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Abstract

We pursue the study of the computational power of Piecewise Constant Derivative �PCD� systems
started in ��� ��� PCD systems are dynamical systems de�ned by a piecewise constant di	erential
equation and can be considered as computational machines working on a continuous space with a
continuous time� We prove that the languages recognized by rational PCD systems in dimension
d 
 �k�
 �respectively� d 
 �k���� k � �� in �nite continuous time are precisely the languages

of the �k
th

�resp� �k � �
th
� level of the hyper�arithmetical hierarchy� Hence the reachability

problem for rational PCD systems of dimension d 
 �k � 
 �resp� d 
 �k � ��� k � �� is
hyper�arithmetical and is ��k�complete �resp� ��k���complete��

Keywords� Real computability� Continuous time computations� Dynamical systems� Hyper�arithmetical
hierarchy

R�esum�e

Nous poursuivons l��etude de la puissance de calcul des syst�emes �a d�eriv�ee constante par morceaux
d�ebut�ee dans ��� ��� Les syst�emes PCD sont des syst�emes dynamiques d�e�nis par une �equation
di	�erentielle constante par morceaux� Ils peuvent �etre vus comme des mod�eles de calcul �evoluant
sur espace continu avec un temps continu� Nous prouvons que les langages reconnus par des
syst�emes PCD rationnels en dimension d 
 �k�
 �respectivement� d 
 �k���� k � �� en temps

continu �ni sont pr�ecis�ement les langages du �k
ieme

�resp� �k � �
ieme

� niveau de la hi�erarchie
hyper�arithm�etique� Ainsi le probl�eme de l�atteignabilit�e des syst�emes PCD de dimension d 

�k�
 �resp� d 
 �k���� k � �� est hyper�arithm�etique et est ��k�complet �resp� ��k���complet��

Mots�cl�es� Calculabilit�e r�eelle� Calculs en temps continu� Hi�erarchie hyper�arithm�etique� Syst�emes dy�
namiques�



� Introduction

There has been recently an increasing interest in the �elds of control theory and computer science about
hybrid systems� A hybrid system is a system that combines discrete and continuous dynamics� Several
models have been proposed in literature� Hybrid systems can be considered as computational machines
��� �� 
� �� ��� they can be seen either as machines working on a continuous space with a discrete time or as
machines working on a continuous space with a continuous time�

Several theoretical models of machines working on a continuous space with a discrete time are known�
in ���� Blum� Shub and Smale introduce the real Turing machine� Many papers are devoted to this model�
see ���� for an up�to�date survey� In ��
�� Meer introduces a restricted class of real Turing machines called
the linear machines� Meer proves that P �
 NP in this class of systems� In ���� ���� Koiran characterizes
the boolean part of the languages recognized by linear machines as P�poly in polynomial discrete time and
as unbounded in exponential discrete time�

Simultaneously� in ��� �� �� ��� it is shown that several very simple dynamical systems can be considered
as non trivial machines that work on a continuous space with a discrete time� In particular� in ��� �� 
� the
attention is focused on a very simple type of hybrid systems� Piecewise Constant Derivative Systems �PCD
systems� are dynamical systems de�ned by a piecewise constant di	erential equation� It is shown that the
reachability problem for PCD systems of dimension d 
 � is decidable and undecidable for dimensions d � 

��� 
� � In ���� the computational power of Piecewise Constant Derivative systems is characterized as P�poly
in polynomial discrete time� and as unbounded in exponential discrete time�

However� hybrid systems are very interesting models since they can be considered as natural computa�
tional machines working on a continuous space with a continuous time� The studies of this type of machines
are only beginning� In ����� Moore proposes a recursion theory for computations on the reals in continu�
ous time� Recently� Asarin and Maler ��� showed� using Zeno�s paradox� that every set of the arithmetical
hierarchy can be recognized in �nite continuous time by a PCD system of �nite dimension� every set of
the arithmetical hierarchy in �k � �k can be recognized by a rational PCD system in dimension �k � ��
Unfortunately� no precise characterization of the sets recognizable by PCD systems is given in ���� In ���� a
precise characterization is given for the restricted class of purely rational PCD systems� However no answer
is given about the general class of rational PCD systems�

We provide in this paper a full characterization of the computational power of rational PCD systems�
we prove that every arithmetical set can be recognized in �nite continuous time in dimension �� Hence�
in one sense� dimension � is universal for the arithmetical hierarchy� However� we prove in this paper
that there does not exist a dimension d such that PCD systems of dimension d recognize every set of the
hyper�arithmetical hierarchy� we prove that the languages recognized by rational PCD systems in dimension
d 
 �k � 
 �respectively� d 
 �k � ��� k � �� in �nite continuous time are precisely the languages of the

�k
th

�resp� �k � �
th
� level of the hyper�arithmetical hierarchy� In other words� the reachability problem for

rational PCD systems of dimension d 
 �k � 
 �resp� d 
 �k � �� is ��k�complete �resp� ��k���complete��
Section � is devoted to general de�nitions about Piecewise Constant Derivative Systems and about

the hyper�arithmetical hierarchy� In section 
� we introduce Real Continuous Time �RCT� machines� we
prove that RCT machines can recognize some hyper�arithmetical sets� In section �� we show that RCT
machines can be simulated by PCD systems and we deduce that PCD systems can also recognize some
hyper�arithmetical sets� In section �� we prove that the bounds given in section � are optimal� the languages
recognized by rational PCD systems in dimension d 
 �k � 
 �respectively� d 
 �k � ��� k � � in �nite

continuous time are precisely the languages of the �k
th

�resp� �k � �
th
� level of the hyper�arithmetical

hierarchy�

� De�nitions

��� PCD systems

A convex polyhedron of Rd is any �nite intersection of open or closed half spaces of Rd� A polyhedron of
Rd is a �nite union of convex polyhedral of Rd� In particular� a polyhedron may be unbounded or �at� For
V � Rd� we denote by V the topological closure of V � We denote by d the distance of the maximum of Rd�

�



De�nition ��� �PCD System� � A dynamical system is a couple H 
 �X� f� where X 
 Rd and f is
a function from X to X� X is called the space and d is called the dimension of H� A trajectory of H
starting from x� is a continuous solution to the di�erential equation �xd 
 f�x�� with initial condition
x�� where �xd denotes the right derivative� that is to say � � D � R� � X where D is an interval of
R� containing �� ���� 
 x�� and �t � D� ��d�t� 
 f���t��� Trajectory � is said to continue for ever
if D 
 R��

� A piecewise constant derivative �PCD� system ��� �� is a dynamical system H 
 �X 
 Rd� f� where
the range of f is a �nite set C � X� such that for any c � C 	c is called a slope
 f���c� is a �nite
union of convex polyhedral sets 	called regions
�

In other words a PCD system consists of partionning the space into convex polyhedral sets� called regions�
and assigning a constant derivative c� called slope to all the points sharing the same region� The trajectories
of such systems are broken lines with the breakpoints occuring on the boundaries of the regions ���� see
�gure ��

The signature of a trajectory is the sequence of the regions that are reached by the trajectory� The
restriction of a trajectory � � D � Rd to interval I � D is the restriction of function � to domain I�

 Trajectory

Direction

Figure �� A PCD system in dimension ��

In this paper we will deal only with rational PCD systems�

De�nition ��� � A PCD system is called rational if all the slopes as well as all the polyhedral regions
can be described using only rational coe�cients�

� A PCD system is called purely rational� if in addition� for all trajectory � starting from a rational
point� every time � enters a region in some point x� x has rational coordinates�

Some comments are in order� one must understand that a trajectory � can enter a region either by a
discrete transition or by converging to a point of the region� see �gure 
� Hence� the de�nition of purely
rational PCD systems stipulates that every converging process converges towards a point with rational
coordinates� We will see in theorem ��� that one can construct a rational PCD system of dimension � that
is not purely rational�

We can say some words on the existence of trajectories in a PCD system� let x� � X� We say that x�
is trajectory well�de�ned if there exists a � � � such that f�x� 
 f�x�� for all x � �x�� x� � � � f�x���� It is
clear that� for any x� � X� there exists a trajectory starting from x� i	 x� is trajectory well�de�ned� Given
a rational PCD system H� one can e	ectively compute the set NoEvolution�H� of the points of X that are
not trajectory well�de�ned� See that a trajectory can continue for ever i	 it does not reach NoEvolution�H��

��� Computing with PCD systems

Let � be a �nite alphabet with at least two letters� By renaming if necessary� we can assume without loss
of generality that � 
 f�� �� � � � � n�g�

�



We write �� �respectively� ��� for the the set of the �nite �resp� �nite and in�nite� words over alphabet
�� We write � for the empty word� If w � ��� we write length�w� for the length of word w� We �x a
recursive encoding of the integers over the words of ��� for any integer n � N� we denote by n a word of ��

encoding integer n�
We describe now how to encode a word of �� into a real of ��� ��� Denote by b� the �rst power of � that

is greater than �n� � �� b� 
 �b
�
� for some b�� � N�

De�nition ��	 �Encoding by I�J � Let � 
 f�� �� � � � � n�g be the �xed �nite alphabet�

� We denote by J the mapping from �� � J that maps word w 
 a�a� � � �ai � � �� with a�� a�� � � � � �� to
real number

J �w� 

�X
j��

��aj�

�b��j

� We denote by J � R the range of J �

� We denote by I the restriction of J to ���

� We denote by I � R the range of I�

PCD systems can be considered as machines recognizing some languages L � �� as follows�

De�nition ��
 �Computation ���� � Let H 
 �X� f� be a PCD system of dimension d� Let x�� x�

be two distinct points of Rd� A computation of system �H 
 �Rd� f� I� x�� x�� on entry n � �� is a
trajectory that can continue forever 	de�ned on all R�
 of H 
 �X� f� starting from �I�n�� �� � � � � ���
The computation is accepting if the trajectory eventually reaches x�� and refusing if it reaches x�� It
is assumed that the derivatives at x� and x� are zero�

� Language L � �� is semi�recognized by �H if� for every n � ��� there is a computation on entry n and
the computation is accepting i� n � L� L is said to be 	fully�
recognized by �H when� in addition� this
trajectory reaches x� i� n �� L�

X
1

X
0

Accepted Input

Rejected Input

Non−accepted Input

Accepting Point

Rejecting Point

Input Port

Figure �� Some examples of computations by a PCD system�

��� Measuring the time on PCD systems

De�nition ��
 �Continuous and Discrete time� Let �n � R� � X be an accepting computation on
entry n � ���

� The continuous time Tc�n� of the computation is T 
 minimumft � R���n�t� 
 x�g






� Let Tn 
 ft��n reaches a boundary of a region at time tg� It is easy to see that Tn is a well ordered
set �
�� The discrete time Td�n� of the computation is de�ned as the order type of well ordered set Tn
	� the ordinal corresponding to Tn
�

Note that Zeno�s paradox appears� to a �nite continuous time can correspond a trans�nite discrete time�
see �gure 
�

(−1,1/2)(−1,1)

(1,−1) (1,1)

xx/20
0

x/2

Figure 
� Zeno�s paradox� at �nite continuous time �x 
 ����x� x�� � x��� � � �� the trajectory is in ��� ���
but it takes a trans�nite discrete time � to reach this point�

��� Hyper�arithmetical hierarchy

��
�� De�nition

For y � N� denote by My the yth Turing machine� by �y � �� � �� the function computed by My� and by
Wy � �� the set of the words accepted by My� y � N is said to be a recursively enumerable index of X � ��

i	 X 
Wy � y is called an recursive index if in addition My halts on all inputs� Let A � ��� Denote by an
A exponent the relativizations to oracle A� MA

y is the yth Turing machine with oracle A� �Ay is the function

computed by MA
y � and WA

y is the set of the words accepted by MA
y � y � N is said to be a A�recursively

enumerable index of X � �� i	 X 
 WA
y � y is called an A�recursive index if in addition MA

y halts on all
inputs�

We follow the standard notations of ���� ���� we �x a bijective recursive encoding of �� 	 �� into ���
� n�m � denotes a word of �� encoding word n � �� and word m � ��� For X � ��� we denote
X� 
 fxjx � N 
 x � WX

x g� Let A�B � ��� We write A �m B if there exists a recursive f such that�
for all w � ��� w � A � f�w� � B� In that case� we say that A �m B via f � We write A �T B if A is
B�recursive� Denote A 
T B i	 A �T B and B �T A�

We recall the following de�nitions�

De�nition ��� �Constructive ordinals����� We de�ne by trans�nite induction simultaneously O � N�
mapping j j from � to a segment of the ordinal numbers and partial ordering �O on O�

The ordinals in the range of j j are called the constructive ordinals� An ordinal � is said to have notation
x i� x � O and jxj 
 ��

The trans�nite induction is as follows�

� Ordinal � receives notation �� � � O� j�j 
 ��

� Let 	 be an ordinal� Assume that all the ordinals � 	 have received a notation� and assume that �o

has been de�ned on these notations�

� If 	 
 � � � is a successor� 	 receives notation �x� for all notation x of �� for all x � O� if
jxj 
 �� then �x � O� j�xj 
 	 and z �� �x for all z � O with either z 
 x or z �� x�

� If 	 is a limit� 	 receives notation 
��y for all y such that f�y�n�gn��n�� is an increasing sequence
of notations of ordinals of limit 	� for all y � N� if f�y�n�gn��n�� is a sequence of integers in

�



O� if fj�y�n�jg
n��
n�� is an increasing sequence of ordinals with limit 	 such that �i�j i � j �

�y�i� �� �y�j�� then 
��y � O� j
��yj 
 	 and z �� 
��y for all z for which there exists n such that
z �� �y�n��

� No other integer y � N is in O�

Denote x �o y if x 
 y or x �� y�

De�nition ��� Let X � ��� We de�ne H as a mapping from O to the subsets of �� by�

� HX��� 
 X�

� HX��x� 
 �HX�x����

� HX�
��y� 
 f� u� v � jv � O 
 v �� 
��y 
 u � HX�v�g�

We note H for H�� The following lemma is proved in �����

Lemma ��� �Spector ����� Let X � ��� Let x � O� y � O with jxj 
 jyj� then HX�x� 
T HX�y��

As a consequence� for all constructive ordinal �� we can de�ne the classes �X� ��
X
� ��

X
� unambiguously

as follows�

De�nition ��� �Hyper�arithmetical hierarchy� Let X � ���

� For any constructive ordinal � � � � �� and for any y such that � 
 j�yj�

� �X� is the class of the sets that are recursively enumerable in HX �y�

� �X
� is the class of the sets whose complement is in �X� �

� �X
� 
 �X� ��X

� �

� For any constructive ordinal � � � and for any y such that jyj 
 ��

� �X� is the class of the sets that are recursively enumerable in HX �y�

� �X
� is the class of the sets whose complement is in �X� �

� �X
� 
 �X� ��X

� �

For all constructive ordinal �� we denote �������� for �����
�
���

�
��

A set R is said to be hyper�arithmetical �respectively� X�hyper�arithmetical� if R � �� �resp� R � �X� �
for some constructive ordinal 
� R is said to be arithmetical �resp� X�arithmetical� i	 in addition we have

 � �� Check that the classes �� for � � � � � are precisely the classes of the arithmetical hierarchy
de�ned in ��� ���

One can easily prove�

Proposition ��� ������ Let A�B � �� be some languages�

� For all n � N� for all y � O with jyj 
 n� the following conditions are equivalent

� B � �An��

� B is recursively enumerable in HA�y�

� B �m HA��y�

� For all constructive ordinal 
 � �� for all y � O with jyj 
 
� the following conditions are equivalent

� B � �A�

� B is recursively enumerable in HA�y�

� B �m HA��y��

�



We mention that the hyper�arithmetical hierarchy is strict� for all constructive ordinal � � � �respec�
tively� � � ��� for all y � O� jyj 
 �� H��y� �resp� H�y�� is in �� �������

We also mention that the hyper�arithmetical hierarchy can be related to the analytical hierarchy� see
���� for the de�nition of ��

��

Proposition ��� �Kleene ����� One has�

��
� 
 �
 constructive ordinal��

We will use the following two lemmas proved in �����

Lemma ��� ������ There exists a recursive h such that for all x� y � O� x �o y� H�x� �m H�y� via �h�x�y��

Lemma ��	 ��o� There exists a recursive function �� of two variables such that for all x� y � O�

� x�� y � O

� jx�� yj 
 jxj� jyj

� y �
 �� x �� x�o y

� Real Continuous Time machines and the hyper�arithmetical hi�

erarchy

We introduce Real Continuous Time machines �RCT machines�� We prove in this section that they can
recognize every set of the arithmetical hierarchy and some sets of the hyper�arithmetical hierarchy� We will
see in next section that PCD systems can simulate RCT machines�

��� RCT machines

	���� First example

We present here an informal description of RCT machines� A formal de�nition will be given in next subsec�
tion�

We deal with machines that have a �nite number d of real registers whose values can be any real of
��� ��� These machines evolve according to a �nite program made of assignments and of tests between the
real registers� Any instruction I of these programs� that is to say any assignment or any test� has some
associated real function cI � ��� ��d � R� called the cost of the instruction� The execution of any instruction
I takes a time equal to cI�x�� � � � � xd�� where x�� � � � � xd are the values of the real registers of the machine
when the instruction is executed�

Write for example x� �
 �x� �x�� for the instruction that replaces the value of real register x� by two
times the value of real register x� in a time given by real register x�� if this instruction is executed at time
t � R� then the value of the �rst real register at time t�x� will be equal to two times the value of the second
real register at time t� where x� is the value of the third real register at time t�

We want to use a special label  limit�! to specify what to do when the time becomes Zeno�
Perhaps� the better is to consider a �rst example�

Algorithm � program !Hello world!�

x� �
 � ���
x� �
 � ���
x� �
 � ��� "#set �x�� x�� x�� 
 ��� �� �� at time 
�#"

�



while �true� do "#transform �x�� x�� x�� 
 ����n� ���n� � �
��� � � � ����n��� at time 
 � 
�� � ��� �
� � ����n��� for some n� to �x�� x�� x�� 

����n��� ���n��� � � ��� � � � ����n� at time

 � 
�� � ��� � � � ����n�#"

x� �
 x� � x� �x��
x� �
 x��� �x��
x� �
 x��� �x��

end while
limit� � "#here� we have �x�� x�� x�� 
 ��� �� �� at time

$� #"
x� �
 x� ��� "#now set� �x�� x�� x�� 
 ��� �� �� at time ���

#"

Try to simulate the evolution of this program� At time 
� �x�� x�� x�� 
 ��� �� �� and the program is starting
to execute the while loop� At time 
� 
 the program is starting to execute the loop for the second time� At
time 
�
�
�� the program is executing the loop for the third time� At time 
�
�
���
����� � ��
��n���
for all n � N� the program is executing the loop for the nth time� And at time $ 
 
 �

P�
j�� 
��

j% � � � The
answer is the following� the program is executing the instruction labeled by limit�� So this program is made
such that� at time $� the machine copies x� into x�� Check that variables x� and x� tend to � and that
variable x� tends to � during the execution of the in�nite while loop� As a consequence� we consider that at
time $ the value of the �rst two real registers of the machine is � and that the value of the third real register
is �� Hence� the previous program is a program that always halts and that stops with x� 
 �� x� 
 �� x� 
 �
at time ���

In other words� we consider �nite programs made of assignments and tests with a real cost� with a special
label denoted by limit� � label limit� always denotes the instruction to do at a limit time� when the time
becomes  Zeno!� that is to say when a converging process happens in �nite time�

	���� Formal de�nitions

Now we give some formal de�nitions of the programs we consider� We will prove in section � that these
programs can be simulated by PCD systems�

We consider programs made of instructions with a cost� the execution of an instruction I takes a time
equal to the cost of instruction I�

De�nition 	�� �Instruction� Test� � An assignment in dimension d is a couple �f� c� where f � called
the operation� is a partial mapping from ��� ��d to ��� ��d and c� called the cost function� is a partial
mapping from ��� ��d to R��

� A test in dimension d is a couple �R� c�� where R is a partial relation over ��� ��d� and c� called the
cost function� is a partial mapping from ��� ��d to R��

� An instruction of dimension d is either an assignment or a test of dimension d�

For the simplicity of notations� we denote by  xi �
 g�x�� � � � � xd��c�!� the assignment �g�� h�� where� for all
x�� � � � � xd � ��� ��� g� and h� are de�ned on �x�� � � � � xd� i	 g�x�� � � � � xd� � ��� ��� and when g� and h� are de�ned
on �x�� � � � � xd�� then g��x�� � � � � xd� 
 �x�� � � � � xi��� g�x�� � � � � xd�� xi��� � � � � xd� and h��x�� � � � � xd� 
 c� We
denote by  xi �
 g�x�� � � � � xd�

�� the assignment xi �
 g�x�� � � � � xd� ���� We denote by  R% �c�!� where R is a
relation� the test �R� c�� We denote by  R%�� the test R% ����

We will de�ne below the set of the assignments and the set of the tests denoted by Assgnmtd and by
Testd respectively that are admissible in dimension d�

A RCT machine of dimension d is a machine with d real registers that evolves according to its program�
Its program is �nite and is made of the assignments of Assgnmtd and of the tests of Testd� The execution
of any instruction takes a time equal to the cost of the instruction� Whenever the time becomes  Zeno! and

�



the variables converge� the machine enters a special limit state limit� � and the execution goes on from this
state� Formally�

De�nition 	�� �RCT machine� � A Real Continuous Time machine 	RCT machine
 M � or a RCT
program of dimension d� is a 
�uple P 
 �Q� q�� q

�
f � q

�
f � limit

�� �� where�

� Q is a �nite set and q�� q
�
f � q

�
f � limit

� � Q�

� � is a mapping from Q to Q	Q	 �Assgnmtd � Testd�

� An instantaneous description �ID� of M is an element �q� x�� � � � � xd� t� of Q 	 ��� ��d 	R�� q is the
internal state� t is the time and x�� � � � � xd are the values of the real registers of M at time t�

� Let ID� 
 �q� x�� � � � � xd� t� and ID� 
 �q�� x��� � � � � x
�
d� t

�� be two IDs of M � We write ID� �d ID� i�

� either ��q� 
 �q�� q��� Assgnmt�� with Assgnmt 
 �f� c� � Assgnmtd � and�

� �x�� � � � � xd� is in the domain of function f and of function c�

� �x��� � � � � x
�
d� 
 f�x�� � � � � xd��

� or ��q� 
 �q��� q���� T est�� with Test 
 �R� c� � Testd� and�

� �x�� � � � � xd� is in the domain of relation R and of function c�

� �x��� � � � � x
�
d� 
 �x�� � � � � xd�

� 	q� 
 q�� and R�x�� � � � � xd�� or 	q� 
 q��� and �R�x�� � � � � xd���

� A computation of M starting from �x�� � � � � xd� is a sequence �IDi 
 �qi� xi�� � � � � x
i
d� t

i��i�I of IDs of
M � where I is an ordinal� such that�

� ID� 
 �q�� x�� � � � � xd� ��

� For all j � I� if j is a successor then IDj�� �d IDj

� For all j � I� if j is a limit point then

� ftj
�

jj� � jg is a set bounded above by some real number�

� for all � � i � d� limj��j�j��jx
j�

i exists

� tj 
 supftj
�
jj� � jg

� for all � � i � d� xji 
 limj��j�j��jx
j�

i

� qj 
 limit�

� The computation is accepting 	respectively� rejecting
 if there exists j� � I 	this implies that tj� � R
is �nite
 with qj� 
 q�f 	resp� qj� 
 q�f 
 and such that �j � j�� q

j �� fq�f � q
�
f g� In that case� tj� � R

is called the �continuous� time of the computation� If the computation is accepting� we say that M
maps �x�� � � � � xd� to �xj�� � � � � � x

j�
d � in time tj� �

� Program M can be considered as an instruction� the assignment corresponding to the execution
of program M is the assignment �f �� c�� of dimension d where functions f � and c� are de�ned on
�x�� � � � � xd� � ��� ��d i� there is an accepting computation starting from �x�� � � � � xd�� When functions
f � and c� are de�ned on �x�� � � � � xd� then f ��x�� � � � � xd� 
 �x��� � � � � x

�
d�� c

��x�� � � � � xd� 
 t� i� M maps
�x�� � � � � xd� to �x��� � � � � x

�
d� in time t��

An instruction of dimension d� � can be considered as an instruction of dimension d�

De�nition 	�	 �Embedding instructions of dimension d� � into dimension d� Let d � � be an in�
teger�

� Let �f� c� be an assignment in dimension d� ��

We still denote by �f� c� the assignment �f �� c�� of dimension d de�ned� for all x�� � � � � xd � ��� �� by�

f ��x�� � � � � xd��� xd� 
 �f�x�� � � � � xd���� xd�
c��x�� � � � � xd��� xd� 
 c�x�� � � � � xd���

�



� Let �R� c� be a test in dimension d� ��

We still denote by �R� c� the assignment �R�� c�� of dimension d de�ned� for all x�� � � � � xd � ��� �� by�

R�x�� � � � � xd��� xd� 
 R�x�� � � � � xd���
c��x�� � � � � xd��� xd� 
 c�x�� � � � � xd���

We de�ne now the transformation �xd�� on instructions� this transformation is equivalent to making the
change of variable xi becomes xi�xd�� for all i�

De�nition 	�
 �Transformation �xd�� on instructions� � Let �f� c� be an assignment in dimension
d� We write �f�xd��� c�xd��� for the assignment in dimension d� � de�ned as follows�

� f�xd�� and c�xd�� are de�ned on �x�� � � � � xd��� i� all the following conditions hold�

� xd�� � �

� �x��xd��� � � � � xd�xd��� � ��� ��d

� function f and c are de�ned on value �x��xd��� � � � � xd�xd���

� when f�xd�� and c�xd�� are de�ned on �x�� � � � � xd��

f�xd���x�� � � � � xd��� 
 xd��f�x��xd��� � � � � xd�xd���
c�xd���x�� � � � � xd��� 
 xd��c�x��xd��� � � � � xd�xd���

� Let �R� c� be a test in dimension d� We write �R�xd��� c�xd��� for the test in dimension d� � de�ned
as follows�

� R�xd�� and c�xd�� are de�ned on �x�� � � � � xd��� i� all the following conditions hold�

� xd�� � ��

� �x��xd��� � � � � xd�xd��� � ��� ��d

� R and c are de�ned on value �x��xd��� � � � � xd�xd����

� when R�xd�� and c�xd�� are de�ned on �x�� � � � � xd����

R�xd���x�� � � � � xd��� 
 R�x��xd��� � � � � xd�xd���
c�xd���x�� � � � � xd��� 
 xd��c�x��xd��� � � � � xd�xd���

Take an example� consider instruction I de�ned as x� �
 x� � � ��� where � � Q� When x� � � and
x��x� � ��� ��� I�x� is equivalent to instruction x� �
 x� � �x��x��� When x� 
 � or x��x� � � then no
evolution is possible�

We are ready to de�ne the admissible operations in dim d� this is done inductively�

De�nition 	�
 �Admissible operations in dim d� We de�ne inductively the set of the assignments de�
noted by Assgnmtd 	respectively� the set of the tests denoted by Testd
 that are admissible in dimension
d�

For all d� for all i� j� k � f�� �� � � � � dg� for all � � Q� for all �� � Q�� for all & � f���� ����
� �
g�

� �Linear machines instructions�

� �xi �
 xi � xk ���� � Assgnmtd

� �xi �
 xj ���� � Assgnmtd �

� �xi �
 ��xi ���� � Assgnmtd �

� �xi �
 � ���� � Assgnmtd �

� �xi �
 xi � � ���� � Assgnmtd �

� �xi&��% ���� � Testd�

� �Special instructions�

$



� �xd �
 xd�� �xd�� � Assgnmtd � if d � ��

� �xd �
 �xd �xd�� � Assgnmtd � if d � ��

� �xd �
 xd � �xk �xk�� � Assgnmtd � if � � k � d

� �Subprograms�

� If P is a program of dimension d� then �f� c � �� � Assgnmtd � where �f� c� is the assignment
corresponding to the execution of P �

� �Assgnmtd�� � Assgnmtd�� �Testd�� � Testd�

� If �f� c� � Assgnmtd�� then �f� c� � Assgnmtd �

� If �R� c� � Testd�� then �R� c� � Testd�

� �Zeno instructions�

� If �f� c� � Assgnmtd�� and d � � then �f�xd� c�xd� � Assgnmtd �

� If �R� c� � Testd�� and d � � then �R�xd� c�xd� � Testd�

RCT machines can be considered as machines recognizing some languages L � �� as follows�

De�nition 	�� Let � be the �xed �nite alphabet�
Language L � �� is semi�recognized by RCT machine M if� for all n � ��� M has an accepting

computation starting from �I�n�� �� � � � � �� i� n � L�
L is fully�recognized if in addition� for all n � ��� there is a rejecting computation starting from

�I�n�� �� � � � � �� i� n �� L�

We will write the RCT programs in a high level programming language style using all the usual �ow
control instructions �while� if� for� goto� as in algorithm ��

��� RCT machines can simulate Turing machines

We show in this subsection that one can simulate any Turing machine by a RCT machine� This is nothing
but a restatement of �����

	���� Two stacks pushdown automata can simulate Turing machines

It is well known that Turing machines are equivalent to two stacks pushdown automata ��PDA��$�� the two
stacks correspond to the content of the tape on the right and on the left respectively of the head of the
Turing machine�

We go here into the precise details of what we call a �PDA or an ���PDA� A �PDA is equivalent to a
Turing machine� and an ���PDA is equivalent to a Turing machine with a semi�in�nite tape�

Write �� for ��f�g� If w � ��� write w� for the element of �� equal to the �rst letter of w if w �
 � and
equal to � if w 
 �� If w �
 �� denote w� for the word such that w 
 w�w�� If i � f�� �g� denote 'i 
 
� i�

De�nition 	�� ��PDA� � A two stacks pushdown automaton 	�PDA
 	respectively� an ���PDA
� is
a ��tuple �Q��� �� q�� F � where Q is a �nite set� q� � Q is the initial state� F � Q is the set of the �nal
states� � is a mapping from Q	��	�� to Q	Q	InstructionSet� where InstructionSet is the following
�nite set of symbols� InstructionSet 
 fPushi�a�� P opi�a�� T opi�b�%ji � f�� �g� a � �� b � ��g

� An Instantaneous Description 	ID
 of a �PDA 	resp� of an ���PDA
 is an element �q� w�� w�� of
Q 	 �� 	 �� 	resp� of Q 	 �� 	 ��
� q is the internal state� w��w� are the contents of the �rst and
the second stack respectively� The ID is accepted i� q � F �

��



� The relation �d between IDs is de�ned as follows�

�q� w�� w�� �d �q�� w��� w
�
��

iff

������������
�����������

��q� w�
� � w

�
� � 
 �q��� q���� instr�

and

����������
���������

�instr 
 Pushi�a�� q� 
 q���
w�i 
 awi� w

�
	i

 w	i�

or �instr 
 Popi�a�� q� 
 q��� w�
i 
 a�

w�i 
 �wi�
�� w�	i 
 w	i�

or �instr 
 Topi�b�%� w�� 
 w�� w
�
� 
 w��

and

�
�q� 
 q�� and w�

i 
 b�
or �q� 
 q��� and w�

i �
 b��

� Let ��d be the transitive closure of �d� An input w � �� 	respectively w � ��
 is accepted by a �PDA
	resp� by an ���PDA
 i� there exists an accepted ID IDacc such that �q�� w� �� ��d IDacc�

� We say that a �PDA 	resp�an ���PDA
 maps �w�� w�� to �w��� w
�
��� where w�� w�� w

�
�� w

�
� � �� 	resp�

w�� w
�
� � ��� w�� w

�
� � ��
 � i� �q�� w�� w�� ��d �q� w

�
�� w

�
�� for some q � F �

	���� RCT machines can simulate Two stacks pushdown automata

We show now that RCT machines can simulate �PDAs using only the linear machine instructions� this is a
restatement of �����

Lemma 	�� One can simulate any two stacks pushdown automaton 	respectively any ��two stacks pushdown
automaton
 M by a RCT machine M � of dimension � whose program is only made of the linear machine
instructions�

Proof� One build a RCT machine M � that simulates M � when the stacks of M are words w�� w�� the
registers of M � are x� 
 J �w�� and x� 
 J �w��� The program of M � is obtained by taking the program of
M � and by replacing one after the other the �PDA instructions of M by some linear machine instructions
using the correspondence of �gure ��

�

Theorem 	�� Let S be a discrete language�

� Assume that S is recursively enumerable� Then S is semi�recognized by a RCT machine of dimension
�

� Assume that S is recursive� Then S is fully�recognized by a RCT machine of dimension ��

Proof� Immediate from lemma 
�� and from the fact that any Turing machine can be simulated by a
two stacks pushdown automaton �$��

�

Convention 	�� We use the following convention��
� �w�� w��
�� �w��� w

�
��

where �conditions�

�
�

denotes any RCT program M � that� for all w�� w� verifying �conditions�� maps real registers x� 
 J �w���
x� 
 J �w�� to x� 
 J �w���� x� 
 J �w���� to obtain M �� consider any ���PDA M such that� for all
w� � ��� w� � �� verifying �conditions�� M maps �w�� w�� to �w��� w

�
��� recall that �PDAs are equivalent to

Turing machines� Now apply the transformation of the proof of lemma ��� on M to get RCT machine M ��

As an example�

�
� �w�w��
�� �ww� ��
where w�w� � ��� w 
 w�

�
� is any RCT program that� for all w�w� � �� such that

w 
 w�� maps �J �w��J �w��� to �J �ww�� ���

��



Two stacks automata RCT machine
instruction instructions

Pushi�j�� i � f�� �g� j � � xi �
 xi�b� � �� � j��b� ���
Popi�j�� i � f�� �g� j � � x� �
 b� � �x� � �� � j��b�� ���

Topi���%� i � f�� �g xi 
 �% ���
Topi�j�%� i � f�� �g� j � � ��xi � �� � j��b��% ���

and �xi � �� � j � ���b��% ����

Figure �� Correspondence between �PDA instructions and RCT instructions� The RCT instructions corre�
sponding to the �PDA instructions Pushi�j�� P opi�j�� T opi�j�% will be still denoted by Pushi�j�� Popi�j��
Topi�j�%�

��� RCT machines and the arithmetical hierarchy

	�	�� Speedup properties of RCT machines

In de�nition 
��� we de�ned the transformation �xd�� on instructions� the transformation �xd�� on a RCT
program P is obtained by transforming instruction by instruction the instructions of P �

De�nition 	�� �Transformation �xd�� on RCT programs� Let P be a RCT program of dimension d�
P 
 �Q� q�� q

�
f � q

�
f � limit

�� ���

We denote by P�xd�� the RCT program of dimension d�� de�ned by P�xd�� 
 �Q� q�� q
�
f � q

�
f � limit

�� ���
where for all q� q�� q�� and Instr � Testd � Assgnmtd � ��q� 
 �q�� q��� Instr�� ���q� 
 �q�� q��� Instr�xd���

We prove�

Lemma 	�� �Speedup lemma� Let P be a RCT program of dimension d�
For all � � ��� ��� for all x�� x�� � � � � xd � ��� ��� P�xd�� started with real registers ��x�� �x�� � � � � �xd� ��

simulates the evolution of P on �x�� � � � � xd� but the simulation of P by P�xd�� goes ��� times faster than
P �

Proof�
Let � � ��� �� and let x�� � � � � xd � ��� �� be �xed�
Denote by �qj � xj�� � � � � x

j
d� t

j�j�J the computation of P starting from �x�� � � � � xd��

Denote by �q
�j � x

�j�

� � � � � � x
�j�

d � x
�j�

d��� t
�j��j��J � the computation of P � starting from ��x�� � � � � �xd� ��� It is

easy to prove by trans�nite induction that� for all j � J � one has j � J �� qj 
 q
�j� x

�j
d�� 
 �� x

�j
i 
 �xji for

all � � i � d� and t
�j 
 �tj �

�

We get immediately�

Theorem 	�� Assume that S is semi�recognized 	respectively� fully�recognized
 by a program P in dimension
d in time T � For any k � N�� S is semi�recognized 	resp� fully�recognized
 in dimension d�� in time ��T�k�

Proof�
Assume that S is semi�recognized by P � S is semi�recognized �resp� fully�recognized� in dimension d� �

in time � � T�k by the following program P ��

Algorithm � Program P �

x� �
 x��k ���
xd�� �
 ��k ���
P�xd��

�

��



	�	�� From semi�recognition to recognition

We see now that one can transform a program that semi�recognizes a set S in dimension d to a program
that fully�recognizes S in �nite time in dimension d� ��

We need �rst some de�nitions� a clocked program is a program where some instructions are marked and
where the execution of the marked instructions can be used as the tops of a clock� there must exists an
upper bound � for the time between two successive tops� and any bounded time interval must contain a
�nite number of tops�

De�nition 	�� � A clocked program is any program P 
 �Q� q�� q
�
f � q

�
f � limit

�� �� such that�

� some instructions of P are marked� there exists some Q� � Q�

� there exists � � R�� called the time period of P � such that any computation of P executes a �nite
number nI � � of marked instructions on any time interval I of width �� for all computation
C 
 �qj� xj�� � � � � x

j
d� t

j�j�J of P � for all t � R�� if there is some j � J with tj � t ��� then the

cardinality of the set fj�jj� � J� qj
�

� Q�� t
j� � �t� t���g is �nite and greater than ��

� An ��clocked program is a clocked program such that a computation of P executes a �nite number of
marked instructions i� the computation is accepting�

� If P is a clock program� and R is a program� we write P �R for the program that one gets by inserting
in P a copy of program R at each marked instruction of P

As an example� take any �PDA M that semi�recognizes a set L � ��� Assume that M never enters a
 reject! state but loops for ever on an input w � �� with w �� L� Then the RCT program M � of dimension
� given by lemma 
�� that simulates M can be ��clocked� mark all the instructions of M � and take � 
 �
as time period�

We use the following convention� we assume any program given by lemma 
�� �and therefore any program

given by the notation

�
� �w�� w��
�� �w��� w

�
��

where conditions

�
�� marked with all the instructions marked� Moreover� when P

is marked� we consider that P�xd�� is marked� where the marked instructions of P�xd�� are the instructions
corresponding to the marked instructions of P � In particular� if R is a program� and P is a marked program
then �P�xd��� �R is the program that one gets by transforming all the instructions of P by transformation
�xd�� and by inserting a copy of R at each instruction corresponding to a marked instruction of P �

Let d � � be an integer� We will use the following program�

Algorithm 	 Program Div�d��

x� �
 x��� �xd���
x� �
 x��� �xd���
� � �
xd�� �
 xd���� �xd���
xd �
 xd�� �xd���
xd�� �
 xd���� �xd���

And the following program�

Algorithm 
 Program Mul�d��

x� �
 �x� �xd���
x� �
 �x� �xd���
� � �
xd�� �
 �xd�� �xd���
xd �
 �xd �xd���

�




xd�� �
 �xd�� �xd���

We claim�

Theorem 	�	 Assume that S is semi�recognized by an ��clocked program in dimension d� Then�

� There exists a program of dimension d� � that fully recognizes S�

� Moreover� for all k � N�� there exists a program of dimension d � � that fully recognizes S in time
� � ��k�

Proof�
Assume that S is semi�recognized by P � Let � � � � � be some rational constant�
Consider the following program P ��

Algorithm 
 P ��

x� �
 �x� ���
xd�� �
 � ���
�P�xd��� � �Div�d���
limit� � Reject

It is su(cient to take P �� to prove the �rst assertion and to take P �����k�
�d���� to prove the second
assertion� using lemma 
�
 proved below�

�

Here is the trick�

Lemma 	�	 �Super�speedup lemma� Let P be an ��clocked RCT program of dimension d of time period
�� For all � � ��� ��� for all x�� x�� � � � � xd � ��� ��� �P�xd��� �Div�d�� started with real registers ��x�� �x��
� � � ��xd� �� simulates the evolution of P on �x�� � � � � xk� but the whole simulation of P by P�xd�� is made in
a �nite bounded time upper bounded by ���� � d� ���

Moreover� whenever P accepts� �P�xd��� � Div�d�� accepts� Whenever P does not accept� �P�xd��� �
Div�d�� converges to its limit state with all its real registers set to ��

Proof� Let � � ��� �� and x�� � � � � xd � ��� �� be �xed�
Denote by �qj � xj�� � � � � x

j
d� t

j�j�J the computation of P starting from �x�� � � � � xd�� Let Q� � Q gives the
marked instructions of P �

Denote by �q
�j� � x

�j�

� � � � � � x
�j�

d � t
�j��j��J � the computation of �P�xd��� � Div�d�� starting from ��x�� � � �

� �xd� ���
Denote by j� � j� � � � � � J the sequence of the indexes corresponding to the execution of the marked

instructions of P � for all j � J � either qj � Q� and j 
 jk for some k or qj �� Q��
For j � J � let nj denote the number of marked instructions of P executed between time � and time tj�

nj is the cardinality of set fkjtjk � tjg�

It is easy to prove by trans�nite induction on j � J that� for all j � J �� one has j � J � q
�j�nj�d��� 


qj � x
�j�nj�d���
i 
 �xji��

nj for all � � i � d� x
�j�nj�d���
d�� 
 ���nj � t

�j�nj�d��� 
 �
Pnj

k���t
jk � tjk�� � d �

����k��� ��tj � tjnj ���nj with t� 
 �� and that for all k and l � d� �� q
�tjk��k����d����l corresponds to an

instruction of program Div�d���
This means that �P�xd����Div�d�� simulates P � if P accepts then �P�xd����Div�d�� accepts� qj� 
 q�f

for some j� � J implies q
�j��nj� �d��� 
 q�f � For all k � N� we have tjk � tjk�� � �� As a consequence� for

all j � J � tj � ���� � d � ��� Hence� �P�xd��� �Div�d�� accepts at some �nite time bounded above by
���� � d� ���

If P does not accept its input� since P is assumed to be ��clocked� a non �nite number of Div�d��

are executed� As a consequence� for all � � i � d � �� the sequence �xji �j�J converge to �� One has have

��



supj�J t
j � ����� d���� That means that �P�xd��� �Div�

d�� reaches the ID �limit� � �� � � � � �� t�� at �nite

time t� 
 supj�J t
�j � with t� � ���� � d� ���

�

	�	�	 Recognizing arithmetical sets

The following lemma will be used in the proof of lemma 
���

Lemma 	�
 There exists an injective mapping E from I to ����� �� such that� for any d � 
�

� There exists a RCT program Encd of dimension d that� for all y� � I� maps �y�� �� � � �� �� �� to
�E�y��y�� �� � � � � E�y����

� There exists a RCT program Decd of dimension d that maps ��� � � � � �� E�y��� to �y�� �� � � � � �� for all
y� � I�

We say that a RCT machineM of dimension d maps ���� � � � � �d� to �
�� � � � � 
d�� where for all � � i � d�
either �i � ��� �� or �i is the symbol �� and either 
i � ��� �� or 
i is the symbol �� i	 for all �x�� � � � � xd� with
xi 
 �i for all i such that �i �
 �� M maps �x�� � � � � xd� to some �x��� � � � � x

�
d� with x�i 
 
i for all i such that


i �
 ��
Proof� Let & be a letter of �� Denote by number � �� � N the function that maps any word w � ��

onto its number in some �xed recursive enumeration of the words of ��� For all n � N� denote by wn the
nth word of ��� number�wn� 
 n�

For all w � ��� we de�ne E�I�w�� as the unique point which is simultaneously in interval ����� �� and in
the set f�k�
number�w�jk �Zg�

It is su(cient to consider program Encd as the following RCT program�

Algorithm � Encd�
� �w�w��
�� �w�&number�w��
where w�w� � ��

�
�

"#Set x� to I�&number�w��#"
xd �
 �
while �x� �
 �%� do "#Do number�w� times x� �
 x��
� xd 


xd�
 #"
x� �
 b� � �x� � �� �&��b��
x� �
 x��

xd �
 xd�


end while "#Now� while xd �� ����� �� multiply x� and
xd by �#"

while �xd � ���%� do
x� �
 �x�
xd �
 �xd

end while

And program Decd as�

Algorithm � Decd

x� �
 � "#Do n �
 �� set x� 
 I�&��#"
while �xd �
 �%� do "#While 	xd �
 �k�
n for some k
 do#"

x� �
 x��b� �&�b� "#Do n �
 n� �� transform x� 
 I�&n� into
x� 
 I�&n���#"

xd �
 
xd

��



while �xd � �%� do
xd �
 xd��

end while
end while�
� �w�&n�
�� �wn� ��
where w � ��� n � N

�
�

"#Put x� 
 I�wn��#"

�

We need to improve theorem 
�
� we show that any language that is semi�recognized in dimension d can
be fully�recognized in dimension d� � by a clocked program that returns its input when it accepts�

Lemma 	�
 Let S be a discrete language� Assume that S is semi�recognized by an ��clocked program P in
dimension d� Then

S is fully�recognized in dimension d� � by some clocked program 'P � for all w � ��

� if w �� S then 'P rejects input J �w� and stops with all its real registers set to ��

� if w � S then 'P accepts input J �w� and stops with its �rst real register set to J �w� and all its other
real registers set to ��

Proof�
Denote by Encd�� and Decd�� the programs of lemma 
��� and by E � I � ����� �� the function of lemma


���
Take 'P de�ned as follows�

Algorithm � Program 'P

Encd�� "#Maps x� 
 y� to x� 
 E�y��y�� xd�� 

E�y��#"

�P�xd��� � �Div�xd�� � "#Simulate P on input y�#"
while �xd�� � ���% ���� do

xd�� �
 �xd�� ���
end while "#If it stops then undo all the divisions by �

done on variable xd�� during the simulation�
At the end of the while loop we have xd�� 

E�y���#"

Decd�� "#Map xd�� 
 E�y�� to x� 
 y��#"
xd�� �
 � ���
x� �
 � ���
Accept "#And accept�#"
limit� �
Reject "#Else reject�#"

Let x�� � � � � xd� xd�� � ��� �� be �xed� If �x�� � � � � xd� is not accepted by P � then from lemma 
�
�
�x�� � � � � xd� xd��� is rejected by this program� and all the registers are set to ��

Now� assume �x�� � � � � xd� is accepted� by the proof of lemma 
�
� RCT program �P�xd��� � �Div�xd�� �
stops with its d� �th real register equal to E�x����nj� � where nj� � N is the number of marked instructions
of the accepting computation of P starting from �x�� � � � � xd�� It is easy to see that the while loop will be
executed nj� times and that the end of the while loop the content of the d� �th real register will be set to

E�x��� Hence� after the Decd�� program� the �rst real register of 'P will return to value x��
By lemma 
�
� program �P�xd��� � �Div�xd�� � is always executed in a bounded time� As a consequence�

'P can be clocked� mark all the instructions but those of �P�xd��� � �Div�
xd�� �� Take as time period of 'P

the maximum of � and of the time needed to execute program �P�xd��� � �Div�xd�� ��
�

As a consequence� we get�

��



Lemma 	�� Assume that B is a discrete language such that all the languages of �B� are semi�recognized by
some ��clocked RCT program in dimension d� � ��

Let S be a discrete language with S � �Bk � k � N� k � �� Then S is semi�recognized by an ��clocked RCT
program in dimension d� � k � ��

Proof� We prove the assertion by induction over k�
Case k 
 � is true by hypothesis�
Assume k � � and the hypothesis at rank k � �� Let S � �Bk � There exists S� � �Bk�� such that

x � S � �n � N � n� x ��� S�� see ����� By induction hypothesis S� is semi�recognized in dimension
k� d�� � by an ��clocked RCT program Pk��� Let 'Pk�� be the marked program that one gets by applying
lemma 
�� on program Pk���

S is semi�recognized by the following RCT program Pk�

Algorithm � Program Pk�
� �w�w��
�� �� �� w ��w��
where w�w� � ��

�
�

while � 'Pk�� accepts��
� �� n�w ��w��
�� �� n� �� w ��w��
where w�w� � ��� n � N

�
�

end while
Accept

Pk can be �� clocked� mark all the instructions but those that were not marked in 'Pk��� Take as time
period the maximum of � and of the time period of 'Pk��� Pk is of dimension d� k� � ��

�

Lemma 	�� Assume that B is a discrete language such that all the languages of �B� are semi�recognized by
an ��clocked RCT program in dimension d� � ��

Let S be a discrete language with S � �B
k � k � N� k � �� Then S is fully�recognized by a RCT program

in dimension d� � k � ��

Proof� By de�nition of �B
k � there must exists S�� S�� � �Bk�� such that x � S � �n � N � n� x ��� S�

and x �� S � �n � N � n� x � �� S��� see �����
By lemma 
��� S and S� are respectively semi�recognized by some ��clocked programs Pk��� P �k�� in

dimension k � d� � �� Denote 'Pk��� 'P �k�� the programs that one gets by applying lemma 
�� on Pk�� and
P �k�� respectively� S is fully recognized by the following RCT program Mk�

Algorithm �� Program Mk�
� �w�w��
�� �� �� w ��w��
where w�w� � ��

�
�

while � 'Pk�� accepts� do

if � 'P �k�� accepts� then�
� �� n�w ��w��
�� �� n� �� w ��w��
where w�w� � ��� n � N

�
�

else
Reject

end if

��



end while
Accept

�

Theorem 	�
 Let S be a discrete language�

� Assume S � �k� k � �� Then S is semi�recognized by an ��clocked RCT program of dimension � � k�

� Assume S � �k� k � �� Then S is fully�recognized by a RCT program of dimension � � k�

Proof� Immediate from theorem 
��� and from lemma 
�� and lemma 
�� respectively with B 
 ��
�

��� RCT machines and the hyper�arithmetical hierarchy

	�
�� Realizing any �PDA program in time kxd��

We prove �rst a technical lemma� if a �PDA can do some job� one can build a RCT machine of dimension
d� � � 
 that does the same job but in time bounded by kxd�� for some k�

Lemma 	�� Let d � �� Let M be an ���PDA� Assume that� for all w� � ��� w� � ��� M maps �w�� w��
to �f��w�� w��� f��w�� w��� � �� 	 ���

There exists some kM � R� and a RCT machine M � of dimension d� � that� for all w� � ��� w� � ���
for all y�� � � � � yd � ��� ��� for all n � N� maps

�J �w����
n�J �w����

n� y���
n� � � � � yd��

n� ���n�

to
�J �f��w�� w�����

n�J �f��w�� w�����
n� y���

n� � � � � yd��
n� ���n�

in a time bounded above by kM��n�

Proof� The idea is to build a machine that simulates M � that does some Div�d�� instructions every
two steps and that counts in parallel the number of Div�d�� instructions already executed� The machine
simulates M until M accepts� At this moment� the machine does some Mul�d�� instructions in order to
come back to xd�� 
 ���n�

Let � be a letter of �� If i � f�� �g� denote 'i for 
� i� Assume without loss of generality that any ID of
any computation of M on any input is of type �q� w�� w��� q � Q�w�� w� � �� with the �rst letter of w� and
the �rst letter of w� di	erent from letter ��

Replace one after the other the �PDA instructions of M by some new instructions using the following
correspondence� � where RCT instructions Topi�j�%� Popi�j�� Pushi�j� are de�ned in �gure ��

Old ���PDA instruction New RCT instructions

Pop��j�� j � � Transfer�) �Pop��j���xd��) �Push������xd��)
Div�d��)Transfer�

Push��j�� j � � Transfer�) �Push
��j���xd��)

�Push������xd��)Div�d��)Transfer�
Top��j�%� j � � Transfer�) �Top��j�%��xd��)

�Push������xd��)Div�d��)Transfer�
Pop��j�� j � � �Pop��j���xd��) �Push

������xd��)
Div�d��

Push��j�� j � � �Push��j���xd��) �Push������xd��)Div�d��

Top��j�%� j � � �Top��j�%��xd��) �Push������xd��)Div�d��

��



where Transferi� i � f�� �g transfers all the � from register 'i to register i and is the following sequence
of instructions�

Algorithm �� Transferi

while ��Top
	i���%��xd��� do

�Pop
	i�����xd��

�Pushi�����xd�� "#Transfer one � from stack 'i to stack i#"
�Pushi�����xd��
Div�d��

�Pushi�����xd��
Div�d��

�Pushi�����xd��
Div�d�� "#Add � � since the transfer of the � was done

with 
 instructions#"
end while

One gets a RCT program PM of dimension d � �� this program simulates M � does some Div�d��

instructions every two steps and has the following property� at every step of the simulation of M � the value
of the �rst real register of PM is of type J ��p w�� w � ��� where p � N� is the number of instructions
Div�d�� already executed by PM �

Consider now M � as the following RCT program�

Algorithm �� Program M �

PM "#Map x� 
 J �w����n � x� 
 J �w����n�
x� 
 y���n� � � � � xd 
 yd��n� xd�� 
 ���n

to x� 
 J ��p f��w�� w�����n�p � x� 

I�f��w�� w�����n�p� x� 
 y���n�p �� � � � xd 

yd��n�p� xd�� 
 ���n�p��#"

while ��Top����%��xd��� do
�Pop������xd�� "#Get back to xd�� 
 ��n by undoing the

Div�d�� instructions#"
Mul�d��

end while

Program M � is executed in a time bounded above by kM���n for some �xed kM � R��
�

Convention 	�� We denote by 	

 �w�� w��

�� �w��� w
�
��

where �conditions�

�
A jxd��

any RCT program of dimension d�� given by lemma ��� that for all w�� w
�
� � ��� w�� w

�
� � �� verifying �con�

ditions�� and for all y�� � � � � yd � ��� ��� for all n � N� maps �J �w����
n�J �w����

n� y���
n� � � � � yd��

n� ���n� to
�J �w�����

n�J �w�����
n� y���

n� � � � � yd��
n� ���n� in a time bounded by k��n for some k�

	�
�� Setting the mth digit of a real in time k��m for some k

The following lemma is the main trick that will be used in lemma 
��� to show that one can recognize some
hyper�arithmetical sets� one can build a RCT machine of dimension d� � that� on input m � N� add ���m

to real register xd�� in a time proportional to maximum����m� xd����

�$



Lemma 	�� Let &� * � � be two distinct letters of � used as delimiters�
For all d � �� there exists some k � R� and a RCT machine WriteDigitd�� of dimension d�� that� for

all y�� � � � � yd� yd�� � ��� ���m� n � N� w � ��� w� � ��� maps

�J �&nm*w���n� I�w����n� y���
n � � � � yd��

n� ���n� yd���

to

�J �&nm*w���n� I�w����n� y���
n� � � � � yd��

n� ���n� yd�� � ���m�

in a time upper bounded by k���minimum�m�n��

Proof� The general idea is to do some Mul�d���Div�d�� instructions in order to get xd�� 
 ���m� then
to do a xd�� �
 xd���xd�� �xd��� instruction� and then to do some Div�d���Mul�d�� instructions to come
back to xd�� 
 ���n�

Assume without loss of generality that one can �nd two distinct letters � and � in � di	erent from letter
* and from letter &�

WriteDigitd�� is the following RCT program � where RCT instructions Topi�j�% Popi�j�� Pushi�j� are
de�ned in �gure ��

Algorithm �	 WriteDigitd��	
BBBBBBBB


�&nm*w�w��
�� �move�*move�*w�*&nm*w� ��

where

w � ��� w� � ���m� n � N
move��move� � ��

�move� �move�� 


��
�

��m�n� �m�n� if m � n
��n�m� �n�m� if m � n
��� �� if m 
 n

�
CCCCCCCCA
jxd��

"# Map

��
�

x� 
 J �&nm*w���n

x� 
 I�w����n

xd�� 
 ���n
to

��
�

x� 
 J �move�*move�*w�*&nm*w�
��n

xd�� 
 ���n

in a time bounded by k����
n for some k�� see

lemma ����#"

GoUpOrDown "#Call some Mul�d���Div�d�� instructions
to get xd�� 
 ���m#"

xd�� �
 xd�� � xd�� �xd��� "# Add ���m to xd��#"

GoUpOrDown "#Call some Div�d���Mul�d�� instructions
to get xd�� 
 ���n#"	


 �w�*&nm*w� ��
�� �&nm*w�w��
where w � ��� w� � ���m� n � N

�
A jxd��

"#Set x� 
 J �&nm*w���n� x� 
 I�w����n

in time bounded by k����
n for some k�� #"

where program GoUpOrDown is the following RCT program�

Algorithm �
 program GoUpOrDown

��



if �Top������xd��
then
while ��Top������xd��� do

�Pop������xd��
Mul�d��

end while
end if
if �Top������xd��

then
while ��Top������xd��� do

�Pop������xd��
Div�d��

end while
end if
�Pop��*���xd��

The execution of the calls to program GoUpOrDown are done in a time upper bounded by k����
min�m�n�

for some k�� As a consequence� there exists some k � R� such that the whole execution of program
WriteDigitd�� is done in a time bounded above by k���minimum�m�n��

�

	�
�	 Outputting reals encoding languages

In de�nition ��
� we de�ned mapping J that encodes any word of �� into a real of ��� ��� Now� we de�ne
mapping L that encodes any discrete language L � �� into a real of ��� ���

De�nition 	��� �Encoding by L� Let � 
 f�� �� � � �� n�g be the �xed �nite alphabet� Let � and 
 be two
letters of � with � �
 
�

� Let L � �� be a discrete language� We denote by wL the in�nite word a�a�a� � � �ai � � � such that� for
all i � N� ai 
 � 	respectively� ai 
 

 i� the ith word of �� is in L 	resp� is not in L


� Denote by P���� the set of the subsets of ���

We denote by L the mapping from P���� to ��� �� that� for all L � ��� maps L to L�L� 
 J �wL��

Check that J �w�� is in Q and that a machine can do with any problem x� �
 L����
Using lemma 
�$� we show that if we can enumerate a set then we can output a real encoding this set in

�nite time�

Lemma 	��� Let d � �� Let *�& be two letters of � used as delimiters�
Assume we have a function f � N	 �� 	 �� � ��� a constant kf � R� and a RCT machine Mf of

dimension d� � that� for all n � N� w � ��� L � ��� y� � I� maps

�J �&n*w*wL���
n� y���

n� �� � � � � �� ���n�

to
�J �f�n�w�wL�*wL���

n� y���
n� �� � � � � �� ���n�

in a time bounded above by kf���
n�

Then there exists a RCT machine M �
f of dimension d � � that for all discrete language L � ��� for all

word w � �� and real y� � I� maps �J �w*wL�� y�� � � � �� to �J �w*w 	L�w��� y�� �� � � � � �� in a bounded time�

where 'L�w� 
 fw�jw� � �� 
 �n � N f�n�w�wL� 
 w�g

��



Proof� The general idea is to write a program that� on input x� 
 J �w*wL�� x� 
 I�w��� using lemma

�$� writes digit by digit onto its real register xd�� the real value of J �w*w�*w 	L�w���

Denote by number � �� � N the function that maps any word w � �� onto its number in the enumeration
of the words of ��� For k � N� w � ��� denote lttr�w� k� for kth letter of word w� We assume �xed a recursive
enumeration of the �nite subsets of �� similar to the one of ����� for any integer n � N� Dn denotes the nth

�nite subset of ���
M �

f is given by the following algorithm� where RCT instructions Topi�j�� Popi�j��Pushi�j� are de�ned
in �gure � and integer b�� is de�ned page 
�

Algorithm �
 Program M �
f�

���
�w*wL� w��
�� �*wL� w*w�*u��

where
wL � ��� w� w� � ��

u� � N� Du� 
 �

�


�

"#Initialize the computation� set n 
 �#"
xd�� �
 � "#Set initial speed to �#"
xd�� �
 � "#Set xd�� to �#"
while �true � do "#While 	true
#"	
BBBBBB


�&n*wL� w*w�*un�

�� �&nb�� � n� �an*wL� w*w�*un�

where

wL � ��� w� w� � ���
n� un � N� an � �

an 


�
� if n � length�w*w�*�
lttr�w*w�*�n� if n � length�w*w�*�

�
CCCCCCA
jxd��

WriteDigitd�� "#Set the nth digit of xd�� to default value
an#"	


 �&nm*wL� w*w�*un�
�� �&n*w*wL�&n*w*w�*un�
where wL � ��� w� w� � ��� n� un � N

�
A jxd��

Mf "#Get w�� the nth word of the enumeration
given by Mf#"	

BBBBBBBBBBBBBB


�w��*wL�&n*w*w�*un�
�� �&nm*wL� alreadyin*w*w�*un���

where

w�w�� w�� � ��� wL � ���
n� un� un�� � N� alreadyin � �
m 
 b�� � �number�w� � length�w*w�*� � ��
���
 � ��
if w�� � Dun then
alreadyin 
 &� un�� 
 un
else
alreadyin 
 *�Dun�� 
 Dun � fw

��g

�
CCCCCCCCCCCCCCA

jxd��

if ��Top��*���xd��� then "#If word w�� has not been yet output#"
�Pop��*���xd��
WriteDigitd�� "#Then change the digit of real register xd��

corresponding to w�� from value � to value 
�
#"

else
�Pop��&���xd�� "#Else do nothing#"

end if

��



	

