)
let ! evenb6 = even 56
let ! oddb6 = odd 56
end

Notice that composition is definitely asymmetric. This mixin module re-
mains yet to be instantiated, in order to trigger its evaluation. This is done by
writing module Nat = close OpenNat. This makes it into a module, equivalent
in OCaml syntax to

module Nat = struct
let rec even x = x = 0 or odd (x-1)
odd x = x > 0 and even (x-1)
let evenb6 = even 56
let odd56 = odd 56
end

which evaluates to the desired result. For comparison, in MM, the final evalu-
ation order would be computed upon instantiation, rather than upon composi-
tion. It would involve a topological sort of the strongly-connected components
of the following dependency graph.

even odd
evenb6 oddb6

Incidentally, in order to ensure that even56 is evaluated before odd56, the
definition of 0dd56 should better explicitly state it.

3 The Mix language and its dynamic semantics

3.1 Syntax

Pre-terms Figure 1 defines the set of pre-terms of Mizx. It distinguishes
names X from variables z, following Harper and Lillibridge [10]. It includes a
standard record construct {s}, where s := (X; = ey ... X,, = e,) and selection
e.X. It features two constructs for value binding, letrec for mutually recursive
definitions, and let for single, non-recursive definitions. Finally, the language
provides four mixin module constructs. Basic mixin modules, called structures,
consist of miztures m = (¢ .. .cy), wich are lists of components. A component ¢
is either a single, or a block. A single u is either a named declaration X >z = e,
or a definition L > x = e, where L is a label. Labels can be names or the special
anonymous label, written _, in which case the definition is also said anonymous.
Finally, a block ¢ is a list of singles. The other constructs are composition
(e1 > ez), instantiation (close e), and deletion of a name X, written (e|_x).



xr € Vars Variable
X € Names Name
L € NamesU{ } Label
Expression:
e = =x Variable
| {Xi=e...X,=¢€} Record
| eX Selection
| letrec z1 = €1 ...z, =epine letrec
| let z = €1 in ey let
| (c1...cn) Structure
| er > es Composition
| close e Instantiation
| e—x Deletion
Definition:
c = u Single definition
| [ur...un) Block
Single definition:
u = Lpz=e|XD>az=e

Figure 1: Syntax

Terms Proper terms of the language are defined by restricting the set of pre-
terms, as follows.

Definition 1 (Terms)

A term of Mix is a pre-term such that: records do not define the same name
twice ; bindings do not define the same variable twice ; miztures define neither
the same name twice nor the same variable twice ; and letrec definitions and
definitions in blocks belong to the set RecExp of valid recursive definitions, which
is a parameter of the system, but must be included in the set of values and stable
under substitution.

In terms, records, bindings and mixtures are often considered as finite maps
from names to terms, variables to terms, and pairs of a label and a variable
to terms or e, respectively. From this standpoint, the domain of a mixture,
restricted to pairs of a name and a variable, can in turn be seen as an injective
finite map from names to variables. The domain of such finite maps is denoted
by dom.

Terms are considered equivalent modulo proper renaming of bound variables
and modulo the order in blocks and bindings. We denote by DV(m) and DV(b)
the sets of variables defined by m and b, respectively, and by DN(m) and DN(s)
the sets of names defined by m and s, respectively.

3.2 Dynamic semantics

The semantics of Miz is defined as a reduction relation on pre-terms in figure 2,
using notions defined in figure 3. It is shown to be well-defined and stable over
terms below. To begin with, we define Miz values v by v ::= {s”} | (m), where
sV u= (X1 =v1... X, =vy). Then, figure 3 defines evaluation contexts, which



<TH1> > (m2> — (Add(ml,m2,6)> if my & mo (COMPOSE)
close (m® — Bind(m®, {[m°]}) (CLOSE)
(m)i—x — (Del(m, X)) (DELETE)
letrec bine — {z— letrec bin b(z) | x € dom(b)}(e) (LETREC)
letz=vine — {z—v}(e) (LET)
{s"}.X —= s%X) (SELECT)
Ele] — E¢]ife—¢ (CONTEXT)

Figure 2: Reduction rules

enforce a deterministic, call-by-value strategy. We can now examine the rules,
from the most interesting to the most standard.

Composition Rule COMPOSE describes mixin module composition. In order
to be composed, structures must be made compatible by a-conversion. Namely,
we say that two mixtures m; and ms are compatible, and write m; < mo, iff
for any € (DV(m1) U FV(m)) N (DV(msy) U FV(ms)), there exists X such
that dom(m,)(X) = dom(ms)(X) = z. This basically says that both mixtures
agree on the names of variables.

Then, their composition (my) > (ms) is Add(my,ms, ), where Add is de-
fined by induction on m; by

Add(e,mi,m2) = my,m2
Add((m,c),ma,m3) = Add(mhmm(c ms3))
Add((ml)cl))(m%7627m%)7m3) = Add(mlvm%)(cl ®02,m2,m3))

if DN(c1) L DN(m},m3) and DN(c1) N DN(c2) # 0

Given three arguments mq,msy, m3, Add roughly works as follows. If m; is
empty, it returns the concatenation of ms and mgs. If the last component ¢ of
m; defines names that are not defined in ms or mgs, then ¢ is pushed at the head
of mg. Finally, when the last component ¢; of m; defines a name that is also
defined by some cy in ma, so that ma = (mi, c2,m3), then the third argument
becomes (¢; ® c2,m3, m3), where ¢; ® ¢z is the merge of ¢; and ¢z, which is
defined by

c1R®ecr =
Xpzrx=e)®c = ¢ if dom(c)(X) ==
[m]®[e] = [0, ¢] if DN(q1) L DN(g2)

(X > z=-eq]®]g)]

(1] ®[q2] if dom(qz)(X) ==

This definition is not algorithmic, but uniquely defines the merging of two
components, and an algorithm is easy to derive from it. Besides, it has the
advantage of being relatively simple. Technically, as soon as a declaration is
matched, it is removed, and when two blocks have no more common defined
names, their merge is their union. Notice that initially, only components with
common defined names are merged, but that the union takes place after all the
common names have been reduced. This implements the behavior informally
described in section 2.



E:={s",X=0,s}|0X
[let z=0ine
[O>e|v>0O
| close O | O)_x

Figure 3: Evaluation contexts

Instantiation Rule COMPOSE describes the instantiation of a complete struc-
ture. A mixture is said complete iff it does not contain declarations. We denote
complete mixtures, components, singles, and blocks by m°, ¢, u®, and ¢, re-
spectively.

Given a complete structure (m°), instantiation first generates a series of
bindings, following the structure of m¢, and then stores the results of named
definitions in a record. Technically, close (m¢) reduces to Bind(m®,{[m*]}),
where [-] makes m¢ into a record and Bind makes m¢ into a binding;:

[m*] is defined by

[X>zr=e]l=(X=2) and [_>x=e]=¢,

naturally extended to components and mixtures,
and Bind(m*¢, e) is defined inductively over m¢ by

Bind(e,e) = e
Bind(([u®y ...u,],m),e) = letrec |u]...|u,] in Bind(m®,e)
Bind((u®,m¢),e) = let |u®] in Bind(m?®,e),
with [L>ax=e] = (z=e).

For each component, Bind defines a letrec (if the component is a block) or a
let (if the component is a single), by extracting bindings z = e from singles
L (z=e).

Other rules Rule DELETE describes the action of the deletion operation.
Given a structure (m), (m})|—x reduces to (Del(m, X)), where Del(m, X) denotes
m, where any definition of the shape X > z = e is replaced with X > z = e.

The next two rules, LETREC, LET, handle value binding. The only non-
obvious rule is LETREC, which enforces the following behavior. The rule applies
when the considered binding is fully evaluated (which is always the case for
terms). A pre-term letrec b in e, reduces to e, where each & € dom(b) is replaced
with a kind of closure representing its definition, namely letrec b in b(z). Notice
the notation for capture-avoiding substitution.

Finally, rule SELECT defines record selection, and rule CONTEXT extends
the rule to any evaluation context.

Reduction is well-defined and preserves term well-formedness, in the sense
that the reduct of a term remains a term.

Proposition 1 (Compatibility)
If two structurally equivalent pre-terms e; and ey reduce to es and ey, respec-
tively, then es and e4 are structurally equivalent.



Type:

T € Types == {S}|(Cy...Cy)
C == U|U...Uy)
U = 6X:7
0 == 1?7
S € Names Types

Environment:

I € Vars3 Types

Figure 4: Types

Proposition 2 (Stability)
If e is a term and e — €', then €' is a term.

4 Static semantics

We now define a sound type system for Miz terms. This means that the rules
do not have to check that the considered expressions are proper terms, not just
pre-terms. Types are defined in figure 4. An Mix type 7 can be either a record
type or a mixin module type. A mixin module type has the shape (M), where M
is a signature. A signature is a list of specifications C, which can be either single
specifications U or block specifications Q. A single specification has the shape
0X : 7 where § is a flag indicating whether the considered name is a declaration
of a definition. It can be either ?, for declarations, or !, for definitions. A
block specification is a list of single specifications. Record types are finite maps
from names to types. Types are identified modulo the order of specifications in
blocks. Environments I' are finite maps from variables to types. The disjoint
union of two environments I'y and I's is written I'y + I's.
Figure 5 presents our type system for Miz.

Structures and enriched specifications Let us begin with the typing of
structures. Rule T-STRUCT simply delegates the typing of a structure (m) to
the rules for typing mixtures. These rules basically give each component ¢ an
enriched specification, which is a specification, enriched with the corresponding
variable. Formally, single enriched specifications have the shape §L > x : 7, and
enriched block specifications are finite sets of these. Notably, this allows to type
anonymous definitions (using enriched specifications like § > z : 7), and also to
recover a typing environment (namely {z — 7}) for typing the next components.
Enriched single specifications, block specifications, and signatures are denoted
by U¢, Q°¢, and M¢€, respectively. Once the mixture m has been given such
an enriched signature M€, this result is converted to a proper signature M =
Sig(M?¢), assigning to the structure (m) the type (M). The Sig function merely
forgets variables and anonymous definitions of its argument: it is defined by
straightforward extension of

SigdX >ax:71)=06X:7T Sigd_ >x:T)=¢.

Here is how mixtures are given such enriched signatures. By rule T-SOME,
a single definition L > x = e is given the enriched single specification |L > z : 7



Expressions

T-STRUCT T-COMPOSE
I'ktei...cp: M° Ckep: (M) Lk es: (M)
Tk {cr...cp): (Sig(M®)) Ik el > ey (Add(My, Ms,¢))
T-CLOSE T-DELETE T
TFe: (M) Tk (m): (M) F'SARF( )
z:I(z
T+ close e: {[M]} [ (m)_x : (Del(M, X))
T-RECORD T-SELECT
dom(s) = dom(S) VX € dom(s), T+ s(X) : S(X) Fke:{S}
L'k {s}:{S} F'FeX:S(X)
T-LETREC T-LET
P+ b:1Y F+Iyke:r ke :m F'+{z—m}ke:n
I'Fletrecbine:r T'Fletz=e;ines:m
Definitions
T-SoOME Tho.n T-NONE

TFr@loe=e (Loz:n | Xre=e:0Xpw:m

Outputs and bindings

T-SINGLE

IT-EMPTY Thu:U® T +Env(U%)Fm:M°
g€
I'F (u,m): (U, M?)
T-BLoOCK
P+D,Fm: M Ty= HEnw(U*,)

ueq
VYu € q,u € RecExp, and I' + 'y Fu : U,

LF(lg),m) : (YU M)

ueq

T-BINDING
dom(b) = dom(T)
Va € dom(b),b(xz) € RecExp and T'y F b(z) : Ty(z)

F'Eb:T

Figure 5: Type system




if e has type 7. By rule T-NONE, a single declaration X > x = e can be given
any enriched specification of the shape 7X > x : 7.

