
HAL Id: hal-02101792
https://hal-lara.archives-ouvertes.fr/hal-02101792v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplication by an Integer Constant
Vincent Lefevre

To cite this version:
Vincent Lefevre. Multiplication by an Integer Constant. [Research Report] LIP RR-1999-06, Labora-
toire de l’informatique du parallélisme. 1999, 2+5p. �hal-02101792�

https://hal-lara.archives-ouvertes.fr/hal-02101792v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du
Parallélisme
École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON
no 8512 SPI

Multiplication by an Integer Constant

Vincent Lef�evre January ����

Research Report No �������

École Normale Supérieure de
Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37

Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : lip�ens�lyon�fr

Multiplication by an Integer Constant

Vincent Lef�evre

January ����

Abstract

We present an algorithm allowing to perform integer multiplications by con�
stants� This algorithm is compared to existing algorithms� Such algorithms
are useful� as they occur in several problems� such as the Toom�Cook�like al�
gorithms to multiply large multiple�precision integers� the approximate com�
putation of consecutive values of a polynomial� and the generation of integer
multiplications by compilers�

Keywords� multiplication� addition chains

R�esum�e

Nous pr�esentons un algorithme permettant de faire des multiplications enti�eres
par des constantes� Cet algorithme est compar�e �a d	autres algorithmes exis�
tants� De tels algorithmes sont utiles� car ils interviennent dans plusieurs
probl�emes� comme les algorithmes du style Toom�Cook pour multiplier des
entiers �a grande pr�ecision� le calcul approch�e de valeurs cons�ecutives d	un po�
lyn
ome et la g�en�eration de multiplications enti�eres par les compilateurs�

Mots�cl�es� multiplication� cha
�nes d	additions

� Introduction

The multiplication by integer constants occurs in several problems� such as the
Toom�Cook�like algorithms to multiply large multiple�precision integers ��� the
approximate computation of consecutive values of a polynomial �we can use
an extension of the �nite di�erence method ��� that needs multiplications by
constants�� and the generation of integer multiplications by compilers �some
processors do not have an integer multiplication instruction� or this instruction
is relatively slow�� We look for an algorithm that will generate shift� add and
sub instructions to perform such a multiplication� which would be faster than a
general purpose integer multiplication� We assume that the constant may have
several hundreds of bits�

Here we are allowed to do shifts �i�e�� multiplications by powers of �� as fast
as additions� So� this is a more di�cult problem than the well�known addition

chains problem ����

This problem has already been dealt with� to have an algorithm for compilers�
but for shorter constants �e�g�� � bits�� Most compilers implement an algorithm
from Robert Bernstein ��� or a similar algorithm� But this algorithm is too
slow for large constants� We will present a completely di�erent algorithm� that
is suitable to large constants� But �rst� a simpler algorithm and Bernstein	s
algorithm will be presented�

� Formulation of the Problem

A positive odd integer n is given� One looks for a sequence of positive integers
u�� u�� u�� � � � � uq such that�

� u� � ��

� for i � �� ui � jsi uj �� ci ukj� with j � i� k � i� si � f��� �� �g� ci � N�

� uq � n�

The problem is to �nd an algorithm that yields a minimal sequence �ui���i�q�
But this problem is very complex �it is believed to be NP�complete�� So� we
have to �nd heuristics�

Note� here� we restrict to positive integers� We could change the formulation
to accept negative integers �i�e�� remove the absolute value and allow the sign
to be applied to either uj or uk�� but this would be an equivalent formulation�

� The Binary Method

The simplest heuristic consists in writing the constant n in binary and generating
a shift and an add for each � in the binary expansion �e�g�� starting from the

�

left�� for instance� consider n � ��� that is� we want to compute ��x� In
binary� �� � ��������� We generate the following operations�

x � �x �� �� � x
�x � �x �� �� � x

��x � ��x �� �� � x

The number of operations is the number of �	s in the binary expansion�
minus ��

This method can be improved using Booth	s recoding� which consists in
introducing signed digits ��� denoted �� � and �� and performing the following
transform�

���� � � � ����� �z �
k digits

� � ���� � � � ���� �z �
k � � digits

��

This transform is based on the formula�

�k�� � �k�� � � � �� �� � �� � �� � �k � ��

For instance� ����� would be �rst transformed to ������ then to ������� Thus�
Booth	s recoding allows to decrease the number of non�zero digits�

With the above example� �� � ���������� This gives � operations only�

�x � �x �� �� x
��x � ��x �� �� � x

� Bernstein�s Algorithm

Bernstein	s algorithm is based on arithmetic operations� It doesn	t explicitely
use the binary expansion of n� It consists in restricting the operations to k � i��
and j � � or i�� �in the formulation� and it can be used with di�erent costs for
the addition� the subtraction and the shifts� It is a branch�and�bound algorithm�
with the following formulas�

Cost��� � �

Cost�n even� � Cost�n�� c odd� � ShiftCost

Cost�n odd� � min

����
���

Cost�n� �� � SubCost

Cost�n� �� � AddCost

Cost�n��� c � ��� � ShiftCost � SubCost

Cost�n��� c � ��� � ShiftCost � AddCost

An advantage of Bernstein	s algorithm is that there is no extra memory
�registers or RAM� needed for temporary results� in the generated code� But
extra memory is not always a problem�

�

� A Pattern�based Algorithm

��� The Algorithm

This algorithm is based on the binary method� after Booth	s recoding� we regard
the number n as a vector of signed digits �� ��� ��� denoted �� P and N �and
sometimes� �� �� ��� The idea �that is recursively applied� is as follows� we look
for repeating �non necessarily adjacent� digit�patterns� to have the most digits
P and N disappeared in one operation� To simplify� one only looks for patterns
that repeat twice �though� in fact� they may repeat more often�� For instance�
����� � ����������������� recoded to P�P��N�P�N��N�P� contains the pattern
P������P�N twice �the �rst one in the positive form and the second one in
the negative form N������N�P�� Thus� considering this pattern allows to have
 nonzero digits disappeared in one operation� and we now need to compute
P������P�N and the remaining ��P������������� This can be summarized by�

P������P�N

� P������P�N

� ��P������������

������������������

P�P��N�P�N��N�P

On this example� � operations are obtained �P������P�N is computed with
� operations thanks to the binary method�� whereas Bernstein	s algorithm gen�
erates � operations�

Now� it is important to �nd a good repeating pattern quickly enough� The
number of nonzero digits of a pattern is called the weight of the pattern� We
look for a pattern having a maximal weight� To do this� we take into account
the fact that� in general� there are much fewer nonzero digits than zero digits�
in particular near the leaves of the recursion tree� because of the following
relation� w�parent� � w�child �� � �w�child ��� The solution is to compute
all the possible distances between two nonzero digits� in distinguishing between
identical digits and opposite digits� This gives an upper bound on the pattern
weight associated with each distance� For instance� with P�P��N�P�N��N�P�

distance upper bound weight
� �P�N � N�P� �
� �P�N � N�P�
� �P�P � N�N� �

The distances are sorted according to the upper bounds� then they are tried
the one after the other until the maximal weight and a corresponding pattern
are found�

��� Comparison with Bernstein�s Algorithm

This algorithm has been compared to Bernstein	s and we found that on av�
erage� it is slightly better than Bernstein	s for small constants� Comparisons
couldn	t be performed on large constants because Bernstein	s algorithm would
be too slow� the complexity of Bernstein	s algorithm is exponential� whereas

the pattern�based algorithm is polynomial �it seems to be in O�n�� on average�
O�n�� for each recursion height��

If we consider the number of generated operations� by these algorithms for
the numbers up to ���� the largest di�erence is obtained for �����

With the pattern�based algorithm� one obtains�

�� ���x � �x �� ��� x
�� ���x � ����x �� ��� ���x
� �����x � ����x �� �� � ���x
�� ����x � �x �� ��� � �����x

With Bernstein	s algorithm� one obtains�

�� �x � �x �� � � x
�� ��x � ��x �� �� x
� ��x � ���x �� ��� x
�� ����x � ���x �� �� � ��x
�� ����x � �����x �� � � x
�� ��x � �����x �� ��� ����x
�� ����x � ���x �� �� � x
�� ����x � �����x �� �� � x

��� Results on random numbers

An implementation of the algorithm has been tested on random numbers �an
exhaustive test would have been too slow�� Here is the average number of
generated operations as a function of the number of bits �the �rst and the last
bits must be ���

� ���
�� ����
��� ���
��� ����
��� ����
���� �����
���� �����

The ratio between two consecutive numbers is almost a constant� From this
results� we can conjecture that the average number of operations generated for
an n�bit integer is O�nk�� where k � �����

��� Possible Improvements

Our algorithm can still be improved� Here are some ideas� which have not been
implemented yet�

�An operation is a shift� then an addition or a subtraction� i�e�� the value q in the formu�

lation�

�

� One can look for common digit�patterns� For instance� consider
P�N�N��P�N�N���P�N� with pattern P�N�N� P�N appears both in the pat�
tern and in the remaining digits� thus� it needs to be computed only once
�under some conditions�� A solution is to stop the recursion when the
maximal weight is equal to � �here� only the binary method can be used��
looking for common patterns would be easier� Note that common patterns
should be looked for before using the binary method� with the above ex�
ample� if we start with N�N in P�N�N� the common pattern P�N cannot be
used� we need to start with P�N in P�N�N�

� Sometimes� there are several choices that correspond to the maximal
weight� Instead of taking only one� one can try several patterns� and
keep the shortest operation sequence�

� One can consider the following transform� which does not change the
weight� P�N � �PP �and N�P � �NN�� For instance� ������������ has
the default code P�N�P�P�P��P� but the equivalent code P��N�NN�P��P is
better �with the pattern P��N��N�� As the number of equivalent codes is
exponential� we cannot test all of them� so� we have to look for a method
to �nd the best transforms�

� Instead of de�ning a pattern of maximal weight that appears twice� one
can de�ne a new digit consisting of two old nonzero digits� For instance�
consider ������������������ and the pattern ������ One de�nes a new
digit� A � ��������� and obtains� A�A�A������� Then� one de�nes
B � A��������� and �nally obtains� A���B�B� This leads to � operations�
like the common�pattern method�

� Conclusion

Thanks to the algorithm presented here� we will be able to perform fast mul�
tiplications by integer constants� which may have several hundred bits� Future
work will consist in improving this algorithm� doing some experiments to �nd
the complexity� and trying to prove some results�

References

��� R� Bernstein� Multiplication by integer constants� Software � Practice and

Experience� �������������� July �����

��� D� Knuth� The Art of Computer Programming� volume �� Addison Wesley�
����

�� D� Zuras� More on squaring and multiplying large integers� IEEE Transac�

tions on Computers� ������������� August �����

�

