
HAL Id: hal-02101791
https://hal-lara.archives-ouvertes.fr/hal-02101791v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract geometrical computation for Black hole
computation (extended abstract)

Jérôme Durand-Lose

To cite this version:
Jérôme Durand-Lose. Abstract geometrical computation for Black hole computation (extended ab-
stract). [Research Report] LIP RR-2004-15, Laboratoire de l’informatique du parallélisme. 2004,
2+11p. �hal-02101791�

https://hal-lara.archives-ouvertes.fr/hal-02101791v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Abstract geometrical computation for

Black hole computation

(extended abstract)

Jérôme Durand-Lose Avril 2004

Research Report No 2004-15

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Abstract geometrical computation for

Black hole computation

(extended abstract)

Jérôme Durand-Lose

Avril 2004

Abstract

The Black hole model of computation provides a computing power that
goes beyond the classical Turing computability since it offers the possi-
bility to decide in finite time any recursively enumerable (R.E .) problem.
In this article, we provide a geometric model of computation, conser-
vative abstract geometrical computation, that has the same property:
it can simulate any Turing machine and can decide any R.E . problem
through the creation of an accumulation. Finitely many signals can leave
any accumulation, and it can be known whether anything leaves. This
corresponds to a black hole artifact.

Keywords: Abstract geometrical computation, Black hole model, Energy conservation,
Malament-Hogarth space-times, Turing universality, Zeno phenomena.

Résumé

Le modèle du calcul avec un trou noir fournit une puissance de cal-
cul supérieure au calcul Turing classique puisqu’on peut y décider tout
problème récursivement énumérable (R.E.). Dans cet article, nous pro-
posons un modèle de calcul géométrique, conservative abstract geome-
trical computation, qui a la même propriété : il peut simuler n’importe
quelle machine de Turing et, en créant une accumulation, décider n’im-
porte quel problème R.E. Seulement un nombre fini de signaux peuvent
quitter l’accumulation et il est possible de savoir si quoi que ce soit l’a
quitté. Ceci correspond à l’artefact du trou noir.

Mots-clés: Abstract geometrical computation, Modèle du trou noir, Conservation de
l’énergy, Espace-temps de Malament-Hogarth, Turing universalité, Phénomène de type Zéno.

Abstract geometrical computation for

Black hole computation (extended abstract)

Jérôme Durand-Lose

April 2003

Abstract

The Black hole model of computation provides a computing power that goes beyond
the classical Turing computability since it offers the possibility to decide in finite time any
recursively enumerable (R.E .) problem. In this article, we provide a geometric model of
computation, conservative abstract geometrical computation, that has the same property:
it can simulate any Turing machine and can decide any R.E . problem through the creation
of an accumulation. Finitely many signals can leave any accumulation, and it can be known
whether anything leaves. This corresponds to a black hole artifact.

Key-words: Abstract geometrical computation, Black hole model, Energy conservation, Malament-

Hogarth space-times, Turing universality, Zeno phenomena.

None of the physicist aspects of this article is to be considered as true. The author, being
a computer scientist with little knowledge on the matter, would not feel insulted if one would
consider these mere inventions/illusions. However, we do not pretend to explain or describe
black holes, but just to provide a computer scientist insight and model mostly directed to the
computer science community. This paper could have been presented as a model of computation
with special features, but since so much similarities exist, we stress on the correspondence.

1 Introduction

Theoretical physicists address the limits of the Church-Turing thesis as they get insights of possi-
ble space-times abiding Einstein’s equations but providing more than classical Turing computing
power [Hog94]. The idea is to have the possibility to use an infinite amount of time on a sepa-
rate future endless curve to try solving a recursively enumerable (R.E .) problem, such that the
result, or the absence of any result, can be retrieve in finite time in the main curve. For the
theoretical computer scientist, this is related to infinite Turing computation or computation on
ordinals [Ham02].

Malament-Hogarth space-times [EN02] provides this. Roughly speaking, the idea is to sent
a computer in a black hole and wait, for a finite and known amount of time, for a yes or no
answer. The machine sent in the black hole has an infinite amount of time ahead of it; but
any signal it returns is received at the border within a bounded local delay. After this finite
delay, the observer knows whether the computation ever stops (by noticing whether anything
was received) and what the answer is. It is thus possible to decide any R.E . problem in finite
time.

Abstract geometrical computation [DL04] considers Euclidean lines. The support of space
and time is thus R. Computations are produced by signal machines which are defined by a

1

finite set of meta-signals and a finite set of collision rules. Signals are atomic information, corre-
sponding to meta-signals, moving at constant speed thus generating Euclidean line segments on
space-time diagrams. Collision rules are pairs (incoming meta-signals, outgoing meta-signals),
that define a mapping (which means determinism) over sets of meta-signals. They define what
happens when signals meet, i.e. the extremities of the line segments.

A configuration (at a given time or the restriction of the space-time diagram to a given time)
is a mapping from R to meta-signals, collision rules, and two special values: void (i.e. nothing
there) and black hole (to mark accumulations). There should be finitely many positions not
mapped to void. The time scale is R+, so that there is no such thing as a “next configuration”.
The following configurations are defined by the uniform movement of each signal, the speed of
which is defined by its associated meta-signal. When two or more signals meet, this produces a
collision defined by a collision rule. In the configurations following a collision, incoming signals
are removed and outgoing signals corresponding to the outgoing meta-signals are added.

Zeno like acceleration and accumulation can be constructed as in Fig. 1. This provides
the black hole-like artifact for deciding R.E . problems. But accumulations can lead to an
uncontrolled burst of signals producing infinitely many signals in finite time (as in the right of
Fig. 1). In order to avoid this, we impose a conservativeness condition on the rules: a positive
energy is defined for every meta-signal, the sum of these energies must be conserved by each
rule. This means that there is no energy creation possible.

Each signal corresponds to a meta-signal which indicates its slope on the space-time diagram.
Since there are finitely many meta-signals, there are finitely many slopes. This limitation may
seem restrictive and unrealistic, even awkward as a quantification inside an analog model of
computation. Let us notice that, first, it comes from cellular automata (CA) (as explained
below): once a discrete line is identified, wherever (and whenever) the same pattern appears,
the same line is expected, thus with the same slope. Second, we give two pragmatic arguments:
(1) laws to compute new slopes in collisions are not so easy to design and pretty cumbersome
to manipulate; (2) there is already much computing power and scheming things.

Abstract geometrical computation comes from the common use in literature of Euclidean
lines to model discrete lines in the space-time diagram of CA to access dynamics or to design.
Cellular automata form a well known and studied model of computation and simulation. Con-
figurations are Z-arrays of cells, the states of which belong to a finite set. Each cell can only
access the states of its neighboring cells. All cells are updated iteratively and simultaneously.
The main characteristics of CA, as well as abstract geometrical computation, are: parallelism,
synchrony, uniformity and locality of updating. The space-time diagrams are colorings of Z×N

with states. Discrete lines are often observed on these diagrams. They can be the keys to
understanding the dynamics and correspond to so-called particles or signals as in, e.g., [Ila01,
pp. 87–94] or [BNR91, HSC01]. They can also be the tool to design CA for precise purposes
and then named signals and used for, e.g., prime number generation [Fis65], firing squad syn-
chronization [VMP70, Maz96] or reversible simulation [DL97]. These discrete line systems have
also been studied on their own [DM02, MT99]. All these papers, and many more, implicitly use
abstract geometrical computation.

Before presenting our results, we want to convince the reader that it is not just “one more
model of computation”. First, it does not come “out of the blue” because of its CA origin. Sec-
ond, to our knowledge1, it is the only model that is a dynamical system with continuous time and
space but finitely many local values. The closest model we know of is the Mondrian automata
of Jacopini and Sontacchi [JS90]. They work on space-time diagrams which are mappings from
Rn to a finite set of colors. Their diagrams should be bounded finite polyhedra; we are only
addressing lines –faces are not considered– and our diagrams may be unbounded and accumu-

1A brief tour of analog/super-Turing models of computation can be found in [DL03, Chap. 2].

2

lation points are used (they just forbid them). Another close model is the piecewise-constant
derivative system [AM95, Bou99]: Rn is partitioned into finitely many polygonal regions; the
trajectory is defined by a constant derivative on each region, thus an orbit is a sequence (pos-
sibly over an ordinal) of (Euclidean) line segments. This model is sequential –there is only one
“signal”– and the faces that delimit the regions are artifacts that do not exist in our model.
Nevertheless, it also uses accumulations to decide R.E . problems.

In this paper, space and time are restricted to rationals. This is possible since all the oper-
ations used preserve rationality. All intervals should be understood over Q, not R. Extending
the definitions to real values is automatic but only the rational case is addressed here.

After formally defining our model in Sect. 2, we rapidly show that any Turing-computation
can be carried out through the simulation of 2-counter automata in Sect. 3. The values of the
counters are encoded by positions and the instructions are going forth and back between them
and fixed signals indicating the scale. The continuous nature of space is used here: all 1/2n

positions exist.
In Sect. 4, we show how to bound temporally a computation that is already spatially

bounded. This method is constructive and relies on the continuous nature of space and time.
The construction generates an accumulation point. We explain how to use these accumulations
for deciding R.E . problems in Sect. 5.

Conclusion, remarks and perspectives are gathered in Sect. 6.

2 Definitions

Our abstract geometrical computations are defined by the following machines:

Definition 1 A signal machine is defined by (M,S,R) where M (meta-signals) is a finite set,
S (speeds) is a mapping from M to Q, and R (collision rules) is a subset of P(M)×P(M) that
corresponds to a partial mapping of the subsets of M of cardinality at least 2 to the subsets of
M (both domain and range are restricted to elements of different speeds).

The elements of M are called meta-signals. Each instance of a meta-signal is a signal which
corresponds to a line segment in the space-time diagram. The mapping S assigns rational speeds
to meta-signals, i.e. the slopes of the segments. The set R defines the collision rules, noted
ρ−→ρ+: what happens when two or more signals meet. It also defines the intersections of the
segments. The signal machines are deterministic because R must correspond to a mapping.

The extended value set, V , is the union M and R plus two symbols: one for void, ®, and
one for a black hole ❊. A configuration, c, is a total mapping from Q to V such that the set
{x ∈ Q | c(x) 6= ®} is finite.

A signal corresponding to a meta-signal µ at a position x, i.e. c(x) = µ, is moving uniformly
with constant speed S(µ). A signal must start in the initial configuration or be generated by a
collision. It must end in a collision or in the last configuration. This corresponds to condition
2. in Def. 2. At a ρ−→ρ+ collision, all, and only, signals corresponding to the meta-signals
in ρ− (resp. ρ+) must end (resp. start) in this collision. No other signal should be present.
This corresponds to 3. in Def. 2. A black hole corresponds to an accumulation of collisions and
disappears without a trace. This corresponds to 4. in Def. 2.

Let Smin and Smax be the minimal and maximal speeds (i.e. the extrema of S). The causal
past, or light-cone, arriving at position x and time t, J−(x, t), is defined by all the positions
that might influence through signals, formally:

J−(x, t) = { (x′, t′) | (0 ≤ Smax(t−t
′)− x+x′) ∧ (0 ≤ x−x′ − Smin(t−t

′)) } .

3

Before formally defining the dynamics by space-time diagrams, we want to point out the
black hole formation example of Fig. 1. This example is so simple (i.e. 4 meta-signals and 2
collision rules) that such a situation cannot be excluded.

(x, t)

J−(x, t)

Figure 1: Black hole, light-cone and unwanted phenomena.

Definition 2 The space-time diagram, or orbit, issued from an initial configuration c0 and
lasting for T 2, is a mapping c from [0, T] to configurations (i.e. a mapping from Q× [0, T] to
V) such that, ∀(x, t) ∈ Q× [0, T] :

1. ∀t∈[0, T], {x ∈ Q | ct(x) 6= ®} is finite,

2. if ct(x)=µ then ∃ti, tf∈[0, T] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

• ∀t′ ∈ (ti, tf), ct′(x+ S(µ)(t′ − t)) = µ,

• ti = 0 or cti(xi) ∈ R and µ ∈ (cti(xi))
+ where xi = x+ S(µ)(ti − t),

• tf = T or ctf (xf) ∈ R and µ ∈ (ctf (xf))
− where xf = x+ S(µ)(tf − t);

3. if ct(x) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [t− ε, t+ ε], ∀x′ ∈ [x− ε, x+ ε],

• c′t(x
′) ∈ ρ−∪ρ+ ∪ {®},

• ∀µ ∈ ρ−, (c′t(x
′) = µ) ⇔ (t′ < t and x′ = x+ S(µ)(t′ − t))),

• ∀µ ∈ ρ+, (c′t(x
′) = µ) ⇔ (t < t′ and x′ = x+ S(µ)(t′ − t))),

4. if ct(x) = ❊ then

• ∃ε > 0, ∀(x′, t′) 6∈ J−(x, t) s.t. |x−x′|<ε and |t−t′|<ε, ct′(x) = ®,

• ∀ε > 0,
∣

∣ { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x
′) ∈ R }

∣

∣ =∞.

On space-time diagrams, the traces of signals represent line segments whose directions are
defined by (S(.), 1) (1 is the temporal coordinate). Collisions correspond to the extremities of
these segments. Examples of space-time diagrams are provided by the various figures. Time is
always increasing upwards.

The middle space-time diagram of Fig. 1 provides an example of a possible but unwanted
one. It is not compatible with Def. 2 if times after the accumulation are to be considered. The
number of signals is bursting to infinity and there is a black hole segment. This is unwanted
because on the one hand it corresponds to the free apparition of energy, and on the other hand
we fell that black holes should be dimensionless points. The two remaining space-time diagrams
show even more unwanted cases. We thus introduce the following restriction that prevents such
cases and corresponds to the energy conservation.

Definition 3 A signal machine is conservative when an atomic positive energy is defined for
all meta-signals (E : M → N∗)3 such that the total energy of the system is preserved, i.e. the

2This definition can easily be extended to the T =∞ case.
3Integer are enough, since there are finitely many meta-signals.

4

sum of all the energy of existing signals is a constant of the system. This is equivalent to accept
only rules that preserve this energy, i.e. the sum of the energy of incoming meta-signals equals
the sum of outgoing ones.

Conservativeness is straightforward if the condition on rules is satisfied. If it is not satisfied,
it is very easy to built a configuration such that only this rule is used and then the energy is
not preserved.

Property 4 Given a conservative signal machine and an initial configuration, the number of
signal in any following configuration, as well as the number of accumulations, is bounded (by
the total energy divided by the least atomic energy).

Energy can only be lost in “black hole” formation, i.e. accumulation. A sub-case of con-
servativeness is when all the meta-signals have the same energy and the number of in and out
meta-signals are always equal. This is the case in the rest of this article. We chose to present
a more complex notion since it is weaker and better suits the physical notion of the energy
conservation.

3 Turing-computation capability

We prove the Turing-computation power of our model by simulating any 2-counter automaton
(a finite automaton couple with two counters, A and B). The possible actions on any counter are
add/subtract 1 and branch if non-zero. These machines can be described with a six-operations
(the three aforementioned ones for each of the two counters) assembly language with branching
labels as on the left part of Fig. 6 (see [Min67] for more on 2-counter automata).

The simulation is carried out with both counters encoded by relative positions according to
two fixed signals zero and one. These two signals form a scale on the diagram. The counter A
(resp. B) is encoded by a single signal a (b) at position α2−a (β2−b) as in Fig. 2. The parameter
α and β are rationals such that 1 < α < β < 2; this ensures that the signal a (b) is between
zero and one unless its value is zero and in such a case it is on the other side of one. Let us note
that the values of α and β prevent the signals from occupying the same place nor to be on the
scale signals. As can be easily checked on the construction in the rest of this section, they also
prevent that any collision happens on an unconcerned signal.

ze
ro

on
e

a

0

a

1

a

2

a

3

a

. . .

b

0

b

1

b

2

b

3

b

. . .

Figure 2: Encoding positions of counters.

The current instruction (e.g. n) is encoded as the signal ←−n . It moves back to zero, bounces,
carries out the operation and returns as the next operation. The five possible configurations
are given in Fig. 3.

The fact that a signal encoding a counter is on the other side of one only for the value 0
provides an easy way to test for non-zero for branching or subtracting 1: going rightward one
is encountered first if and only if the value of the counter is 0.

They are two kinds of meta-signals: 8 for the counters and borders, and the ones generated
for the code. The meta-signals of the first kind are: zero, one, a and b of speed 0 used to

mark the borders and to encode A and B, and ←−a (
←−
b) and −→a (

−→
b) of speed −1 and 1 used to

increment/decrement A (B). For the second kind, each line n of the program is converted into

5

a = 0 0 < a

b=0 ze
ro

on
e

a b

←−n

ze
ro

on
e

a b

←−n

0<b ze
ro

on
e

ab

←−n

ze
ro

on
e

a b

←−n

ze
ro

on
e

ab

←−n

Figure 3: Encoding of configurations.

−→n and ←−n of speed 2 and −2 and possibly
−→
n’ and

←−
n’ of speed 3 and −3 to carry out increment

and decrement as explained below.
First any instruction bounces on zero to be on the left of any other signal and thus be in

the right position to start carrying out any instruction. This is achieved by the following rule:
{zero,←−n } → {zero,−→n }.

The full transformation of a program into a signal machine is not given. We only detail the
collision rules generated for the most complicated case: a A-- instruction (at line n). The rules
are the following:

{−→n , one} → {
←−−
n+1, one}, {−→n , a} → {

←−
n’ ,−→a },

{zero,
←−
n’} → {zero,

−→
n’}, {

−→
n’ ,−→a } → {

←−−
n+1, a}.

All other collisions are blank, i.e., the same signals are regenerated. The effect of these in-
structions is shown in the space-time diagrams of Fig. 5. The relative position of one and a is
very important because a counter already at zero is not decreased. If such is not the case, the
distance between zero and a is multiplied by 2 as it can easily be geometrically checked on Fig. 5
where the slopes are indicated with dotted lines.

z
e
ro

o
n
e

a = 0

ti
m

e

←
−−n+1

a

←−n

−→n

z
e
ro

o
n
e

0 < a

1

1

1

3

1
3

←
−−n+
1

←−n

−→n

←−
n’

−→
n’

a

−→a

a

Figure 4: Implementation of A--.

The instructions A++ does exactly the same thing in reverse, but the zero case does not
have to be considered. We do not give the rules, they can be recovered from the left diagram
space-time of Fig. 5. The non-zero tests are done by simply noticing that one is met before only
if it is zero. This is illustrated by the last two space-time diagrams of Fig. 5.

z
e
ro

0 < a

o
n
e

←
−−n+1

←−n

−→n

←−
n’

−→
n’

a

←−a

a

z
e
ro

a = 0

o
n
e

←
−−n+1

−→n a

←−n

z
e
ro

0 < a

o
n
e

←−m

−→n

a

←−n

Figure 5: Implementations of A++ and n : IF A!=0 m.

All the instructions on B are carried out similarly.

6

Figure 6 provides three space-time diagrams associated to different initial values. The pic-
tures are strained vertically in order to fit.

beg: B++

A--

IF A != 0 beg1

IF B != 0 imp

beg1: A--

IF A != 0 beg

pair: B--

A++

IF B != 0 pair

IF A != 0 beg

imp: B--

A++

A++

IF B != 0 imp1

IF A != 0 beg

imp1: B--

A++

A++

A++

IF B != 0 imp1

IF A != 0 beg

6

a=1 b=0

6

a=3 b=0

6

a=5 b=0

Figure 6: A 2-counter automaton and its simulations for three different initial values.

There is something left to consider: the end of the computation, i.e. the treatment of the
halt. It is not possible to just make the instruction signal disappears since this would yields a
non conservative rule. To cope with this, one can choose to let the instruction signal leaves on
the left (but this signal could be damaging for the rest of the computation), or to let it bounce
indefinitely between zero and one, thus also preserving the number of signals.

All together, any 2-counter automaton can be simulated by a conservative signal machine.
In fact, any finite number of counters can be included and treated similarly. Signal machines
thus form a model of computation which has at least Turing-computing capability.

4 Contraction principle

It is possible to partially strain any space-time diagram as schematized on Fig. 7. The idea
is to decompose the upper part according to two non-collinear vectors. One vector is used
as a frontier (here the one of speed β). A change of scale is done on the second one (here
multiplication by 3 on the axis corresponding to speed α). This is a strain of a given ratio
about the second axe. On Fig. 7, the dotted lines indicate how the images of two points are
computed. The grey parts indicate the ongoing computation.

This geometrical transformation is easily implemented inside our model: by switching to
strained signal on the frontier, all following computations mimic the unstrained one. The
following meta-signals are added: one for the frontier, and one strained meta-signal for each
initial meta-signal4. All the collision rules are duplicated so that strained signals behave exactly
as unstrained ones. Collisions of the form {frontier and unstrained}→{frontier and strained}

4Its speed is computed by some (ax+ b)/(cx+ d) formula whose coefficients depend on the parameters which
have to verify some easily satisfied conditions (see [DL03, Chap. 7] for details).

7

are added. New rules are created to account for the possibility of the frontier to pass exactly on
a collision. Conservativeness is preserved by setting identical energies to corresponding strained
meta-signals.

α β
1 1

3α

3

Figure 7: Strain principle.

With this construction, it is possible to build a structure that scales by one half the rest
of the computation as illustrated on Fig. 8. The two directions used correspond to v0 and 4v0,
where v0 is big enough. In the left picture, nothing happens. In the middle picture, the lower
signal is the frontier and a strain of ratio 1/2 is done about to the upper signal. In the right
picture, a second strain takes place: the role of the directions are exchanged, and the ratio is
still 1/2. After the two strains, the computation is scaled by 1/2 on both directions, thus on any
direction. The whole computation is scaled by 1/2 and the original meta-signals can be used
again since the computation undergoes no strain after the second one. This makes it possible
to iterate the shrinking.

Figure 8: Shrinking principle.

From now on, only spatially bounded space-time diagrams are considered. This is sufficient
to ensure that the computation remains inside the structure when shrinking is iterated. It is
possible to add some extra signals to restart the shrinking each time as in the left part of Fig. 9.
The right picture represents the application of this structure to a simulation of a 2-counter
automaton.

Figure 9: Iterated shrinking: structure and examples.

In each space-time diagrams of Fig. 9, there is an accumulation point: there are infinitely
many collisions accumulating to the upper angle of the triangle. This is a “Zeno effect”: finite

8

(continuous) duration but infinitely many (discrete) instants. All collisions are in the light cone
ending there (and there is nothing out of it). This corresponds to the black hole of Cond. 4 in
Def. 2.

5 Black hole formation

We consider the simulation of a 2-counter automata such that, when the simulation stops, if
the configuration corresponds to acceptance, then the instruction signal goes on the left. In the
case of rejection, another signal would be issued.

The construction of the iterated shrinking can then be modified in order not to act on this
signal (i.e. it is always generated unstrained and never strained) so that it leaves the iterated
shrinking. The iterated shrinking plays the role of the black hole and these specially treated
signals represent the information that “leaves” the black hole before the collapsing.

The only thing left is to get this information or assert that no information left (i.e. the
computation never stops). This is done by bounding the iterated shrinking by 2 signals that
meet after the black hole. If a notification of acceptance or rejection leaves, they grab it before
they meet. So that, at the meeting, they know whether the computation finishes. This is
illustrated by Fig. 10.

accumulation

Y

Accepts

accumulation

N

Rejects

accumulation

Does not halt

Figure 10: Encapsulation of a black hole.

6 Conclusion

We have provided a geometrical model of computation that is Turing-computation universal and
has the special features of the Black hole model. We are not using already existing black holes,
but rather creating them on demand (a Malament-Hogarth space-time is implicitly built). It is
not so strange that computation forms the black hole since they come from the same matter as
the machine sent into. One can also consider that some signals fix black hole formation, while
others carry out the computation using the black hole.

One may object that black holes disappearance is not acceptable. The underlying space is
one-dimensional, any remaining black hole would form a barrier preventing information to cross
from one side to the other; in two and more dimension, it is alway possible to go around it.
Another argument is to imagine that signals are drifting in a higher dimensional space, so that
the black holes remain, but its orbit is not in the plane of the space-time diagram.

Reversibility is an important issue in theoretical physics. One can easily check that re-
versibility corresponds to R being one-to-one. At the expense of more complex constructions,
universality can be achieved as well as the use of accumulations as black holes. But the final
collapsing is not reversible.

The number of possible black holes / R.E . queries is bounded from the start (each needs a
minimal amount of energy). Unless the black hole returns the energy in some form, which is
clearly forbidden here, there is no way to address second order accumulations (i.e. ω2 or second

9

order space-time arithmetic deciding or Σ0
2 in the arithmetical hierarchy), unless infinitely many

signals exist at start, apart one from another. This way it would be reasonably possible to hope
to climb the arithmetical hierarchy as in [AM95, Bou99].

As long as the model is restricted to rationals, there are finitely many signals present at any
instant and there is no accumulation, the model is Turing-universal and can be simulated by
any Turing machine and is thus Turing-equivalent. Real values for speeds and/or positions can
be used as oracles and thus provide computing ability that goes beyond Turing-computation.

References

[Ada02] A. Adamatzky, editor. Collision based computing. Springer, 2002.

[AM95] E. Asarin and O. Maler. Achilles and the Tortoise climbing up the arithmetical
hierarchy. In FSTTCS ’95, number 1026 in LNCS, pp. 471–483, 1995.

[BNR91] N. Boccara, J. Nasser, and M. Roger. Particle-like structures and interactions in
spatio-temporal patterns generated by one-dimensional deterministic cellular automa-
ton rules. Phys. Rev. A, 44(2):866–875, 1991.

[Bou99] O. Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy.
Theoret. Comp. Sci., 210(1):21–71, 1999.

[DL97] J. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular automa-
ton. In STACS ’97, number 1200 in LNCS, pp. 439–450. Springer, 1997.

[DL03] J. Durand-Lose. Calculer géométriquement sur le plan – machines à signaux –. Ha-
bilitation à diriger des recherches, École Doctorale STIC, Université de Nice-Sophia
Antipolis, 2003. In French, http://perso.ens-lyon.fr/jerome.durand-lose/Hdr.

[DL04] J. Durand-Lose. Abstract geometrical computation: Turing-computing ability and
unpredictable accumulations (extended abstract). Technical Report 2004–09, LIP,
ÉNS Lyon, 46 allée d’Italie, 69 364 Lyon 7, 2004.

[DM02] M. Delorme and J. Mazoyer. Signals on cellular automata. in [Ada02], pp. 234–275,
2002.

[EN02] G. Etesi and I. Nemeti. Non-Turing computations via Malament-Hogarth space-times.
Int. J. Theor. Phys., 41(2):341–370, 2002. gr-qc/0104023.

[Fis65] P. C. Fischer. Generation of primes by a one-dimensional real-time iterative array. J.
ACM, 12(3):388–394, 1965.

[Ham02] J. D. Hamkins. Infinite time Turing machines: Supertask computation. Minds and
Machines, 12(4):521–539, 2002. math.LO/0212047.

[Hog94] M. Hogarth. Non-Turing computers and non-Turing computability. In Biennial
Meeting of the Philosophy of Science Association, number 1, pp. 126–138, 1994.

[HSC01] W. Hordijk, C. R. Shalizi, and J. P. Crutchfield. An upper bound on the products of
particle interactions in cellular automata. Phys. D, 154:240–258, 2001.

[Ila01] A. Ilachinski. Cellular Automata –A Discrete Universe–. World Scientific, 2001.

10

[JS90] G. Jacopini and G. Sontacchi. Reversible parallel computation: an evolving space-
model. Theoret. Comp. Sci., 73(1):1–46, 1990.

[Maz96] J. Mazoyer. On optimal solutions to the Firing squad synchronization problem. The-
oret. Comp. Sci., 168(2):367–404, 1996.

[Min67] M. Minsky. Finite and Infinite Machines. Prentice Hall, 1967.

[MT99] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. Theoret.
Comp. Sci., 217(1):53–80, 1999.

[VMP70] V. I. Varshavsky, V. B. Marakhovsky, and V. A. Peschansky. Synchronization of
interacting automata. Math. System Theory, 4(3):212–230, 1970.

11