Given this, we can define the typing of mixtures. By rule T-EMPTY, an
empty mixture is given the empty signature. By rule T-SINGLE, a mixture of
the shape (u,m) is typed as follows. First, u is typed, yielding an enriched spec-
ification U€. This U* is made into an environment by the Env function from
enriched signatures to environments. This function associates to any enriched
single specification 0L > z : 7 the finite map {z — 7}, and is straightforwardly
extended to signatures. The obtained environment is added to the current envi-
ronment for typing the remaining components inductively, yielding an enriched
signature M¢. The type of the whole mixture is (U¢, M*®).

By rule T-BLOCK, a mixture of the shape ([g],m) is typed as follows. An
enriched single specification U*¢,, is first guessed for each single u of q. Then,

they are converted into an environment I'y = H—JEnv(Ueu).

ueq
This environment I'; is directly added to the current environment. Then, it

is checked that each single v indeed has the enriched specification U¢,. Addi-
tionally, it is checked that each single u of ¢ is a valid recursive definition or a
declaration. By abuse of notation, we write this u € RecExp,.
Finally, the mixture m is typed, yielding an enriched signature M€, which
is concatenated to [L—ij Uc.].
ueq

Composition The typing of composition closely follows the corresponding
reduction rule, as defined by rule T-CoMPOSE. The type of the composition of
two mixin modules of types (M;) and (M-), respectively, is (Add(M;, Ms,¢)),
where Add is defined by

Add(e, My, M>) = M, M>
Add((My,C), Mz, M) = Add(My, Ms, (C, M3))
if DN(C) L DN(M>, M3)
Add((My,Ch), (M3, Co, M3), M3) = Add(M;, M}, (Cy @ Cy, M2, M3))

if DN(Cy) L DN(M}, M2, M) and DN(C;) N DN(C5) #

which does the same as Add on mixtures. The merging of two specifications is
similarly defined by

CioCy, = CaCy

?X:myeC = C ifC(X)=r
Q1] ®[Q2] = [Q1,Q2] if DN(Q1) L DN(Q2)
PX:1,Q1]®[Q] = [@1]®[Q2] if Q2(X) =71

It differs from component merging, because it checks that the types of matching
specifications are the same.

Other rules Rule T-CLOSE types instantiation. Given a complete mixin
module of type (M€}, close makes it into a record. The type of the result is
{[M*]}, which is obtained by flattening the blocks in M¢, forgetting the ! flags.

Rule T-DELETE types deletion. For a mixin module e of type (M), the rule
gives e|_x the type (Del(M, X)), in which Del(M, X') denotes M, where any
declaration of the shape !X : 7 is replaced with ?X : 7.

10



The other typing rules are straightforward.

Soundness The type sytem is sound, in the sense that the following lemmas
and theorem hold.

Lemma 1 (Subject reduction)
IfTte:Tande— €, thenT ke : 7.

Lemma 2 (Progress)
If 0+ e: 7, then either e is a value, or there exists €' such that e — €.

Theorem 1 (Soundness)
If) ke : 1, then either e reduces to a value, or its evaluation does not terminate.

5 Related work

Kernel calculi with mixin modules The idea of mixin modules comes
from that of mixins, introduced by Bracha [4] as a model of inheritance. In this
model, called Jigsaw, classes are represented by mizins, which are equipped with
a powerful set of modularity operations, and can be instantiated into objects.
Mixins are syntactically restricted to contain only values, which makes them
as restrictive as classes. What differentiates them from classes is their cleaner
design, which gave other authors the idea to generalize them to handle modules
as well as objects.

Ancona and Zucca [2] propose a call-by-name module system based on some
of Bracha’s ideas, called CMS. ? In CMS mixin modules, the definitions may
be arbitrary expressions. However, the semantics of modules in CMS does not
model modules in a call-by-value setting. Indeed, the evaluation of call-by-value
modules is immediate, whereas in CMS, evaluation is triggered by component
selection. The problem is that it is not possible to simply state that modules
are evaluated as soon as possible in CMS to obtain a call-by-value version of
it. Indeed, there are cases where evaluating mixin modules contradicts their
late-binding semantics. For instance, consider the module (z = 0,y = = + 1).
The usual call-by-value semantics of modules evaluates it to v = (x = 0,y = 1),
whose components cannot be overridden anymore. For instance, the action of
overriding = with 1 should yield the module (z = 1,y =  + 1), which cannot
be recovered from v. Thus, the separation we make in Miz between mixin
modules and modules is necessary, and makes a direct adaptation of CMS to
call-by-value inappropriate.

This separation can be encoded in Wells and Vestergaard’s m-calculus [21].
Still, m does not restrict recursive definitions at all, and does not allow the user
to specify an order of evaluation. Mixz can be seen as a specialization of m with
explicit distinction between mixin modules and modules, built-in late binding
behavior, restricted recursive definitions, user-specified order of evaluation, and
a sound type system.

2 A monadic version of CMS with side effects [1] has been designed more recently. For our
purpose, the distinction with CMS does not matter.
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Language designs with mixin modules Duggan and Sourelis [8] propose
an extension of ML with mixin modules, where mixin modules are divided into a
prelude, a body, and an initialization section. Only definitions from the body are
concerned by mixin module composition, the other sections being simply con-
catenated (and disjoint). Also, the body is restricted to functions and data-type
definitions, which prevents illegal recursive definitions from arising dynamically.
This is less flexible than Miz, since it considerably limits the interleaving of
functional and computational definitions.

Flatt and Felleisen [9] introduce the closely related notion of units, in the
form of (1) a theoretical extension to Scheme and ML and (2) an actual extension
of their PLT Scheme implementation of Scheme [20]. In their theoretical work,
they only permit values as unit components, except for a separate initialization
section. This is more restrictive than Miz, in the same way as Duggan and
Sourelis. In the implementation, however, the semantics is different. Any ex-
pression is allowed as a definition, and instantiation works in two phases. First,
all fields are initialized to nil; and second, they are evaluated and updated, one
after another. This yields both unexpected behavior (consider the definition x
= cons (1, x)), and dynamic type errors (consider x = x + 1), which do not
occur in Miz. Finally, units do not feature late binding, contrarily to Miz.

Linking calculi Other languages that are close to mixin modules are linking
calculi [5, 17]. Generally, they support neither nested modules nor late binding,
which significantly departs from Miz. Furthermore, among them, Cardelli’s
proposal does not restrict recursion at all, but the operational semantics is
sequential in nature and does not appear to handle cross-unit recursion. As
a result, the system seems to lack the progress property. Finally, Machkasova
and Turbak [17] explore a linking calculus with a very rich equational theory,
but that does not restrict recursion either, is not typed, and does not support
nested modules.

Flexible mixin modules In the latest versions of flexible mixin modules [11],
a solution to the problem of dependency graphs in types is proposed. Instead
of imposing that the graph in a mixin module type exactly reflect the depen-
dencies of the considered mixin module, it is rather seen as a bound on its
dependencies, thanks to an adequate notion of subtyping. Roughly, it ensures
that the considered mixin module has no more dependencies than the graph
exposed by its type. This allows two practical techniques for preventing MM
mixin module types from being heavy and over-specified. First, the interfaces
of a mixin module e can be given more constrained dependency graphs than
that of e. This makes interfaces more robust to later changes. Second, a certain
class of dependency graphs is characterized, that bear a convenient syntactic
description, thus avoiding users to explicitly write graphs by hand. In fact, this
syntactic sugar allows to write MM types exactly as Mixz types. We call MM 2
the language obtained by restricting MM to such types (in a way that remains
to be made precise, for instance by insertion of implicit coercions). Comparing
the three languages, we distinguish the following criteria.

(A posteriori reordering) The power of MM? w.r.t. reordering lies between
MM and Mixz. Intuitively, Miz does not feature a posteriori reordering
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of components, while MM? does, to a certain extent. Indeed, the inter-
pretation of Miz types as MM types forces any component preceding a
definition to remain there, but inputs are not concerned by this rule. For
instance, the Miz structure e; = (?X : int,?Y : int) cannot be composed
with eo = (Y >y = 0,!X > & = 0), which is unfortunate. This composi-
tion is possible in MM, of course, but also in MM?, since e; still has an
empty dependency graph.

(Owver-specified types) MM types are clearly over-specified, as evoked in sec-
tion 1.2. In contrast, MM? and Miz types are not required to exactly
match the actual dependencies of mixin module components.

(Weight) MM types are clearly impractical for a user to write by hand. MM?
and Mixz types are equivalently economical w.r.t. standard module types.

(Natural side effects) Tn MM and MM?, in order to force some order of evalua-
tion between two mixin module components, annotations must be inserted.
In Miz, it is enough to define the components in the expected order, which
is more natural.

(Efficiency) In MM, composition is linear, but instantiation is at least
quadratic. In Miz, instantiation is linear, but composition is O(n log n),
if n is the size of the input.

In summary, MM can be ruled out, because of its over-specified, impracti-
cally heavy types. Between, MM? and Miz, the choice is less obvious, in spite
of Mix’s simplicity, more natural handling of side effects and greater efficiency.
Indeed, the flexibility gained by MM? might turn out significant in practice.

6 Future work

Type components, polymorphism, subtyping Before, to incorporate
mixin modules into a practical language, which is our long-term goal, we have
to refine our type system in at least two directions. First, we have to design
an extended version of Miz including ML style user-defined type components
and data types. This task should benefit from recent advances in the design
of recursive module systems [6, 7]. Second, we have to enrich our type system
with notions of subtyping and polymorphism over mixin modules. Indeed, it
might turn out too restrictive for a module system to require, as Miz does, a
definition filling a declaration of type 7 to have exactly type 7.

Compilation The Miz language features anonymous definitions, and thus the
compilation scheme for mixin modules proposed by Hirschowitz and Leroy [12]
does not apply. A possible extension of this scheme to anonymous definitions is
sketched in later work [11], but not formalized. This extension might apply to
Miz. However, it should be possible to do better than this, by taking advantage
of the more rigid structure of Miz mixin modules.

13



User-defined composition The composition operator of Miz is somewhat
arbitrary. This gives the idea to explore the possibility of allowing user-defined
composition functions. These could be written as mixin modules importing the
proper (meta) types of mixtures, components, ...as well as the appropriate
constructors and destructors over these types. Such mixin modules would then
be converted into composition operators by a dedicated operator of the language.
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Preliminary definitions

We extend the functions Add and ® to enriched signatures and specifications.

Add(E,Mel,MeQ) = Mel,M62
Add((M*,,C*), M5, M?3) = Add(M*y, M, (C%, M*3))
if DN(C'®) L DN(M¢y, M¢3)
Add( (M¢1,C¢), = Add( M¢,,
(Me;,ceQ’Meg)’ Meé:
M¢3) (C1 ® C°y, M3, M¢s5))

if DN(C*®1) L DN(M*®5, M3, M¢3) and DN(C®;) N DN(C®5) #
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CLeC% = Che(C%

Xpzx:T)®C* = C° itC(Xp>a)=r1
Q] ®[Q%] = [Q°,Q°] if DN(Q°;) L DN(Q°,)
PXD>r:7,Q4]@[Q%] = [Q°%]®[Q%] fQWX>r)="7

B Stability

Proposition 2 (Stability) Ife is a term and e — €', then €' is a term.

Proof The only non-trivial case is rule COMPOSE.

It is enough to show that if DN(ms3) L DN(mi) U DN(ms) and mq, ma,
and mg3 are correct and pairwise compatible, in the sense of section 3.2, then
Add(my, ms, mg3) is correct, if defined.

