Vincent Lef

Multiplication by an Integer Constant

Keywords: multiplication, addition chains R esum e multiplication, cha^ nes d'additions

We present an algorithm allowing to perform integer multiplications by constants. This algorithm is compared to existing algorithms. Such algorithms are useful, as they occur in several problems, such as the Toom-Cook-like algorithms to multiply large multiple-precision integers, the approximate computation of consecutive values of a polynomial, and the generation of integer multiplications by compilers.

Introduction

The multiplication by integer constants occurs in several problems, such as the Toom-Cook-like algorithms to multiply large multiple-precision integers 3], the approximate computation of consecutive values of a polynomial (we can use an extension of the nite di erence method 2] that needs multiplications by constants), and the generation of integer multiplications by compilers (some processors do not have an integer multiplication instruction, or this instruction is relatively slow). We look for an algorithm that will generate shift, add and sub instructions to perform such a multiplication, which would b efaster than a general purpose integer multiplication. We assume that the constant may have several hundreds of bits.

Here we are allowed to do shifts (i.e., multiplications by p o wers of 2) as fast as additions. So, this is a more di cult problem than the well-known addition chains problem 2].

This problem has already been dealt with, to have an algorithm for compilers, but for shorter constants (e.g., 32 bits). Most compilers implement an algorithm from Robert Bernstein 1] or a similar algorithm. But this algorithm is too slow for large constants. We will present a completely di erent algorithm, that is suitable to large constants. But rst, a simpler algorithm and Bernstein's algorithm will b epresented.

Formulation of the Problem

A positive o d dinteger n is given. One looks for a sequence of positive integers u 0 , u 1 , u 2 , . . . , u q such that: u 0 = 1 for i > 0, u i = js i u j + 2 c i u k j, with j < i, k < i, s i 2 f;1 0 1g, c i 2 N u q = n.

The problem is to nd an algorithm that yields a minimal sequence (u i) 0 i q . But this problem is very complex (it is believed to b eNP-complete). So, we have to nd heuristics.

Note: here, we restrict to positive integers. We could change the formulation to accept negative integers (i.e., remove the absolute value and allow the sign to b eapplied to either u j or u k), but this would b ean equivalent formulation.

The Binary Method

The simplest heuristic consists in writing the constant n in binary and generating a shift and an add for each 1 in the binary expansion (e.g., starting from the left): for instance, consider n = 113, that is, we want to compute 113x. In binary, 113 = 1110001 2 . We generate the following operations: 3x

(x << 1) + x 7x (3x << 1) + x 113x (7x << 4) + x
The numb e rof operations is the numb e rof 1's in the binary expansion, minus 1.

This method can b eimproved using Booth's recoding, which consists in introducing signed digits (;1 denoted 1, 0 and 1) and performing the following transform:

1111 : : : 1111 | {z } k digits ! 1 0 0 0 0 : : : 000 | {z } k ; 1 digits 1:
This transform is based on the formula:

2 k;1 + 2 k;2 + + 2 2 + 2 1 + 2 0 = 2 k ; 1:
For instance, 11011 would b e rst transformed to 11101, then to 100101. Thus, Booth's recoding allows to decrease the numb e rof non-zero digits.

With the above example: 113 = 10010001 2 . This gives 2 operations only: 7x

(x << 3) ; x 113x (7x << 4) + x 4 Bernstein's Algorithm
Bernstein's algorithm is based on arithmetic operations. It doesn't explicitely use the binary expansion of n. It consists in restricting the operations to k = i;1 and j = 0 or i;1 (in the formulation) and it can b eused with di erent costs for the addition, the subtraction and the shifts. It is a branch-and-bound algorithm, with the following formulas:

Cost(1) = 0 Cost(n even) = Cost(n=2 c odd) + ShiftCost Cost(n o d d) = min 8 > > < > > : Cost(n + 1) + SubCost Cost(n ; 1) + AddCost Cost(n=(2 c + 1)) + ShiftCost + SubCost Cost(n=(2 c ; 1)) + ShiftCost + AddCost
An advantage of Bernstein's algorithm is that there is no extra memory (registers or RAM) needed for temporary results, in the generated code. But extra memory is not always a problem.

A Pattern-based Algorithm

The Algorithm

This algorithm is based on the binary method: after Booth's recoding, we regard the numb e rn as a vector of signed digits 0, +1, ;1, denoted 0, P and N (and sometimes, 0, 1, 1). The idea (that is recursively applied) is as follows: we look for repeating (non necessarily adjacent) digit-patterns, to have the most digits P and N disappeared in one operation. To simplify, one only looks for patterns that repeat twice (though, in fact, they may repeat more often). For instance, 20061 = 100111001011101 2 , recoded to P0P00N0P0N00N0P, contains the pattern P000000P0N twice (the rst one in the positive form and the second one in the negative form N000000N0P). Thus, considering this pattern allows to have 3 nonzero digits disappeared in one operation, and we now need to compute P000000P0N and the remaining 00P000000000000. This can b esummarized by: P000000P0N -P000000P0N + 00P000000000000 ------------------P0P00N0P0N00N0P On this example, 4 operations are obtained (P000000P0N is computed with 2 operations thanks to the binary method), whereas Bernstein's algorithm generates 5 operations. Now, it is important to nd a g o o drepeating pattern quickly enough. The numb e rof nonzero digits of a pattern is called the weight of the pattern. We look for a pattern having a maximal weight. To do this, we take into account the fact that, in general, there are much fewer nonzero digits than zero digits, in particular near the leaves of the recursion tree, because of the following relation: w(parent) = w(child 1) + 2 w(child 2). The solution is to compute all the possible distances b e t ween two nonzero digits, in distinguishing b e t ween identical digits and opposite digits. This gives an upper bound on the pattern weight associated with each distance. For instance, with P0P00N0P0N00N0P: distance upper b o u n d weight 2 (P-N / N-P) 3 2 5 (P-N / N-P) 3 3 7 (P-P / N-N) 3 2 The distances are sorted according to the upper bounds, then they are tried the one after the other until the maximal weight and a corresponding pattern are found.

Comparison with Bernstein's Algorithm

This algorithm has b e e ncompared to Bernstein's and we found that on average, it is slightly better than Bernstein's for small constants. Comparisons couldn't b eperformed on large constants because Bernstein's algorithm would b etoo slow: the complexity of Bernstein's algorithm is exponential, whereas the pattern-based algorithm is polynomial (it seems to b ein O(n 3) on O(n 2) for each recursion height).

If we consider the numb e rof generated operations1 by these algorithms for the numb e r sup to 2 20 , the largest di erence is obtained for 543413:

With the pattern-based algorithm, one obtains: The ratio b e t ween two consecutive numb e r sis almost a constant. From this results, we can conjecture that the average numb e rof operations generated for an n-bit integer is O(n k), where k 0:85.

1: 255x (x <<

Possible Improvements

Our algorithm can still b eimproved. Here are some ideas, which have not been implemented yet: One can look for common digit-patterns. For instance, consider P0N0N00P0N0N000P0N, with pattern P0N0N. P0N appears b o t hin the pattern in the remaining digits thus, it needs to b ecomputed only once (under some conditions). A solution is to stop the recursion when the maximal weight is equal to 1 (here, only the binary method can b eused) looking for common patterns would b eeasier. Note that common patterns should b elooked for b e f o r eusing the binary method: with the above example, if we start with N0N in P0N0N, the common pattern P0N cannot b e used we need to start with P0N in P0N0N. Sometimes, there are several choices that correspond to the maximal weight. Instead of taking only one, one can try several patterns, and keep the shortest operation sequence. One can consider the following transform, which does not change the weight: P0N $ 0PP (and N0P $ 0NN). For instance, 11010101001 2 has the default code P0N0P0P0P00P, but the equivalent code P00N0NN0P00P is b e t t e r(with the pattern P00N00N). As the numb e rof equivalent codes is exponential, we cannot test all of them so, we have to look for a method to nd the b e s ttransforms. Instead of de ning a pattern of maximal weight that appears twice, one can de ne a new digit consisting of two old nonzero digits. For instance, consider 101010010101000101 and the pattern 10101. One de nes a new digit: A = 10000001, and obtains: A0A0A000101. Then, one de nes B = A00000001, and nally obtains: A000B0B. This leads to 4 operations, like the common-pattern method.

Conclusion

Thanks to the algorithm presented here, we will b eable to p e r f o r mfast multiplications by integer constants, which may have several hundred bits. Future work will consist in improving this algorithm, doing some experiments to nd the complexity, and trying to prove some results.

An operation is a shift, then an addition or a subtraction, i.e., the value q in the formulation.