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Vincent Lef�evre
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Abstract

We present an algorithm allowing to perform integer multiplications by con�
stants� This algorithm is compared to existing algorithms� Such algorithms
are useful� as they occur in several problems� such as the Toom�Cook�like al�
gorithms to multiply large multiple�precision integers� the approximate com�
putation of consecutive values of a polynomial� and the generation of integer
multiplications by compilers�

Keywords� multiplication� addition chains

R�esum�e

Nous pr�esentons un algorithme permettant de faire des multiplications enti�eres
par des constantes� Cet algorithme est compar�e �a d	autres algorithmes exis�
tants� De tels algorithmes sont utiles� car ils interviennent dans plusieurs
probl�emes� comme les algorithmes du style Toom�Cook pour multiplier des
entiers �a grande pr�ecision� le calcul approch�e de valeurs cons�ecutives d	un po�
lyn
ome et la g�en�eration de multiplications enti�eres par les compilateurs�

Mots�cl�es� multiplication� cha
�nes d	additions



� Introduction

The multiplication by integer constants occurs in several problems� such as the
Toom�Cook�like algorithms to multiply large multiple�precision integers ��� the
approximate computation of consecutive values of a polynomial �we can use
an extension of the �nite di�erence method ��� that needs multiplications by
constants�� and the generation of integer multiplications by compilers �some
processors do not have an integer multiplication instruction� or this instruction
is relatively slow�� We look for an algorithm that will generate shift� add and
sub instructions to perform such a multiplication� which would be faster than a
general purpose integer multiplication� We assume that the constant may have
several hundreds of bits�

Here we are allowed to do shifts �i�e�� multiplications by powers of �� as fast
as additions� So� this is a more di�cult problem than the well�known addition

chains problem ����

This problem has already been dealt with� to have an algorithm for compilers�
but for shorter constants �e�g�� � bits�� Most compilers implement an algorithm
from Robert Bernstein ��� or a similar algorithm� But this algorithm is too
slow for large constants� We will present a completely di�erent algorithm� that
is suitable to large constants� But �rst� a simpler algorithm and Bernstein	s
algorithm will be presented�

� Formulation of the Problem

A positive odd integer n is given� One looks for a sequence of positive integers
u�� u�� u�� � � � � uq such that�

� u� � ��

� for i � �� ui � jsi uj �� ci ukj� with j � i� k � i� si � f��� �� �g� ci � N�

� uq � n�

The problem is to �nd an algorithm that yields a minimal sequence �ui���i�q�
But this problem is very complex �it is believed to be NP�complete�� So� we
have to �nd heuristics�

Note� here� we restrict to positive integers� We could change the formulation
to accept negative integers �i�e�� remove the absolute value and allow the sign
to be applied to either uj or uk�� but this would be an equivalent formulation�

� The Binary Method

The simplest heuristic consists in writing the constant n in binary and generating
a shift and an add for each � in the binary expansion �e�g�� starting from the
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left�� for instance� consider n � ��� that is� we want to compute ��x� In
binary� �� � ��������� We generate the following operations�

x � �x �� �� � x
�x � �x �� �� � x

��x � ��x �� �� � x

The number of operations is the number of �	s in the binary expansion�
minus ��

This method can be improved using Booth	s recoding� which consists in
introducing signed digits ��� denoted �� � and �� and performing the following
transform�

���� � � � ����� �z �
k digits

� � ���� � � � ���� �z �
k � � digits

��

This transform is based on the formula�

�k�� � �k�� � � � �� �� � �� � �� � �k � ��

For instance� ����� would be �rst transformed to ������ then to ������� Thus�
Booth	s recoding allows to decrease the number of non�zero digits�

With the above example� �� � ���������� This gives � operations only�

�x � �x �� �� x
��x � ��x �� �� � x

� Bernstein�s Algorithm

Bernstein	s algorithm is based on arithmetic operations� It doesn	t explicitely
use the binary expansion of n� It consists in restricting the operations to k � i��
and j � � or i�� �in the formulation� and it can be used with di�erent costs for
the addition� the subtraction and the shifts� It is a branch�and�bound algorithm�
with the following formulas�

Cost��� � �

Cost�n even� � Cost�n�� c odd� � ShiftCost

Cost�n odd� � min

����
���

Cost�n� �� � SubCost

Cost�n� �� � AddCost

Cost�n��� c � ��� � ShiftCost � SubCost

Cost�n��� c � ��� � ShiftCost � AddCost

An advantage of Bernstein	s algorithm is that there is no extra memory
�registers or RAM� needed for temporary results� in the generated code� But
extra memory is not always a problem�
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� A Pattern�based Algorithm

��� The Algorithm

This algorithm is based on the binary method� after Booth	s recoding� we regard
the number n as a vector of signed digits �� ��� ��� denoted �� P and N �and
sometimes� �� �� ��� The idea �that is recursively applied� is as follows� we look
for repeating �non necessarily adjacent� digit�patterns� to have the most digits
P and N disappeared in one operation� To simplify� one only looks for patterns
that repeat twice �though� in fact� they may repeat more often�� For instance�
����� � ����������������� recoded to P�P��N�P�N��N�P� contains the pattern
P������P�N twice �the �rst one in the positive form and the second one in
the negative form N������N�P�� Thus� considering this pattern allows to have
 nonzero digits disappeared in one operation� and we now need to compute
P������P�N and the remaining ��P������������� This can be summarized by�

P������P�N

� P������P�N

� ��P������������

������������������

P�P��N�P�N��N�P

On this example� � operations are obtained �P������P�N is computed with
� operations thanks to the binary method�� whereas Bernstein	s algorithm gen�
erates � operations�

Now� it is important to �nd a good repeating pattern quickly enough� The
number of nonzero digits of a pattern is called the weight of the pattern� We
look for a pattern having a maximal weight� To do this� we take into account
the fact that� in general� there are much fewer nonzero digits than zero digits�
in particular near the leaves of the recursion tree� because of the following
relation� w�parent� � w�child �� � �w�child ��� The solution is to compute
all the possible distances between two nonzero digits� in distinguishing between
identical digits and opposite digits� This gives an upper bound on the pattern
weight associated with each distance� For instance� with P�P��N�P�N��N�P�

distance upper bound weight
� �P�N � N�P�  �
� �P�N � N�P�  
� �P�P � N�N�  �

The distances are sorted according to the upper bounds� then they are tried
the one after the other until the maximal weight and a corresponding pattern
are found�

��� Comparison with Bernstein�s Algorithm

This algorithm has been compared to Bernstein	s and we found that on av�
erage� it is slightly better than Bernstein	s for small constants� Comparisons
couldn	t be performed on large constants because Bernstein	s algorithm would
be too slow� the complexity of Bernstein	s algorithm is exponential� whereas





the pattern�based algorithm is polynomial �it seems to be in O�n�� on average�
O�n�� for each recursion height��

If we consider the number of generated operations� by these algorithms for
the numbers up to ���� the largest di�erence is obtained for �����

With the pattern�based algorithm� one obtains�

�� ���x � �x �� ��� x
�� ���x � ����x �� ��� ���x
� �����x � ����x �� �� � ���x
�� ����x � �x �� ��� � �����x

With Bernstein	s algorithm� one obtains�

�� �x � �x �� � � x
�� ��x � ��x �� �� x
� ��x � ���x �� ��� x
�� ����x � ���x �� �� � ��x
�� ����x � �����x �� � � x
�� ��x � �����x �� ��� ����x
�� ����x � ���x �� �� � x
�� ����x � �����x �� �� � x

��� Results on random numbers

An implementation of the algorithm has been tested on random numbers �an
exhaustive test would have been too slow�� Here is the average number of
generated operations as a function of the number of bits �the �rst and the last
bits must be ���

� ���
�� ����
��� ���
��� ����
��� ����
���� �����
���� �����

The ratio between two consecutive numbers is almost a constant� From this
results� we can conjecture that the average number of operations generated for
an n�bit integer is O�nk�� where k � �����

��� Possible Improvements

Our algorithm can still be improved� Here are some ideas� which have not been
implemented yet�

�An operation is a shift� then an addition or a subtraction� i�e�� the value q in the formu�

lation�

�



� One can look for common digit�patterns� For instance� consider
P�N�N��P�N�N���P�N� with pattern P�N�N� P�N appears both in the pat�
tern and in the remaining digits� thus� it needs to be computed only once
�under some conditions�� A solution is to stop the recursion when the
maximal weight is equal to � �here� only the binary method can be used��
looking for common patterns would be easier� Note that common patterns
should be looked for before using the binary method� with the above ex�
ample� if we start with N�N in P�N�N� the common pattern P�N cannot be
used� we need to start with P�N in P�N�N�

� Sometimes� there are several choices that correspond to the maximal
weight� Instead of taking only one� one can try several patterns� and
keep the shortest operation sequence�

� One can consider the following transform� which does not change the
weight� P�N � �PP �and N�P � �NN�� For instance� ������������ has
the default code P�N�P�P�P��P� but the equivalent code P��N�NN�P��P is
better �with the pattern P��N��N�� As the number of equivalent codes is
exponential� we cannot test all of them� so� we have to look for a method
to �nd the best transforms�

� Instead of de�ning a pattern of maximal weight that appears twice� one
can de�ne a new digit consisting of two old nonzero digits� For instance�
consider ������������������ and the pattern ������ One de�nes a new
digit� A � ��������� and obtains� A�A�A������� Then� one de�nes
B � A��������� and �nally obtains� A���B�B� This leads to � operations�
like the common�pattern method�

� Conclusion

Thanks to the algorithm presented here� we will be able to perform fast mul�
tiplications by integer constants� which may have several hundred bits� Future
work will consist in improving this algorithm� doing some experiments to �nd
the complexity� and trying to prove some results�
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