We do it by induction on my, assuming that Add(m;, mo, m3) is defined.

e The base case, m; = ¢, is trivial.

o If m; = (m?,¢) with DN(c) L DN(mz), then m?, ms, and (¢, m3) are
correct mixtures (because DN(¢) L DN(ms3) and m;1 < mg, so DV(c) L
DV(mg3)). Moreover, we have DN(c,m3) L DN(mQ) U DN(mz), since my
is correct. So, by induction hypothesis, Add(m{,ms, (c,m3)) is correct.
As it is equal by definition to Add(m;,ms, ms), the latter is also correct.

e If my = (m{,c1), ma = (m9, ca,m}), DN(c1) N DN(ca) # (), and DN(¢y) L
DN(m9), then m{, m3, and (c1 ® c2,m3, m3) are correct mixtures, since

— DN(ey ® ¢3) = DN(e1) U DN(c2) L DN(ms),

~ DN(m}) L DN(my),

~ DN(es) 1 DN(m}),

— and DN(c;) L DN(m3}) since Add(my,ms, m3) is defined.

End proof

C Subject reduction

Lemma 3 (Weakening)
e IfTFe:7 and FV(e) L dom(T"), then T +T' Fe: 7.

e IfTtc:C° and FV(c)UDV(c) L dom(I"), then T +T'F c: C°.
e IfT'Fm: M€ and FV(m)U DV(m) L dom(I"), then T + T F m : Me.
o IfTFb:Ty and FV(b) UDV(b) L dom(I"), then T +T" F b: T},

Lemma 4 (Substitution)
e IfT+{z—m}te:T (1) andT Fv:7, (2), then T+ {x + v}(e): T.

e IfT+{z—1} Fec:C° (1), 2 ¢ DV(c), and T + v : 1, (2), then
L'k {z—v}(c):C".
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e IfT+{z—7}Fm: M (1), x ¢ DV(m), and T F v : 7, (2), then
L'k A{x—v}(m): Me.

e IfT+{x—>m} b :Ty (1) x ¢ DV(), and T + v : 7, (2), then
CkFA{x—v}b): .

Proof By mutual induction on the typing derivation. The base cases and almost
all the proofs for outputs, bindings and components are easy, so we omit them.

(T-RECORD) Assume e = {s}. By induction hypothesis, for all X € dom(s),
we have I' F {z — v}(s(X)) : 7 and dom(s) = dom(S), so we derive
CHA{zx—v}({s}) :

(T-StruCT,T-COMPOSE, T-CLOSE, T-SELECT) Work similarly by induction
hypothesis.

(T-LETREC) Assume e = letrec b in e;. By induction hypothesis, we obtain
P+ F{z— v}bd) : Ty and T + Ty F {z — v}(e1) : Ty (where the
domain of b has been a-converted to fresh variables). We have {z
v}(e) = letrec {z — v}(b) in {x — v}(e1), which gives the expected result.

(T-LET) Assume e = (let y = e; in e3). By induction hypothesis, I + {z
v}(er) : 7 and T+{y — 71} F e2 : 7, which immediately gives the expected
result.

(T-BLoCK) Assume m = ([g],m1). By induction hypothesis, we have '+ I'; -
{z = v}(m): M°®andforallueq, I'+T,F {z — v}(u):U®,. Moreover,
as valid recursive expressions are assumed to be stable by substitution,
we have for all v € ¢, {x — v}(u) € RecExp,, which allows to derive
'k {z— v}(m): M.

End proof

Lemma 5 (Parallel substitution)

If
F+I'te:r (1)
For all z € dom(I"), T'F e, : 7y (2)
For all x # y € dom(I""), « ¢ FV(e,) (3)
then

F'k{z— e, |2z e dom(I)}(e):T

Proof Let I' = {z; » 1} + ... + {z, = 7}, for i € {1...n}, e; = e,,, and
o={z;— e |i€{l...n}}. By hypothesis (3), we have 0 = g1 0...00p,
where for i € {1...n}, 0; = {z; = e;}. Thus, by trivial induction on n and
lemma 4, we obtain the desired result. End proof

Proposition 3
IfTFEmy: M¢, T+ Env(M® ) Fmo: M®, then T F (mq,me) : (M, M¢,).

In the following, we implicitly extend Add and ® to compatible enriched
signatures, in the straightforward way.
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Proposition 4

If both are defined, then Add(M®y, M¢2, M®3) = (Add(M*®y, M®s,¢), M®3).

Proposition 5
IfTF (my,c) : (M¢,C%), then T Fmq : M® and T + Env(M¢) Fc: C®.

Proposition 6
If T+ (m1,c,ms) : M€, then there exist M¢,C¢, and M®y such that T F my :
Mel, r +EHV(M61) Fe: Ce’ r +EHV(M61,CG) F mso : Me2.

Proposition 7
For all M€y, My, M®3, if M¢ = Add(M*®,, M¢5, M®3), then for anyi=1,2,3,
Env(M¢;) C Env(M?¢).

Lemma 6 (Merge)
If Tkhe :C%
'k Cy 062
c1®cy =c
CLeCHh=C"
and c; < co,
thenT'Fc:C*

Proof By induction on the proof of ¢; ® c3 = c.

e If the proof ends with an application of the commutativity rule, then, as
® is also commutative on enriched specifications, we obtain the desired
result by induction hypothesis.

e Assume ¢; = (X > z = o) and dom(c2)(X) = z. By the typing rules, we
get C° = (?X > x: 7,), and by definition of Add, C®2(X > z) = 74, and
C*° = (C*°. Moreover, by definition of ®, ¢ = ¢z, so we obtain I' - ¢ : C*¢
directly.

e Assume ¢; = [q1], c2 = [gz], and DN(¢q1) L DN(g2). We have ¢ = [q1, ¢2]-
Moreover, by the typing rules, there exists ¢, and ¢, such that C¢; =
[Q¢,] and C¢ = [Q%,]. By definition of ®, we obtain C°¢ = [Q¢, Q°,].
Let Q° = (Q°,Q%) = |4 U By typing, for all u € (q1,0),

u€(q1,q2)
u € RecExp, and I' - u : U¢,. Thus, we can derive I' - ¢ : C°.

e Assume ¢; = [X >z = o,q1], ¢a = [¢2], and dom(g2)(X) = z. By typing,
Cé =X > x: 7, Q%] and C% = [Q%)], so C¢ @ C% = [Q%] ®[Q%]
and Q°,(X > z) = 7,,. By induction hypothesis, we derive T' - [¢1] ® [g2] :
C'*¢, which gives the desired result.

End proof

Lemma 7 (Add)

If
'k mq : Mel (1)
'k mo : Me2 (2)
'+ Env(M®) Fmg: M¢3 (3)
and Add(my,me,m3) is defined (4)
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with M° = Add(M¢y, M®,€)
my <= My
DN(mg) 1 DN(ml,mg)
DV(TH3) 1 DV(ml,mg)
then T' F Add(ml,m2,m3) . Add(Mel,Meg,Meg).

Proof By induction on m;.

(Base) Assume m; = e. Then M¢ = M¢,, Add(my,ma,m3) = (ma,m3), and
Add(Mey,Mey, M¢3) = (M*®5, M*®3), so proposition 3 gives the expected
result.

(Induction) Assume m; = (m{,c).

e If DN(¢) L DN(ms), since we also know DN(c) L DN(ms)
by hypothesis, we obtain by definition of Add that m =
Add(my,ma, m3) = Add(m?, ms, (c,m3)). But by proposition 5 and
(1), M®y = (M<),C®), T + Env(M®)) Fc:C° and T - m{ : M*Y.
Thus, by lemma 3 and proposition 7, we obtain

I + Env(Add(M®?, M¢5,)) F ¢ : C°.
1

But by proposition 4, M€ = Add(M¢,, M¢5,e) = Add(M¢), M¢,,C¢) =
(Add(Me?, M¢5,€),C*), so (3) is equivalent to

T + Env(Add(M®), M¢,,¢)) + Env(C®) F mg : M¢3,
and so
T + Env(Add(M¢), M®5,¢)) F (¢, ms) : (C¢, M®s3).
So, by induction hypothesis we obtain
T+ Add(m?,ms, (c,ms)) : Add(M*S, M¢,, (C¢, M®s3)),

which is equivalent to the desired result.

e Otherwise, ma = (m9,c’,m}) and Add(my,ms, m3) = Add(m?, m9, (c®
¢';m},m3)), with DN(c) L DN(m3, md) and DN(c) N DN(c') # 0.
By proposition 6, M¢; = (M®?,C¢) and My = (M€, C¢', Me}),
such that
TFm?: M) T+ Env(M)) Fc: Ce,

TFmY: M), T+ Env(M®)) k¢ :C*, and

T + Env(M®S,C¢) F mb : Me3.

But by lemma 3, letting M°®° = Add(M*), M*Y, ) and C¢" = C° ®
C¢', we have

Me = (M, C*", M?3),

[+ Env(M°) Fc: Ce,

[+ Env(M°) ¢ : C*,

T + Env(Me°,C") F mb : M¢}, and

T + Env(Me°,C¢" , M¢3) - mg : M®;.
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By lemma 6, we have T' + Env(M®°) F c® ¢’ : C*", so by induction
hypothesis we obtain

L F Add(m®, m3, (c®c',md, ms)) : Add(Me, MY, (C", M}, M*®s)),
which is equivalent to the desired result.

End proof

Lemma 8 (Close)
IfT'Fm*: M¢, then T+ Bind(m®, {[m*]}) : {[M*]}.

Proof Let [[M¢]] be the natural record sequence that can be extracted from an
enriched signature M€, namely, the one such that [6X >z : 7] = (X = z) and
fo_>z:1]]=¢.

We prove the more general property that given some complete enriched block

Q°, if

'+ Env(Q¢) - m* : Me® (1)
DN(m*) L DN(Q®) )
DV(m°) L DV(Q®) (3)

then

I'+ Env(Q°) b Bind(m®, {m* + [Q°T}) : {[M°] + [Q°]}
We proceed by induction on m¢. Let IV = Env(Q*).

(Base) Assume m® = e. Then we just want to prove '+ T F {[JQ°]|} : {TQ°1}.
By rule T-RECORD, the following two checks are enough

e dom([[Q°T]) = dom([Q*]), which is trivial.
e For all X € dom([Q°]), '+ T F[[QT(X) : [Q°](X), which follows
from the definitions of [[-]] and [-].

(Induction, single) Assume m°® = (u,m ). Hypothesis (1) becomes I' + I’
(u,m®y) : M€, which gives by inversion

Me = (Sig(U*), M*1), (1.1)
L+I'Fu:Ue, (1.2)
[+ I’ + Env(U®) F m®y : M¢y. (1.3)

Let Q¢, = Q¢,U¢. We have I' + Env(Q¢,) F m¢; : M¢, so by induction
hypothesis

[+ Env(Q%y) & Bind(m®y, {[m":] + Q) : {TQ% T + [M*11}-
But [m?1] + Q%1 = [m1] + [QN+ U = {m*} +[Q"T,
and [Q°] + [M*1] = [Q°] + [M*].
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Now, as m¢ is complete, we know that u is a definition u = (L > z = e).
Then U® = (IL > z : 7,) by (1.2), and ' + IV + e : 7,. But here,
Env(U¢) = {z — 7}, so we can derive

F'+I'kFe:t,
I+ T+ {z 0 7} F Bind(m®y, {[m] + [Q°T}) : {[Q°] + [M*1}
L +T'Flet z =ein Bind(m1,{[m°] +[[Q°T}) : {[Q°] + [M*]}

which is equivalent to the expected result.

(Induction, block) Assume m¢ = ([q],m¢1). Then, Bind(m¢, {[m°] +[[Q°T}) =
letrec |g]| in Bind(m®y, {[m°] + [[Q°T}).
By inversion, we get {U®, | u € ¢} such that with I'/ = ' + IV + Ty,
Q°, = H—J Uy, M° = ([Sig(Q°,)], M*¢1),and T’y = Env(Q°,), the following

ueq
holds:
F” F mcl . Mel (1].)
For all w € ¢, u € RecExp, (1.2)
and I Fwu:U®, (1.3)

Let Q¢ = (Q°,Q°,). We have I'" =T + Env(Q°;). By induction hypoth-
esis, I"" b Bind(m®y, {Tm1 ] + [[Q°, }) : {TM*: T+ [Q°, 1}

But we have [m1 ] +[Q° 11 = [m°1 | +[[Q°+[Q°,, and [[Q°,T = [[d]l,
so [mf] + Q%1 = [m] + QT

Similarly, [M*1] 4+ [Q°] = [M*1] + [Q°] + [Q°,] = [M“] + [Q°], so,
by rule T-LETREC and by definition of Bind, it is enough to derive I'" -
lg| : Ty, which follows from (1.3).

End proof

Lemma 1 (Subject reduction) If ' F e; : 7 (1) and ey — ex (2), then
F'key:r.

Proof By induction on the proof of e; — e3, and case analysis on the last rule
of the derivation.

(CONTEXT) Assume e; = E[es] and ex = E[e4], with es — e4. We proceed by
case analysis on [E.

e Assume E = {s”, X =0, s}. Then by inversion of (1), we have

dom(s?, X =0, s) = dom(S) (1.1)
For all Y € dom(s?,s),T F (s¥,s)(Y) : S(Y) (1.2)
Tk es:S(X) (1.3)

By induction hypothesis, we obtain that I' F e4 : S(X), so we derive
I'key:r.
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e The case E = [0.X similarly works by induction hypothesis.

e Assume E = (let x = O in e). By inversion of (1), we obtain T' F ej3 :
3 and I' 4+ {z — 13} F e : 7, and by induction hypothesis, we get
I'Feyq: 73,50 wederive ' -es @ 7.

e Assume E = O > e. By inversion of (1), we obtain I' I e3 : (My)
and T' F e : (Ms), with 7 = (Add(M;, M2,¢)). Thus, by induction
hypothesis, we get ' - e4 : (M), so we derive the desired result.

e Assume E = close 0. Then, by inversion of (1), we obtain I' F
eg : (M°), with 7 = {[M*°]}. But by induction hypothesis, we get
'k ey : (M€), so we derive the expected result.

(CLOSE) Assume e; = close (m°) and ey = Bind(m?®, {[m°]}). By inversion of
(1), we get

[k (me) : (M) (1.1)
T={[MT} (1.2)

By inversion of (1.1), we obtain I' F m¢ : M¢€, for some M¢ such that
M¢ = Sig(M*¢). By lemma 8, we can derive I' F Bind(m¢, {[m°]}) :
{[M°]}, which is in fact T ey : 7.

(LET) Assume e; = (let x = v in e) an es = {z — v}(e). By inversion of (1),
we obtain

F'kv:my (1.1)
F+{z—mntre:r (1.2)

By lemma 4, we derive I' F {z — v}(e) : 7.

(LETREC) Assume e; = letrec b in e and e; = {x — letrec b in b(z) | z €
dom(b)}(e). By inversion of (1), we obtain I'; such that

I‘+I‘b|—b:Fb (1].)
F+Tyte:r (1.2)

By inversion of (1.1), we also obtain that for any z € dom(b),
L+ Ty Fb(x): Ty(x)
and therefore we can derive by rule T-LETREC
[k letrec b in b(x) : Ty (x).
Thus, letting o = {z + letrec b in b(z) | z € dom(b)}, lemma 5 gives
Fko(e):r
which is the expected result.

(CoMPOSE) Assume e; = (my) > (m2) and ex = (Add(my, ms,€)). By inver-
sion of (1), we obtain a typing derivation like

22



Fl—mleel FI_mQ:MeQ
T+ (my): (M) Lk (mg) : (My)
L F (mi) > (ma) : (Add(M, Ms, e))

where M; = Sig(M¢,)
MQ = SIg(Meg)
T = <Add(M1,M2,€)>.

By lemma 7, we derive
rr Add(ml, mQ,E) : Add(Mel, Meg, 8),
which gives by rule T-STRUCT

L+ (Add(mi,m2,€)) : (Sig(Add(M*®y, M®5,€))).

But obviously, we have Sig(Add(M¢y, M¢2,¢e)) = Add(M;, M, ), which
gives the expected result.

(DELETE) The reduction rule replaces a definition X > = = e, typed !X > x :
T, for some 7., with the declaration X > z = e, which can be given the
type ?7X > x : 1,. This gives exactly the desired type to the reduct.

(SELECT) This case is trivial.

End proof

D Progress

Lemma 9 (Progress/Merge)

If
Fl F Cy Cel (].)
F2 F Cy Ceg (2)
C¢ ® C® is defined (3)
and c1 < ca (4)

then ¢, ® ¢y is defined.

Proof Let C¢ = C° ® C¢. We proceed by induction on the proof of C¢ =
C¢ ®(C%,.

e If the last rule used is commutation, then by induction hypothesis we
directly obtain the desired result.

e If the last rule used is the second one, then C¢ = (?X > z : 7) and
C® (X > z) = 7. By inversion of (1) and (2), we know that ¢; = (X >
x =) and X € DN(cz), and dom(c2)(X) = z, 80 ¢1 ® co is defined and is
equal to cs.
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o If the last rule used is the third one, then C¢; = [Q¢] and C°¢; = [Q%,],

with DN(Q¢,) L DN(Q°®,). But by inversion of (1) and (2), this implies
DN(c1) L DN(e2), so we can apply the corresponding rule at the level of
blocks, which ensures that ¢; ® ¢o is defined.

If the last rule used is the fourth one, then C¢ = [?X > z : 7,Q¢;] and
C = [Q°%,)], with Q°,(X > z) = 7. By inversion of (1) and (2), we obtain
¢ =[X > x=e q] and c3 = [g2], with dom(gz)(X) = z.

Moreover, we have I + {x — 7} F [q1] : [@¢,], so by induction hypothesis,
we obtain that [¢1] ® [g2] is defined.

Thus, we can apply the fourth rule at the level of blocks to obtain the
expected result.

End proof

Lemma 10 (Progress/Compose)

If

'k mq : Mel
'k mo : Meg
Add(M¢®,, Mty ¢) is defined
and my <= mo

then Add(m1,me,€) is also defined.

Proof We prove the more general property that if

T'F mq Mel

'k mo : Meg

DN(mg) = DN(M*®3)
Add(Me®y,M®y, M€3) is defined
and m; T moy

NN N S~
T W N =
NSNS NN

then Add(my,m2,ms3) is also defined.

We proceed by induction on my.

(Base) Assume my = e. Then, trivially Add(my,ma, m3) is defined.

(Induction) We distinguish two cases.

e Assume m; = (m?¢), with DN(¢) L DN(ms). By proposi-

tion 5, this gives M°) and C° such that T' - m{ : M) and
T + Env(M®Y) + ¢ : C¢, with M¢; = (M C¢). So, since
Add(Me®y, My, M€3) is defined and DN(¢) L DN(msz), it must
be equal to Add(Me), M¢,,(C¢, M¢3)), which implies DN(C®) L
DN(M¢3). Thus, DN(c) = DN(C®) L DN(M¢3) = DN(ms).
Moreover, DN(c,m3) = DN(C*®, M3), so, by induction hypothesis,
Add(m?,ma, (c,m3)) is defined. So, Add(my,ma, m3) is also defined,
and equal to the former.

e Assume m; = (m?,¢1), with DN(¢1) N DN(m2) # . Then, we can
decompose my as (m3, ca,m3}), with DN(c;) L DN(m3) and DN(c1)N
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DN(c,) # 0. By proposition 6, there exist M€Y, C¢1, M), C¢, and
M¢3 such that

TFm: M9 (1.1)
[+ Env(M) ke :C% (1.2)
TFmd: M (2.1)
T+ Env(Me) ey : C° (2.2)
T + Env(M®,C%) Fmb : M€ (2.3)

Moreover, since Add(M®,,M¢s, M*®3) is defined, it must be equal
to Add(Me?, M¢Y, (C¢ ® C¢y, M€}, M¢3)), which is thus defined.
Further, by lemma 9, we know that ¢; ® co is also defined.

Also, we have

DN(c; ® co,md, m3)

= DN(c1) U DN(c2) U DN(m}) U DN(ms3)

— DN(C*,) U DN(C®5) U DN(M®}) U DN(M¢3)
= DN(C®, ® C¢3, M¢}, Ms)

So, by induction hypothesis, Add(m?,m9, (c; ® ca,mi, m3)) is de-

fined.

Finally, since DN(¢;) L DN(m}) and DN(C®;) L DN(M¢3), we ob-

tain that Add(my,ma,m3) is defined and equal to Add(m?, m3, (c; ®
1

C2, M3, m3))

End proof

Lemma 2 (Progress) If ) Fe: 7, then either e is a value (a), ore — €' (b).

Proof We proceed by induction on the derivation ) - e : 7. Then, we reason
by case analysis on the last typing rule of the derivation. The proof relies on
the fact that evaluation contexts do not bind any variable.

( T-VAR) Impossible.

(T-RECORD) If e is a value, then we are in case (a). Otherwise, we can decom-
pose e as {s', X = ej, s}, where e; is not a value. By typing, 0 F ey : 71,
so by induction hypothesis, as e; is not a value, we have e; — €/ for some
el. But then, e = {s?,X = e}, s} by rule CONTEXT and we are in case

(b),
(T-STrUCT) If e is a structure, then it is a value and we are in case (a).
(T-CoMPOSE) Then e = (e; > e2).

e If ey is not a value, then by induction hypothesis, we have e; — ef.
But then, e — €| > es by rule CONTEXT, so we are in case (b).

e Otherwise, if ey is not a value, then symmetrically, by induction
hypothesis, we obtain the desired result.
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e If both e; and ey are values, then by typing, there exist m; and mo
such that e; = (m1) and es = (m»), and we have a derivation of the
shape

(Z)l—ml:Mel @"THQZMQQ
w " <m1> : <Mel> @ l_ (m2> . (Me2>
0+ (m1) > (ma) : (Sig(Add(M*®y, M*®2,€)))

But then, by lemma 10, Add(m,,ms,¢) is defined, so e reduces by
rule COMPOSE.

(T-CLOSE) Then e = close e;.

e If e; is not a value, then by induction hypothesis, it reduces to e].
But then, e — close €], and we are in case (b).

e Otherwise, by typing, there exists m® and a complete enriched sig-
nature M*®, such that e = (m®), 0 F m®: M° and 7 = {[M¢°]}. But
as m° is complete, e reduces by rule CLOSE.

(T-DELETE) Then e = e;|_x. If e; is not a value, then, as above, we obtain
the desired result by induction hypothesis. Otherwise, e reduces by rule
DELETE.

(T-SELECT) Then e = e;.X. If €1 is not a value, then, as above, we obtain the
desired result by induction hypothesis. Otherwise, by typing, there exists
sV such that e = {s”} and X € dom(s"), so e reduces by rule SELECT.

(T-LETREC) Then e = letrec b in e, and e reduces by rule LETREC.

(T-LET) Then e = let © = ey in ey. If e; is not a value, then we proceed as
above. Otherwise, e reduces by rule LET.

End proof

Theorem 1 (Soundness) The evaluation of a closed, well-typed expression
either does not terminate, or reaches a value.
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