 �&nm*wL� *w*w

�*un���
�� �&n��*wL� w*w

�*un���
where wL � ��� w� w� � ��� un��� n�m � N

�
A jxd��

"#Do n �
 n� �#"
Div�d��

end while
limit� �
x� �
 xd�� "#Copy the result into x�#"
xd�� �
 � "#Set xd�� to �#"�
� �w*w�*wL� ��
�� �w*wL� w��
where wL � ��� w� w� � ��

�
�

"#Put back the result in the good form#"

�

	�
�
 Climbing up the hyper�arithmetical hierarchy

We start by an easy lemma used in lemma 
����

Lemma 	��� � For all y � O� fxjx � O 
 x �� yg is recursively enumerable uniformly in y� there
exists a recursive f � N� N such that for all y � O� the range of �f�y� is fxjx �� yg

� Given x� y � O with x �o y or y �� as input� a Turing machine can e�ectively tell if x 
 y� if x �� y
or if y �� x�

� There exists a recursive l such that� for all z�� z� with z� �� z�� H�z�� 
 W
H�z��
l�z��z��

Proof� See ���� for the �rst assertion� For the second assertion enumerate in parallel the predecessors of
x and of y until x or y is found� For all z�� z�� set l�z�� z�� as number of the Turing machine with oracle that�
on any input w� test the membership of word �h�z��z���w� to its oracle� where h is the recursive function of
lemma ����

�

Now� we apply recurrently lemma 
��� in order to get some machines that output L�L� for some discrete
languages L � �� in higher and higher levels of the hyper�arithmetical hierarchy� We de�ne �� as ��

Lemma 	��� Let k � ��
There exists zk � O with jzkj 
 �k� there exists fk � N	�� 	�� � ��� there exists some �xed Ck � R�

and�

� a RCT machine Mk of dimension �k � � that� for all n � N� w � ��� L � ��� y� � I� maps
�J �&n*w*wL�� y�� �� � � �� �� to �J �fk�n�w�wL�*wL�� y�� �� � � � � ��

� a RCT machine M �
k of dimension �k � 
 that� for all n � N� w � ��� L � ��� y� � I maps

�J �&n*w*wL���n� y���n� �� � � � � �� ���n� to �J �fk�n�w�wL�*wL�� y���n� �� � � � � �� ���n� in a time bounded
above by Ck��n�

such that� for all z � O� if L 
 H�z� then 'L�z� 
 fw�jw� � �� 
 �n � N f�n� z� wL� 
 w�g 
 H�z�� zk�

Proof� It is known that there exists a recursive g such that for all L � ���m � N� the range of function
�Lg�m� is is W

L
m ����� Let Muniv be an ���PDA such that on input &n*m� Muniv simulatesML

g�m� on input n�

answering the queries of ML
g�m� on any word w� to its oracle L by comparing the digit of wL corresponding

to w� to letter �� Muniv is an ���PDA that for all n � N�m � N� w� � ��� L � ��� maps �&n*m*wL� w
�� to

�wm
n *wL� w

��� where wm
n 
 �Lg�m��n��

�




Denote by Puniv the RCT machine given by lemma 
�� that simulates Muniv�

Using lemma 
��� for all d � � one can build a RCT machine P
�d��
univ of dimension d� � that� for all n �

N�m � N� y� � I� L � ��� maps �J �&n*m*wL���
n� y���

n� �� � � � � � � ���n� to �J �wn
m*wL� ��

n� y���
n� �� � � � �

�� ���n� in time k��n for some �xed k � R�� Apply lemma 
��� on this machine� one gets a RCT machine of
dimension d�� that� for all L � ���m � N� y� � I� maps �J �m*wL�� y�� �� � � � � �� to �J �m*wWL

m
�� y�� �� � � � � ��

in �nite time� Denote this RCT machine by P
��d��
univ �

Now� we are ready to prove the assertions of the lemma by induction over k�
Assume k 
 �� it is known that there exists m� � N� such that for all L � ��� L� 
 WL

m�
����� Consider

M as the ���PDA that on input �&n*w*wL� w�� calls Muniv with input �&n*m�*wL� w��� M� is the RCT
machine of dimension � given by lemma 
�� that simulates M � and M �

� is the RCT machine of dimension 

given by lemma 
�� that simulates M �

Assume now k � �� denote by �������� � N� N some recursive functions such that

n �� ����n�����n�����n��

is a bijective recursive function from N to N	 N	 N� Denote by f and l the recursive functions of lemma

����

Lemma 
��� can be applied on machine M �
k��� one get a RCT machine M ��

k�� of dimension �k � � that

for all z� � O� for all y� � I maps �J �z�*wH�z���� y�� �� � � � � �� to J �z�*wH�z��zk���� y�� �� � � � � �� in a bounded
time� Set zk 
 
��nk where �nk��� 
 � and �nk�n� �� 
 �nk�n� �� zk�� for all n � N�

Mk is given by the following program� where RCT instructions Topi�j�� Popi�j��Pushi�j� are de�ned in
�gure ��

Algorithm �� Program Mk�
� �&n*z*wL� w

��
�� �z*wL�&*&n*z*w��
where wL � ��� w� � ��� z � O�n � N

�
�

while �Top��&�%� do "#Call ���n� times program M ��
k�� #"

M ��
k���

�����������

�zp*wL�&*&n*z*w��
�� �zp��*wL� continue*&n*z*w��

where

wL � ��� w� � ��� zp� zp�� � O�n � N
zp�� 
 zp �� yk��
if zp�� �o �nk����n��
then continue 
 &
else continue 
 *

�










�

end while "#Here� if the initial input was &n*z*wH�z��
z � O� we have x� 
 J �zp*wH�zp�� where
zp 
 �nk����n�� #"

�
�����

�zp*wL� **&
n*z*w��

�� �&���n�*m*wL�&n*z*w�*z��*zp�

where

wL � ��� w� � ��� z � O�m� n � N
z�� 
 �f�zp�����n�� �we have z� �� zp�

m 
 l�z��� zp� is the integer such that W
H�zp�
m 
 H�z���

�




�

Puniv "# Compute z�� 
 �f�zp�����n��� We have

z�� �o zp� Get w�� the ���n�th word of
H�z���#"

��



�
���

�w��*wL�&
n*z*w�*z��*zp�

�� �m*wL�&
n*w��*z��*w��

where
wL � ��� w�� w�� � ��� z� z��� zp � O�m� n � N

m 
 l�z� zp� is the integer such that W
H�zp�
m 
 H�z�

�


�

P
���k��
univ "#Put back in x� the value of wH�z�#"�
� �m*wL�&n*w��*z��*w��
�� �� w��� z�� � *wL� w��
where wL � ��� w�� w�� � ��� z�� � O�n � N

�
�

"#Output � w��� z�� � *wH�z� #"

M �
k is easy to obtained from the program of Mk� add the instruction x�k�� �
 ���� at the beginning of

program Mk� replace �
� �m*wL�&

n*w��*z��*w��
�� �� w��� z�� � *wL� w

��
where wL � ��� w�� w�� � ��� z�� � O�n � N

�
�

by 	

 �m*wL�&n*w��*z��*w��

�� �� w��� z�� � *wL� ����n� *w��
where wL � ��� w�� w�� � ��� z�� � O�n � N

�
A jxd��

replace in program Mk all the other instructions of type

�
� �w�� w��
�� �w��� w

�
��

where conditions

�
�

by 	

 �w�� w��

�� �w��� w
�
��

where conditions

�
A jxd��

replace Puniv by P
��k��
univ � P

���k��
univ by P

���k��
univ �x�k��� and replace the call to M ��

k�� by the instructions

M ��
k��)Div�

�k��� and add the program GoUpOrDown de�ned page �� at the end of the program�
�

We get�

Lemma 	��	 Let k � ��

� Any language of ��k can be fully�recognized by a RCT machine of dimension �k � ��

� Any language of ��k can be semi�recognized by a RCT machine of dimension �k � ��

Proof� Consider the machineMk and the integer zk � O of lemma 
���� Mk is of dimension �k� �� and
jzkj 
 �k� Let L be a language of ��k �respectively� ��k�� L is recursively enumerable �resp� recursive� in

H�zk� by some machine M
H�zk�
n �

See that there exists a recursive g such that� for all u � ��� v � O� u �� H�v� � g�u� � H��v�� see �����
L is semi�recognized �resp� fully�recognized� by the RCT machine of dimension �k � � that simulates

M
H�zk�
n � simulating every query of M

H�zk�
n of type � u� v �� H�zk�% by a subprogram that runs Mk on

input x� 
 J �&n*�*w�� for n 
 �� �� � � � � until either x� 
 J �� u� v � *w�� or x� 
 J �� g�u�� �v � *w�� is
output�

�

We are ready to prove the main assertion of the section� RCT machine can recognize some hyper�
arithmetical sets� We de�ne �� 
 ��

��



Theorem 	�
 Let k � ��

� Any language of ��k can be fully�recognized by a RCT machine of dimension �k � ��

� Any language of ��k�� can be fully�recognized by a RCT machine of dimension �k � 
�

� Any language of ��k can be semi�recognized by a RCT machine of dimension �k � ��

� Any language of ��k�� can be semi�recognized by a RCT machine of dimension �k � 
�

Proof� If k 
 �� this is a direct application of theorem 
���
Assume now k � �� the �rst and the third assertions are lemma 
��
� The second and the last assertions

are immediate from the third assertion and from lemmas 
�� and 
�� with B 
 H��k�� since ��k�� 
 �
H��k�
�

and ��k�� 
 �
H��k�
� �

�

� PCD systems can simulate RCT Machines

In this section� we prove that PCD systems can simulate RCT machines� We start by seeing how to realize
the elementary instructions of RCT machines�

��� Linear machine instructions

Let d be an integer� A k�dimensional box of Rd� k � d� is a couple I 
 �P�B� where P is a polyhedral
subset of Rd of dimension k� and B is a a(ne basis �O� e�� e�� � � � � ed� of R

d� O � P � such that �O� e�� � � � � ek�
is an a(ne basis� of P �

The point of coordinates �x�� � � � � xk� on I 
 �P�B� denotes the point of P � if it exists� of coordinates
�x�� � � � � xk� �� � � � � �� in basis B� A trajectory is said to reach I 
 �P�B� i	 it reaches P �

Let H be a PCD system of dimension d� Let d� be an integer with d� � d� Let I 
 �f� c� be an assignment�

of dimension d�� H is said to realize assignment I if there exist some d��dimensional boxes In and Out of
Rd� such that� for all x � ��� ��d

�

� the trajectory of H starting from the point of coordinates x � ��� ��d
�

on
In at time � reaches Out at time c�x� in point of coordinates f�x� on Out� see �gure � and �gure �� In that
case� we say that H realizes the assignment via input port In and via output port Out�

For all d� � N� denote by Idd� the identity function of ��� ��d
�
� Idd� �x� 
 x for all x � ��� ��d

�
� Let

I 
 �R� c� be a test of dimension d�� H is said to realize test I if there exist three d��dimensional boxes In�
Out��Out� of Rd such that for all x such that R�x� is true� H realizes assignment �Idd� � c� via input port In
and output port Out�� and for all x such that R�x� is false� H realizes assignment �Idd� � c� via input port
In and output port Out��

Lemma 
�� �Basic linear machine instructions� Let d � N� Let d� � d� ��
Let I 
 �f� c� � Assgnmtd be an admissible assignment 	respectively Let I 
 �R� c� � Testd be an

admissible test
 of dimension d� Assume that I is one of the �linear machine instructions� of de�nition ����
For all 
 � R�� one can build a PCD system of dimension d� that realizes assignment I 
 �f� 
c� 	resp�

that realizes test I 
 �R�
c���

Proof� For any � � R� �� � R�� & � f���� ����
� �
g� �gure � shows how one can build a PCD system
of dimension � that realizes x� �
 ��x� ����x� �
 x� � � ���� x� �
 � ���� x� �
 x�&� ��� and �gure � shows
how one can build a PCD system of dimension 
 that realizes x� �
 x� ��� and x� �
 x� � x� ����

It is easy to transform these PCD systems into PCD systems that realize all the linear machine instructions
of de�nition 
��� for example to build a PCD system that realizes xi �
 xj ���� take the PCD system

H� 
 �X�� f �� of dimension 
 of �gure � that realizes x� �
 x� ���� and consider H 
 �Rd
�

� f� where�

�That is to say B is an a�ne basis of V � where V is the minimal a�ne variety such that P � V �
�We do not assume here that I is necessarily an admissible assignment�

��



(0,1)

y

(1,lambda)(1,lambda-1)

(0,0)

lambda y

(1,0)

(1,0)

y

y+lambda

(1,lambda)

(0,1) (1,1)

(1,0)(0,0)

y

lambda

(1,0)

(1,1)(0,1)

(0,0)

(1,-2)

(1,0)

(1,2)

(0,1)

(0,0)

(1/2,lambda)

(1,0)

(1,1/2) y>lambda

y<=lambda

y

(1,-1/2)

Figure �� PCD systems realizing y �
 �y ���� y �
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 � ��� and y � �% ����
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Figure �� PCD systems realizing y �
 x ��� and y �
 y � x ����
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for all x�� � � � � xd� � f�x�� � � � � xd�� 
 �x��� x
�
�� � � � � x

�
d��� x

�
k 
 � for all k �� fi� j� d � �g and �x�j� x

�
i� x

�
d��� 


f ��xj � xi� xd����
To realize a linear machine instruction of cost 
 instead of �� multiply all the slopes in the PCD system

by ��
�
�

��� Paths and delay module

One can arti�cially slow down a trajectory �recall that for all d � N� Idd denotes the identity function of
��� ��d��

Lemma 
�� �Delay module� Let d � N� Let d� � d� � be an integer�
For any a�ne function c � ��� ��d � R�� one can build a delay module of time c plus some constant in

dimension d�� for all a�ne function c � ��� ��d � R�� there exists some � � R�� such that one can construct
a PCD system of dimension d� that realizes assignment �Idd� c� ���

Proof� Take some big enough k� k� � R and construct a PCD system as in �gure ��
�

(0,1,0)

(0,0,0)

(1,0,0)
(x,y) (x,y)

(0,0,k’)

(0,0,1/2)

(0,0,1)

hyperplane of
equation z=c(x,y)+k

Figure �� A PCD system realizing a delay

Now� see that one can build some  paths! using the regions of a PCD system� for all 
 � R� denote
abusively by 
 the constant function of ��� ��d whose value is 
� �x � ��� ��d� 
�x� 
 
�

Lemma 
�	 �Paths� Let d � N� Let d� � d� � be an integer� Let In and Out be two d�dimensional boxes
of Rd�

For all 
 � R�� one can build a path of time 
 between In and Out in dimension d�� for all 
 � R�� one
can build a PCD system of dimension d� that realizes the assignment �Idd� 
� via input port d�dimensional
box In and output port d�dimensional box Out�

y

y
y y

Figure �� Elementary constructions used in paths� angle and straight path�

��



Out

In

Delay
Module

Figure $� A path between ��dimensional port In and ��dimensional port Out�

Proof� Using  angles! and  straight part! as in �gure � it is easy build some regions that bring any
point of coordinates x on In to point of coordinates x on Out� The time taken by a trajectory to go through
these regions from point of coordinates x on In to point of coordinates x on Out is some a(ne function t
of x� t � Rd � R�� Using lemma ���� insert in one of the regions some regions that realize a delay module
of time �t�x� plus some constant� As a consequence� now� the time required by a trajectory to from In to
Out is a constant k independent of x� Multiply all the slopes in the regions by 
�k to get a path of time 
�
see �gure $�

�

We see now that one can connect several d�dimensional ports to a same d�dimensional port in any
dimension d� � d� ��

Lemma 
�
 �Merging paths� Let d � N� Let d� � d � � be some integer� Let I�� � � � � Ik be some d�
dimensional boxes� Let Out be a d�dimensional box�

One can connect all the Ij� j � f�� � � � � kg to Out in dimension d�� there exists a PCD system H of
dimension d� such that� for all j � f�� � � � � kg� H realizes the assignment �Idd� �� via input port Ij and output
port Out�

Proof� Using lemma ��
� for all j � f�� � � � � kg� build a path between Ij and Out� generalize to dimension
d the construction of �gure �� to merge all the paths� See that dimension d � � would not be su(cient to
connect the paths�

�

Out

I3

I2
I1

Figure ��� Connecting several ��dimensional ports I�� I�� I� to a same ��dimensional port Out in dimension

�

��� PCD systems can simulate RCT machines

We show now that one can realize all the RCT machines instructions� in particular� one can realize the
 Zeno instructions!� We use an idea of ���� see �gure �� and �gure �� to understand how it works� See in
�gure �
 and in �gure �� how to realize the  special instructions!�

�$
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Figure ��� The homogenization of a PCD system of dimension d 
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(0,0,0)
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Input
Port

Output

Port

(y,z)
(y + lambda z,z)

Output
port

Input
Port

(0,0,1)

Figure ��� Realizing  Zeno instructions!� from a PCD realizing y �
 y � � ��� of dimension � �on left� one
can build a PCD system of dimension 
 �on right� that realizes Zeno instruction �y �
 y � � �����z�
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De�nition 
�� �Homogenization�Translation� Let R� be a region of a PCD system of dimension d��
that is to say R� is a polyhedral subset of Rd

�
with some associated slope s� 
 �s��� � � � � s

�
d�� � R

d��

� R� is said to be homogeneous if the point of of Rd
�

of coordinates ��� � � � � �� is in R�� where R� is the
topological closure of R��

� The translation of region R� is the region R of Rd
��� de�ned by�

R 
 f�x�� � � � � xd����j� � xd��� � � 
 �x�� � � � � xd�� � R�g

with associated slope s 
 �s��� � � � � s
�
d� � ���

� If I� 
 �P �� B�� is a d�dimensional box of Rd
�
� the translation of I is the d���dimensional box de�ned

by I 
 �P�B�� where P is the translation of P �� B 
 �O� e�� � � � � ed����� where B� 
 ��� e�� � � � � ed� � and
ed��� is the vector of coordinates ��� � � � � �� ���

� The homogenization of region R� is the region R of Rd
��� de�ned by�

R 
 f�x�� � � � � xd����j� � xd��� � � 
 �x��xd���� � � � � xd��xd���� � R�g

with associated slope s 
 �s��� � � � � s
�
d� � ���

� If I� 
 �P �� B�� is a d�dimensional box of Rd
�

� the homogenization of I is the d � ��dimensional
box de�ned by I 
 �P�B�� where P is the homogenization of P �� B 
 ��� e�� � � � � ed���� where B� 

���� e�� � � � � ed��� O has coordinates ��� � � � � ��� ed��� is the vector of coordinates �o�� o�� � � � � od� � �� where
�o�� o�� � � � � od�� are the coordinates of O� in Rd

�
�

Lemma 
�
 Let H� be a PCD system of dimension d� realizing assignment �f� c� 	respectively test �R� c�� of
dimension d via input port In and via output port Out 	resp� via output ports Out�� Out�
�

� Let H be the PCD system of dimension d� � � whose regions are the translations of the regions of H��

H realizes assignment �f� c� 	respectively test �R� c�
 considered as an instruction of dimension d � �
	see de�nition ���
 via input port the translation of In and via output port the translation of Out 	resp�
via output ports the translations of Out� and of Out�
�

� Let H be the PCD system of dimension d� � � whose regions are the homogenizations of the regions of
H��

H realizes assignment �f�xd��� c�xd��� 	respectively test �R�xd��� c�xd���
 via input port the homog�
enization of In and via output port the homogenization of Out 	resp� via output ports the homogeniza�
tions of Out� and of Out�
�

� Let I 
 �P�B� be a d�dimensional port of Rd
�

� Assume P is homogeneous� If I� 
 �P �� B�� and
I�� 
 �P ��� B��� denote the translation and the homogenization of I respectively� then P �� � P ��

Proof� Immediate from the de�nitions� see �gure ��� �gure �� or see �
��
�

We distinguish a special type of RCT machines�

De�nition 
�� �RCT machine with property �� Let M 
 �Q� q�� q
�
f � q

�
f � limit

�� �� be a RCT machine�

� A state q � Q of M is�

� �at ��� i�� for all instantaneous description id ofM of type �q� x�� � � � � xd� t�� for some x�� � � � � xd �
��� ��� t � R�� for all instantaneous description id� of M with id� �d id� then id� is of type
�q�� x��� �� x

�
�� � � � � x

�
d� t

��� for some q� � Q� x��� x
�
�� � � � � x

�
d � ��� ��� t� � R��


�
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Figure �
� Some PCD systems realizing instruction xd �
 xd���xd� and instruction xd �
 �xd�xd��
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(x,y+lambda x)

Figure ��� Some PCD system realizing instruction y �
 y � �x �x��

� separated ��� i�� for all instantaneous description id of M of type �q� x�� � � � � xd� t�� for some
x�� � � � � xd � ��� ��� t � R�� for all instantaneous descriptions id� and id�� of M of type �q�� x��� x

�
��

� � � � x�d� t
�� and �q��� x���� x

��
�� � � � � x

��
d � t

��� respectively� q�� q�� � Q�x��� � � � � x
�
d� x

��
�� � � � � x

��
d � ��� ��� t��t�� �

R�� if id� �d id and id�� �d id then q� 
 q���

� M has property � i� all the states q � Q of M are �at or separated�

Here is the main theorem of the section� one can simulate a RCT machine by a PCD system�

Theorem 
�� � Let M be a RCT machine of dimension d�

One can build a PCD system H of dimension d� � that simulates M �

� Let M be RCT machine of dimension d with the property ��

One can build a PCD system H of dimension d� � that simulates M �

Proof� AssumeM is of dimension d� Assume either that d� 
 d�� or that d� 
 d�� and that M has the
connectivity property� Denote M 
 �Q� q�� q

�
f � q

�
f � limit

�� ��� For all q � Q� denote ��q� 
 �q�� q�� Instrq��
We prove the theorem by induction over the dimension d and by structural induction over the program

of M � we prove that for all M of dimension d one can build a PCD system H of dimension d�� to each
state q � Q is associated a d�dimensional box Iq and some regions of H such that H realizes the assignment
�respectively� the test� Instrq via input port Iq and via output port Iq� �resp� via output ports Iq� and
Iq� � using these regions� Moreover� for all q � Q� if Iq 
 �Pq � Bq�� then Pq is homogeneous i	 q is not an
instruction corresponding to a subprogram of dimension d nor a linear machine instruction� In addition� H
has a box I� corresponding to the limit state�

Denote Q� � Q for the subset of the states ofM such that q � Q� i	 Instrq is either a special instruction�
or a Zeno instruction� or obtained from an instruction of dimension d � � which is not a linear machine
instruction nor a subprogram of dimension d� ��

See that Q� is empty if d � �� if d � � skip the �ve following paragraphs�


�



Consider M � 
 �Q� q��� q
�
f � q

�
f � limit

�� ��� as a program of dimension d � � where� for all q � Q� ���q� 


�q�� q��� Instr�� i	 q�� q� � Q�� q� 
 q�� q�� 
 q�� and Instr� 
 �f� c� if Instrq 
 �f�xd� c�xd�� Instr
� 
 �R� c�

if Instrq 
 �R�xd� c�xd�� Instr
� 
 �Idd��� �� if Instrq is a special instruction of type xd �
 xd�� �xd� or of

type xd �
 �xd�xd�� Instr
� 
 �x� �
 x� �xk�� if Instrq is a special instruction of type xd �
 xd��xk� � � k � d�

Instr� 
 �f� c� if Instrq is obtained from the instruction �f� c� of dimension d � �� and Instr� 
 �R� c� if
Instrq is obtained from the test �R� c� of dimension d� ��

By induction hypothesis one can build a PCD system H� of dimension d�� � that simulatesM �� To each
state q� � Q� of M � corresponds a d � ��dimensional port I�q� � Moreover� some d � � dimensional box I��
corresponds to the limit state�

Consider H as the PCD system built as follows� for all q � Q�� for all region R� � Rd
��� of PCD system

H� associated to q�

� if Instrq corresponds to a special instruction of type xd �
 xd�� �xd� or xd �
 �xd�xd�� or to a Zeno
instruction� then add to H the homogenization of region R� and take Iq as the homogenization of I�q �

� if Instrq corresponds to an instruction obtained from an instruction of dimension d � � or a special
instruction of type xd �
 xd � �xk� � � k � d then add to H the translation of region R� and take Iq
as the translation of I�q�

For each state q � Q� such that Instrq is a  special instruction! modify H as follows� if Instrq is of
type xd �
 xd�� �xd� or of type xd �
 �xd �xd� we can assume without loss of generality that one region
already constructed R of slope s of H corresponding to state q is the homogenization of a region R� of
H� of slope s� and that R� is of type R� 
 A� � ��� ��d

��� for some point A� � Rd
���� where s� is of type

s� 
 �v� �� � � � � ��� for some v � R�� In that case� replace the slope s of R by s 
 �v� �� � � � � ���v��� if Instrq
is of type xd �
 xd�� �xd� and by s 
 �v� �� � � � � �� v� if Instrq is of type xd �
 �xd �xd�� If Instrq is of type
xd �
 xd � �xk� � � k � d� we can assume without loss of generality that one region already constructed
R of slope s of H corresponding to state q is the translation of the translation of the translation of the
� � � translation of the homogenization of some region R�� of Rd

��d�k�� with slope s�� and that R�� is of type
R�� 
 A�� � ��� ��d

��d�k�� for some point A�� � Rd
��d�k��� where s�� is of type s�� 
 �v� �� � � � � ��� for some

v � R�� In that case� replace the slope s of R by s 
 �v� �� � � � � �� v��
All the ports Iq constructed up to know are either the homogenization of I�q or the translation of I�q�

but in this latter case� I �q is always homogeneous� As a consequence� by lemma ���� for all q � Q�� it is
true that H realizes the assignment �respectively the test� Instrq via d�dimensional input port Iq and via
d�dimensional output port I�q �resp� via output ports I�q � I

�
q ��

Now� for all q � Q� q �� Q� does the following� choose any arbitrary d�dimensional port Iq of Rd
�
not

containing the point of coordinates ��� � � � � ��� See that Instrq corresponds to an instruction Instrq that is
either equivalent to a linear machine instruction or either a subprogram of dimension d or d� ��

� If Instrq corresponds to a subprogram of dimension d �respectively� d� ��� by induction hypothesis�
one can build some regions of a PCD system Hinstrq of dimension d� �resp� d���� that realizes Instrq�
Add to H the regions of Hinstrq �resp� the translation of the regions of Hinstrq� and a path of time
��� between the d�dimensional port Iq of H and the input port of Hinstrq �resp� and the translation of
the input port of Hinstrq� and a path of time ��� between the output port of Hinstrq �resp� between
the translation of the output port of Hinstrq� and the d�dimensional port Iq� of H�

� If Instrq corresponds to a linear machine assignment �f� c� �respectively� to a test �R� c��� by lemma
���� build a PCD system Hinstrq of dimension d� that realizes �f� c�
� �resp� �R� c�
��� Add to H the
regions of Hinstrq and a path of time ��
 between the d � ��dimensional port Iq of H and the input
port of Hinstrq and a path �respectively� and two paths� of time ��
 between the output port of Hinstr

and the d�dimensional port Iq� of H �resp� and the d�dimensional ports Iq� and Iq� ��

See that� if d� 
 d � �� by lemma ���� all the connections between the ports using the paths can be
realized� Now� if d� 
 d � �� there might be some problems of connections between the paths� however� if
we assume that M has the property #� when several d� dimensional ports Iq� � Iq� have to be connected to
an unique d�dimensional port Iq� � we are sure that this port corresponds to a state q� � Q that is either







separated or �at� If q� is separated� there is no problem since the paths connect Iq� � Iq� to di	erent subsets
of Iq� �
�� If q� is �at� the paths can be taken of dimension d � � by ignoring the value of real register x�
always equals to � �
�� see �gure ���

De�ne I� as f�x�� � � � � xd��j� � xd� � � 
 �x�� � � � � xd���� � I��g� I� is the translation of I��� Add a path
from port I� to the port Ilimit� �

One gets a PCD system H that simulates M � H realizes the assignment corresponding to the execution
of M via input port Iq� and via output port Iq�

f
� Moreover� for all Iq 
 �Pq � Bq�� Pq is homogeneous i	 q

is not an instruction corresponding to a subprogram of dimension d nor a linear machine instruction� This
proves the assertion for dimension d from the assertion in dimension d� ��

�

Figure ��� Realizing entrances to input ports of separated �left� and �at �right� states �
��

We claim�

Proposition 
�� All the theorems and lemmas proved up to know can be proved using RCT machines with
property �

Proof� We say that a RCT programM has the property ## if� in all the IDs of the computations of M � real
register x� has a value in I� Check that all the programs obtained up to now have the property ##�

It is easy to use the trick of claim �� of �
�� to transform any RCT program with the property ## into a
RCT program with the property #� transfer all the data from the second real register to the �rst one when
a critical transition must be done� see �
��

�

As a consequence� we get immediately from theorem ��� and from theorem 
���

Theorem 
�� Let k� � ��

� Any language of ��k
� can be fully�recognized by a PCD system of dimension �k��
 in �nite continuous

time�

� Any language of ��k
��� can be fully�recognized by a PCD system of dimension �k� � � in �nite con�

tinuous time�

� Any language of ��k� can be semi�recognized by a PCD system of dimension �k��
 in �nite continuous
time�

� Any language of ��k��� can be semi�recognized by a PCD system of dimension �k� � � in �nite con�
tinuous time�

� Upper bounds on the computational power of PCD systems

In this section� we show that theorem ��� is optimal� We start by some geometrical considerations�


�



x*

x*

x*

Figure ��� From left to right� x� is of local dimension ��� ��� 
 in a PCD system of dimension 
�

��� Geometrical considerations


���� Local dimension

We de�ne�

De�nition 
�� �Local dimension� Let H 
 �X� f� be a PCD system in dimension d� Let x� be a point of
X� Let � be a polyhedral subset � � X of maximal dimension d� d� 	� � d� � d
 such that there exists an
open convex polyhedron V � X� with x� � �� V � � � V � and such that� for any region F of H� F � V �
 �
implies � � F 	F is the topological closure of F 
�

If d� � d then x� is said to be of local dimension d�
�
� If d� 
 d then x� is said to be of local dimension

d� and we can always choose V small enough such that x� is the only point of local dimension d� in V � see
�gure �
�

Note that given a rational PCD system H 
 �X� f� and k 
 d� or k 
 d�
� one can e	ectively compute

LocDim�H� k� de�ned as the set of the points x � X that have a local dimension equal to k�
The idea is that if a point x� is of local dimension �d��� in a PCD of dimension d� to study the trajectories

in a neighborhood of x�� one can restrict the attention to a PCD system of dimension d��

x*

P

P

x*

Figure ��� Proposition ���� if x� is of local dimension �� in a PCD H of dimension 
� the projections on P
of the trajectories of H in a neighborhood V of x� are the trajectories of a PCD system Hx� of dimension ��

Proposition 
�� Let H 
 �X� f� be a PCD system in dimension d� Let x� be a point of local dimension
�d��� with d� � d� Call P the a�ne variety of dimension d� which is the orthogonal of � in x�� It is possible
to construct a PCD system H� 
 �X� 
 Rd

�

� f �� in dimension d� such that the trajectories of H� are the
orthogonal projections on P of the trajectories of H in V �

Proof� Choose an a(ne basis of Rd of the form �x�� e�� e�� � � � � ed� � � � � � ed� with �x�� e�� e�� � � � � ed�� taken
as a basis of P and �x�� ed���� � � � � ed� taken as a basis of �� Call p � Rd � Rd

�

the projection that


�



sends �x�� x�� � � � � xd� to �x�� � � � � xd��� By hypothesis� in V the regions are organized as a +pencil of regions��
therefore speed in point �x�� x�� � � � � xd�� � � � � xd� � V does not depend on the coordinates xd���� xd���� � � � � xd�
The reader can check that H� 
 �X� 
 Rd

�
� f �� where f ��x�� x�� � � � � xd�� 
 p�f�x�� x�� � � � � xd� � �� � � � � ��� is a

solution� See �gure ���
�

For any point x�� the corresponding open convex polyhedron V is denoted by Vx� � H�� � are respectively
denoted by Hx� and �x� � If d� � d we denote by px� and qx� the functions that map all point x � X onto
its orthogonal projection on P and onto its orthogonal projection on � respectively� If d� 
 d� we de�ne px�
and qx� as respectively the identity function and the null function�

A rational polyhedron is any polyhedron whose equation can be written using only rational numbers�
When H is a rational PCD system� see that for all point x� � Rd� one can always choose Vx� and �x� such
that they are rational polyhedral� even if x� has some non rational coordinates�

We assume the natural order � � �� � � � �� � � � ��


���� Fundamental properties of points of low or high local dimension

Next lemma is easy�

Lemma 
�� For all d � N� any point of local dimension d of any rational PCD system is a point with
rational coordinates�

Proof� See that if x is a point of local dimension d of some PCD system H �H must be of local dimension
d�� then the intersection of all the regions of H that intersect Vx is reduced to singleton fxg� Since all the
regions must be rational polyhedral� the unique point of the intersection must have rational coordinates� see
�gure ���

�

In ���� we proved�

Lemma 
�� ����� Let H 
 �X� f� be a PCD system of dimension d� Let � be a trajectory of H of �nite
continuous time Tc and discrete time Td � � converging to x� 
 ��Tc�� Assume that x� is of local dimension
d� � 
�� Then necessarily the signature of � is ultimately cyclic�


���	 Trajectories that make some cycles

We de�ne the following relation Cycle� see lemmas ��
 and lemma ��� for the motivation�

De�nition 
�� �Relation Cycle� Let d be an integer� Let H be a PCD system of dimension d� Let z�� z�
be two points of Rd� Let x� � Qd�X be a rational point� Let Q be a rational polyhedron�

We say that Cycle�z�� z��H� Q� x�� is true i� all the following conditions hold simultaneously 	see �gure
��
�

� Q � Vx� � Q is a open convex polyhedron and z�� z� � Q�

� z� �
 z�� z�� z� �� �x� and the line �z�� z�� de�ned by z� and z� intersects �x� in some point z��

� z� � Q� where Q is the topological closure of polyhedron Q�

� d�px��z��� px��x
��� � d�px��z��� px��x

����

Recall that d denotes the distance of the maximum� Note that we have always px��x�� 
 x�� We prove
�rst that any positive instance of this problem implies that the trajectory is cycling� see �gure ���

Lemma 
�	 Let H be a PCD system of dimension d� Let � be a trajectory of H� Let z�� z� � Rd be two
points reached by � at time t�� t� � R� respectively with t� � t�� Let x� � Qd� Let Q be a rational polyhedron�

Assume Cycle�z�� z��H� Q� x�� is true and that the trajectory stays in Q between time t� and time t��
�t � �t�� t�����t� � Q�

Then trajectory � is cycling and reaches the point z� of de�nition ��� at time t� 
 t��
P�

j�� �
j�t��t�� 


t� � �t� � t������� ��� where � � ��� �� is such that d�px��z��� px��x
��� 
 �d�px��z��� px��x

����
Moreover the trajectory stays in Q between time t� and time t�� for all t � �t�� t��� ��t� � Q�


�
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Figure ��� If predicate Cycle�z�� z��H� Q� x�� is true for some rational polyhedron Q and some rational point
x� � Qd� if the trajectory reaches z� and z� and does not leave Q between z� and z�� then the trajectory is
ultimately cycling and converging to z��

When the hypotheses of lemma ��
 hold� we denote Cycle���t�� z��� �t�� z���H� Q� x�� for the couple
�t�� z�� � R	Rd�

Proof� Denote Hx� 
 �X�� f ��� By lemma ���� �� 
 px���� must be a trajectory of Hx� � Fix the origin
in x�� Cycle�z�� z��H� Q� x

�� implies that there exists some real � � � � � with px��z�� 
 �px� �z��� see
�gure ���

By de�nition of Vx� all the regions of Hx� intersecting px��Vx� � contain px��x
�� in their topological

closure� Hence we have f ��x� 
 f ��
x�� for all x � px��Vx� �� 
 � ��� ��� If ���t� is solution to di	erential
equation �xd 
 f ��x�� then ,��t� 
 ����t��� is also solution� As a consequence� for all n � � � N� trajectory

�� must reach the point �n��px��z�� at time t� � �t� � t��
Pn��

j�� �
j � see �gure ���

From the de�nition of Hx� this implies that� for all n � � � N� � reaches the point zn de�ned by
px��zn� 
 �n��px��z�� and qx��zn� 
 qx��z�� � �qx��z��� qx��z���

Pn��
j�� �

j at time t� � �t� � t��
Pn��

j�� �
j�

Hence� trajectory � must reach z� at time t�� see �gure ��� By convexity of Q� � must stay in Q between
time t� and time t��

�


���
 Sequence of points of local dimension k

We claim�

Lemma 
�
 Let H 
 �X� f� be a PCD system of dimension d� Let � be a trajectory of H� � is a function
from an interval D of R� containing � to Rd� Assume that we have a bounded increasing sequence �ti�i�N
of real numbers in the domain of function �� for all i � N� ti � ti��� ti � D and there exists some T � R
with ti � T for all i � N� Denote t� 
 supi�Nti�

� One can always assume that � is de�ned at time t��

� x� 
 ��t�� is the limit in Rd of the sequence ���ti��i�N�

� Let k 
 �d�� or k 
 �d��� for some integer d�� Assume that for all i � N� ��ti� is of local dimension k�

Then

� x� 
 ��t�� is of local dimension � k�

� If x� is of local dimension �d� � �� or �d� � ���� then there must exists i� � i� � N� x
�� � Qd� a

rational polyhedron Q such that trajectory � stays in Q between time ti� and time ti� and such
that predicate Cycle���ti� ����ti���H� Q� x

��� is true� Moreover� if t � R� x � Rd are such that
�t� x� 
 Cycle���ti� ���ti���� �ti� ���ti����H� Q� x

�� then the local dimension of x is � �d� � ���


�



Trajectory
L

z2
z1

x*

Figure �$� Proof of lemma ���� here d 
 d� 
 
� L is the set of the one dimensional regions that intersect
px��Vx� �� L is made of a �nite number of segments� Every time the trajectory reaches a point of local
dimension �� � it reaches L� If the trajectory reaches two times L in a same segment in points z�� z� then
predicate Cycle�z�� z��H� Vx� � x�

�
� is true for all rational point x�

�
� �x� �

Proof� By a well�known result of analysis� since � is a continuous function and has a bounded right
derivative� � can always be extended to a function de�ned on t��

Since trajectory � is a continuous function� x� 
 ��t�� must be the limit of sequence ���ti��i�N�
Assume that for all i � N� ��ti� is of local dimension k� Denote by d�� the local dimension of x�� By

continuity of �� there exists i� � N such that for all i � i�� ��ti� � Vx� � For all i � i�� point ��ti� is of local
dimension k and is in Vx� � By considering the dimension of a(ne subspace ���ti�� for any i � i�� one gets
d�� � k�

Assume d�� 
 k� By some easy geometrical considerations �see �gure ���� x� is the only point of local
dimension k in px��Vx� �� As a consequence� for all i � i�� ��ti� � �x�� Denote by tfirst the �rst point of
local dimension k 
 d�� reached by � after time ti� � tfirst 
 infftjt � R 
 t � ti� 
 ��t� � LocDim�H� k�g�
�� 
 px���� must be a trajectory of Hx� � � does not reach any point of local dimension k at any time t with
ti� � t � tfirst� One has ���ti�� 
 ���tfirst�� As a consequence� for all n � N� ���ti� � n�t � ti��� 
 ���ti��
and all the points of local dimension k reached by � at some time t � ti� must necessarily be reached at
some time t of type t 
 ti� �n�t� ti�� for some n � N� In particular� sequence �ti�i�Nmust be a subsequence
of sequence �ti� � i�t� ti� ��i�N� We reach a contradiction� since �ti�i�Nis assumed to be a bounded sequence�
Hence� it is not possible that d�� 
 k and necessarily d�� � k�

Assume d�� 
 �d� � �� or d�� 
 �d� � ���� The image L of LocDim�H� k� by px� is a �nite set of
one�dimensional segments� see �gure �$� Since ����ti��i�i� is an in�nite sequence� there must exists some
i� � i� � N� z� 
 ��ti��� z� 
 ��ti�� such that px��z�� and px��z�� belong to a same segment of L� and
such that d�px��x

��� px��z��� � d�px��x
��� px��z���� see �gure �$ or �gure ��� Take Q 
 Vx� � Check that

predicate Cycle�z�� z��H� Q� x�
�� is then true for any rational point x�� � Qd ��x� �

Denote �t� x� 
 Cycle���ti� � z��� �ti� � z����H� Q� x
��� By lemma ��
� � must be converging to x at time t�

By de�nition of Cycle�� x must belong to �x� � As a consequence� x must be of local dimension � �d�� ���
�

Corollary 
�� Let H 
 �X� f� be a PCD system� Let � be a trajectory of H Assume that we have a bounded
increasing sequence �ti�i�Nof real numbers in the domain of function �� Denote t� 
 supi�Nti�

� For all d� � N� only a �nite number of the points xi 
 ��ti�� i � N are of local dimension d��

� If the local dimension of x� 
 ��t�� is k 
 �d��� or k 
 �d����� d�� � N� then all but a �nite number of
the xi� i � N are of local dimension � �d�� � ����

Proof� If some xi is of local dimension d�� the dimension d of the PCD system must be equal to d��
If there are a non �nite number of points of local dimension d�� one can extract from sequence �ti�i�Nan
in�nite sequence �t�i�i�Nsuch that for all i � N� ��t�i� is a point of local dimension d� with t� 
 supi�Nt

�
i�


�



This is impossible since by lemma ���� x� must be of local dimension � d� and the dimension of the space
must be d��

By the pigeon hole lemma� since the local dimension is bounded by d the dimension of the space� if the
second assertion were false� there must exists some d � d��� � �d��� such that one can extract from sequence
�ti�i�Nan in�nite sequence �t�i�i�N� such that for all i � N� ��t�i� is of local dimension d���� This is impossible�
since by lemma ��� one must have d�� � d����

�

��� Some hyper�arithmetical analysis


���� Representing reals by languages

We represent every point x of Rd� d � N by the set of the rational polyhedral that contain x�

De�nition 
�	 �Encoding reals by languages� Let d � N� Assume that a representation of the rational
polyhedral of Rd over �� is �xed�

Let x � Rd� Let Lx � �� be the language de�ned as the set of the words w � �� that encodes a rational
polyhedron P of Rd such that x � P � Lx is called the language associated to x� For all x � Rd� d � N� the
language Lx associated to x� is denoted by dxe�

We de�ne also�

De�nition 
�
 �Encoding real sequences� � A real sequence is any function h from N	 �� 	 Rd

to Rd for some integers d�

� For all x � Rd� the relation associated to h corresponding to x is the langage Rh�x� � �� de�ned
by Rh 
 f� n�w� P � jn � N� w � ��� P � �� encodes a rational polyhedron of Rd such that
P � dh�n�w� x�eg�

� For all k � N� the relation associated to h corresponding to x up to rank k is the langage R�k
h �x� � ��

de�ned by Rh 
 f� n�w� P � jn � N� n � k�w � ��� P � �� encodes a rational polyhedron of Rd such
that P � dh�n�w� x�eg�


���� Relativizations and the hyper�arithmetical hierarchy

We start by the following lemma�

Lemma 
�
 There exists a recursive function g such that� for all y� z � O� for all m � N� if m is an
H�y��recursively enumerable index of some set S � �� and if y �o z� then g�y�m� z� is an H�z��recursively
enumerable index of S�

Proof� Denote by h the recursive function of lemma ���� Assume y� z � O� y �o z� Assume m � N is an

H�y��recursively enumerable index of set S � ��� S is H�z��recursively enumerable via the machine M
H�z�
m��

with oracle H�z� that on input w � �� simulates MH�y�
m � but that replaces any query of machine MH�y�

m of
type  w� � H�y�%!� w� � �� to its oracle by the query  �h�y�z��w

�� � H�z�%! to oracle H�z��
The number m�� of this machine depends uniformly in y�m and z and can be given by some recursive

function g�
�

Lemma 
�� �Composition� Let X � ���

� There exists a recursive g such that� for all x� y � O� HHX �x��y� �m HX�x�� y� via �g�x�y��

� There exists a recursive h 	resp� a recursive h�
 such that� for all m�n � N� x� y � O� if m is some
HX�x��recursively enumerable index of some set S � ��� and if n is some HS�y��recursively enumer�
able index of some set S� � ��� then h�x� y�m� n� is an HX�x��y��recursively enumerable index 	resp�
HX�x�� y �� ���recursive index
 of S��


$



Proof� There exists a recursive f � such that for all n � N� A�B � ��� if A �m B via �n� then A� �m B�

via �f�n� ����� Denote by n� any integer such that �n� is the identity function�
Let z� x � N be given� de�ne � by

��y� 


��������
�������

n� if x 
 �
f��z�y�� if y 
 �p for some p � N
n� if x 
 
��q� q � N� where n� is the number of the

Turing machine such that �n��� u� v �� 
� ��z�v��u�� x�O v� ��
for all u � ��� v � O�

� otherwise

� is partial recursive and an index for � can be obtained uniformly from x and z� That is to say� there is a
recursive l such that � 
 �l�z�x�� Applying the �xed point theorem ����� we obtain a recursive function n such

that �n�x� 
 �l�n�x��x�� Take g as �xy��n�x��y�� g is such that for all x� y � O� HHX �x��y� �m HX�x �� y�
via �g�x�y��

Assume m � N is some HX�x��recursively enumerable index of set S � ��� and n � N is some HS�y��
recursively enumerable index of some S� � ��� By proposition ���� we have S �m HX��x� 
 �HX�x��� via

some �l� As a consequence� HS�y� �m HHX ��x��y� via some �l� � see ���� and HS�y� �m HX ��x �� y�� For
all x� y� �x�� y �o �

x��y� Hence� HS�y� �m H��x��y� via some �l�� and by proposition ���� S� is recursively
enumerable in HX �x�� y� with an index n�� Now� see that l� l�� ll�� n� can be computed e	ectively from m
and n� y and x� see ����� Hence� n� can be given as a recursive function h of m�n� x� y�

Now� if S� is recursively enumerable in HX �x�o y�� it is recursive in HX�x �� y �o �� with a recursive
index computable from any HX �x �o y �o �� recursively enumerable index of S�� this proves the existence
of recursive h��

�


���	 Languages �rst order de�nable

We will not distinguish the relations on �� from the languages over �� � a relation R or arity k over �� is
considered as the language f� n�� n�� � � � � nk � jR�n�� � � � � nk�g � ���

De�nition 
�
 �First order de�nition ����� Let Fa� � � �an a �rst�order logic expression with free vari�
ables a� � � � an� that is to say Fa� � � �an is built up from quanti�ers �� �� 
� sentential connectives 
������
and relation symbols R�� R�� � � � � Rk

Let the relation symbols R�� R�� � � � � Rk be interpreted as certain �xed relations T�� � � � � Tk � ���
Then the relation R 
 f� x�� � � � � xn � jFa� � � � an is true over domain �� when a�� � � � � an are interpreted

as x�� � � � � xn � �� respectively and R�� R�� � � � � Rk are interpreted as T�� � � � � Tk � �� respectively g � �� is
said to be de�nable by �rst order formula F from relations T�� � � � � Tk�

In a �rst�order logic expression� the quanti�cations over functions are not allowed� All the quanti�cations
are on variables� Here� the variables are interpreted as words of ��� As an example� if T � �� is some binary
relation� then fn � ��j�t � �� T �n� t� is trueg is �rst order de�nable by formula �t R�n� t� from relation T �

Proposition 
�� �Tarski�Kuratowski algorithm ����� � Let F be a �rst order formula� F can al�
ways be transformed into a �rst order formula in prenex form logically equivalent to F beginning with
a quanti�er ��

� Assume F is a �rst order formula in prenex form beginning with a quanti�er �� Let n � N be the
number of quanti�er alternations� in formula F �

� Let R � �� be a language de�ned by formula F from some recursive relations T�� � � � � Tk 	respec�
tively� de�ned by formula F from some A�recursive relations T�� � � � � Tk
�

Then R is in the arithmetical hierarchy 	resp� in the A�arithmetical hierarchy
� R � �n�� 	resp�
R � �An��
�

�The number of alternations is the number of pairs of adjacent but unlike quanti�ers in the pre�x of the prenex formula�����

��



� The dependence of R on relations T�� � � � � Tk is uniform� assume �rst order formula F is �xed�
There exists a recursive gF � such that� for all n�� � � � � nk � N 	resp� for all n�� � � � � nk � N� for
all A � ��
� if n�� � � � � nk are recursive 	respectively� A�recursive
 indexes of relations T�� � � � � Tk
respectively� then gF �n�� � � � � nk� is an H�y��recursively enumerable index 	resp� is an HA�y��
recursively enumerable index
 of language R de�ned by formula F from relations T�� � � � � Tk�

��� Sampling a PCD system up to local dimension ��


�	�� Linear machines and a�ne maps

De�nition 
�� �Linear machines ��	�� A rational linear machine M of dimension d is a �nite dimen�
sional linear machine of ���� whose constants are in Q� see ���� for a formal de�nition�

A computation of M on discrete input w � �� and on continuous input x 
 �x�� � � � � xd�� � Rd
�

� d� � d�
is a computation of M starting from �I�w�� x�� � � � � xd�� �� � � � � ���

Here is an informal de�nition� a rational linear machine is a RCT machine of dimension d whose program
is made only of the  linear machine instructions! �see de�nition 
��� and whose real registers are not restricted
to have a value in ��� �� but can have any value of R� Thus� in a rational linear machine the real registers xi
can have any value of R� all the instructions have cost �� and all the instructions are of type xi �
 xi � xk�
xi �
 xj � xi �
 �xi�xi �
 �� xi �
 xi � �� xi&�� where & � f���� ����
� �
g and � � Q�

A rational a�ne map is any a(ne map h � Rd � Rd of type h�x� 
 Ax � b for some rational matrices
A�B� We prove�

Lemma 
�� Let h � Rd � Rd be a rational a�ne map� h�x� 
 Ax � B for some rational matrices A and
B�

There exists some nh � N such that for all x � Rd� dh�x�e �m dxe via �nh�

Proof� We have h�x� � P � for some polyhedron P � i	 x � h���P �� For all rational polyhedron P � h���P �
is a computable rational polyhedron� Hence dh�x�e �m dxe via the recursive function �nh of number nh that
maps any encoding of a polyhedron P of Rd to an encoding of polyhedron h���P � of Rd�

�


�	�� Rational and Purely rational PCD systems

In ��� the following lemma is proved�

Lemma 
�� One can build a rational linear machine M such that�

� if M is given as discrete input a rational PCD system H 
 �X� f� of dimension d� a �nite sequence
of distinct regions �F�� F�� � � � � Fj� of H and as continuous input a point x � Rd� then M answers the
following question�

�Does the trajectory � starting from x have a periodic signature of type �F�� F�� � � � � Fj�
� and then

reach a point x� � X of local dimension � 
� at a �nite continuous time t���

� whenever the answer is positive� M outputs x� and t��

Proof� See that the proof given in ��� can be transformed easily into a linear machine algorithm� using
lemma 
�� and the technics of ���� to simulate any arbitrary division or multiplication of some real register
by some computable rational number� This is clear for most of the instructions of the algorithm given
in ��� except� may be� for the instructions of type x�i 
 x�i � ��j��Offi�x

j
�� x

j
d��
�� see the notations of ����

But� check that for any linear map A from R� to R� �resp� R to R� with a rational matrix� the linear
map ��j��A

j � when it exists� is always a linear map �A from R� to R� �resp� R to R� with a rational
matrix whose coe(cients are computable from the coe(cients of A� As a consequence� the instruction
x�i 
 x�i � ��j��Offi�x

j
�� x

j
d��
� can be simulated by computing the rational matrix of �A and by replacing

this instruction by x�i 
 x�i �Offi��A�x��� x
�
���� see the proof in ����

�

��



Theorem 
�� � Any rational PCD system H of dimension d � � is purely rational�

� There exists a rational PCD system of dimension � that is not purely rational�

Proof� Let � be a trajectory of a PCD system of dimension d � � starting from a rational point� Assume
� enters a region in a point x 
 ��t�� where x has some non�rational coordinates� and x is the �rst point
reached by � with this property� By lemma ���� x must be of local dimension �d��� for some d�� We must
have d� � 
� By lemma ���� from some time t� � t up to time t� the signature of the restriction of � to �t�� t�
must be cyclic of type �F�� F�� � � � � Fj�� � Let t� � �t�� t� with ��t�� � F�� By lemma ���� a rational linear
machine M with discrete input H� �F�� F�� � � � � Fj� and continuous input x� outputs x� it is clear that if a
rational linear machine is started with all its continuous inputs in Q� then any value output by the machine
is in Q� Hence� x cannot have some non rational coordinates�

Now� the second assertion is immediate from theorem ��� that proves that one can recognize some non�
arithmetical sets in dimension � and from ��� that proves that any set recognized by a purely rational PCD
system is arithmetical�

�


�	�	 Sampling a PCD system up to local dimension 
� using linear machines

Denote by P � �� the set of the rational polyhedron of Rd� We de�ne the sampling of a trajectory� see
lemma ��$ for the motivation�

De�nition 
�� �Sampling of a PCD system� Assume a rational PCD system H 
 �X� f� of dimension
d is �xed�

� A sampling of H is a mapping g from N	P	R	Rd� R	Rd with the following properties� assume
Q � P� t � R� x � Rd are �xed� Denote by � the trajectory of H starting from x at time t�

� For all k � N� g�k�Q� t� x� is a couple �tk� xk�� tk � R� xk � Rd such that �x�tk� 
 xk�

� t� 
 t� x� 
 x�

� tk�� � tk for all k � N�

� Only one of two following cases hold�

� there is some k� � N with xk� � Q�NoEvolution�H�� and for all k � k�� xk 
 xk� � tk 
 tk� �

� tk � tk�� for all k � N and � does not reach Q�NoEvolution�H� at any time t � supk�Ntk�

� If there exists a rational number tsup � Q such that tk � tsup� tk � tk�� for all k � N� then sampling g
is said to be Zeno for Q� t and x� By lemma ���� when g is Zeno for Q� t and x� the sequence �xk�k�N
is converging to some x� 
 ��t��� where t� 
 supk�Ntk�

� Sampling g is said to be a sampling up to local dimension l� where l 
 d� or l 
 �d��� for some integer
d� � d� if for all Q � P� t � R� x � Rd� when g is Zeno for Q� t� x� then the point reached at time
t� 
 supk�Ntk has a local dimension � l�

Note that a sampling is a real sequence� See that there exists a �xed �rst order formula F such that� for
all t � R� x � Rd� the language fQjg is Zeno for Q� t� xg is �rst order de�nable by formula F from relation
Rg�t� x�� this formula F is �tsup � Q �k � N tk � tsup 
 �kxk �� Q �NoEvolution�H��

Here is a restatement of a lemma of ����

Lemma 
�� Let H be a rational PCD system�
One can build a rational linear machine M that computes a sampling of H up to local dimension 
��

there exists a sampling g � N	P 	R	Rd� R	Rd of H and a rational linear machine M that on discrete
input � k�Q �� k � N� Q � P and on real inputs t � R� x� Rd outputs g�k�Q� t� x��

��



Proof� On discrete input � k�Q �� k � N� Q � P and on continuous inputs t � R� x � Rd M starts
by subdividing the regions of H if necessary� so that Q �respectively� NoEvolution�H�� is a �nite union of
regions of H� denote by m the number of regions of the resulting PCD system� Then M evolves according
to the following algorithm�

Algorithm �� Program M

t� 
 t� x� 
 x� Stop� 
 False
for i 
 � to k � � do

if Stopi is true then
Set ti�� �
 ti� xi�� �
 xi� Stopi�� �
 True�

else
Determine the �rst m � � regions F �� F �� � � � � Fm of the signature of the trajectory starting from
xi�
Take j� if it exists� as the least integer such that F � 
 F j�
if j exists and all the regions F �� � � � � F j�� are not in Q �NoEvolution�H�
then

Using the Turing linear machine of lemma ���� test if the trajectory starting from xi has a
periodic signature of type �F �� F �� � � � � F j���� and then reach some point x� of local dimension
� 
� at some �nite continuous time t��
if it is so then

Compute t� and x� using lemma ����
Set xi�� �
 x�� ti�� �
 t�

end if
end if

end if
if xi��� ti�� have not received a value yet then

Compute the point x and the time t respectively of the next intersection of the trajectory of H
starting from xi at time ti with some region of H
Set xi�� �
 x� ti�� �
 t�

end if
if xi�� � Q �NoEvolution�H� then

Set Stopi�� �
 True
else

Set Stopi�� �
 False�
end if

end for
Output tk and xk�

This algorithm is clearly a rational linear machine algorithm� Denote by � the trajectory starting
from x at time t� All the tk� xk output are such that ��tk� 
 xk� If there is some k� � N with xk� �
Q � NoEvolution�H�� then xk 
 xk� for all k � k�� If for all k � N xk �� Q � NoEvolution�H�� then it
clear then tk � tk�� for all k � N and it is easy to see that � does not reach Q � NoEvolution�H� at any
time t � t� 
 supk�Ntk� Assume now� that g is Zeno for Q� t� x� denote x� 
 ��t��� Assume x� is of local
dimension � 
�� by lemma ��� there must exist some tk � t� such that the trajectory starting from xk has
a periodic signature of type �F �� F �� � � � � F j����� By this algorithm� we must have tk�� 
 t�� xk�� 
 x��
This is in contradiction with the de�nition of t� as t� 
 supk�Ntk� since it implies that tk�� � tk�� 
 t��

�


�	�
 Sampling a PCD system up to local dimension 
� using Turing machines

We show that any rational linear machine can be simulated by a Turing machine with oracle�

Lemma 
��� Let M be a rational linear machine of dimension k� k � N�

�




Assume M computes some function fM � �� 	Rd� Rd� for all w � ��� for all x � Rd� M started with
discrete input w and continuous input x outputs fM �w� x� � Rd�

There exists a recursive hM � �� � N such that for all w � ��� for all x � Rd� W dxe
hM �w� 
 dfM �w� x�e�

Proof�
Assume w � �� and x � Rd are momentarily �xed�
We build a Turing machine M � with oracle dxe that� on input w� � ��� simulates M on discrete input

w � �� and real input x � Rd until M accepts and then accepts i	 w� � dfM �w� x�e�
For all t � N� denote by �qt� xt�� � � � � x

t
k� t� the ID of M at time t � N on discrete input w and real input

x� Denote xt 
 �xt�� � � � � x
t
k� � R

k� M � simulates M as follows� at time t� M � has qt� t� nt � N on its tape
where dxte �m dxe via �nt�

Check that simulating a test of M at time t is equivalent to answer the question  is �xt�� x�� � � � � x
t
k� in

P %! for some rational polyhedron P of Rk� As a consequence� it can be simulated by M � by the query
 �nt�P � � dxe%! to oracle dxe� M � sets nt�� 
 nt and sets qt�� according to the answer of the query�

Check that simulating an assignment of M at time t is equivalent to doing �xt��� � � � � � xt��k � 
 h�xt��� � � �
xtk� for some rational a(ne map h � Rk� Rk� As a consequence� it can be simulated by M � by setting qt��

to the state corresponding to the next instruction of M and by setting nt�� to the number of the Turing
machine such that �nt�� 
 �nt��nh�� where nh is the number given by lemma ��� applied on mapping h�

Hence� M � simulates all the instructions of M until M accepts at some time t � N� Then M � determines
if w� � dfM �w� x�e by making the query  �nt�w

�� � dxe%!�
This gives a Turing machineM � with oracle dxe that recognizes dfM �w� x�e� One can easily compute the

number of this machine M �� this number is independent of x and can be given as a recursive function hM
of w � ���

�

We get�

Corollary 
�� Let H be a rational PCD system�
There exists a sampling g � N	 P 	R	Rd � R	Rd of H up to local dimension 
� and n � N� such

that� for all t � R� for all x � Rd� W d�t�x�e
n 
 Rg�t� x�� where Rg is the relation associated to g corresponding

to �t� x��

Proof� By lemma ��$� there exists a sampling g � N	P 	R	Rd� R	Rd of H up to local dimension

� and a rational linear machine M that on input � k�Q �� k � N� Q � P and on real inputs t � R� x� Rd

outputs g�k�Q� t� x�� By lemma ����� one can �nd a recursive hM � such that for all k � N� Q � P for all

t � R� x � Rd� W
d�x�t�e
hM ��k�Q�� 
 dg�k�Q� t� x�e� Take n as the number of the Turing machine with oracle that

on input � k�Q� P � simulates the machine with oracle of number hM �� k�Q �� on input P �
�

��� Sampling a PCD system up to local dimension d

We �x in this subsection a PCD system H of dimension d�


�
�� HyperJump operation

De�nition 
�� �HyperJump operation� Assume we have a sampling g of H�
We de�ne HyperJump�g� � N	P 	R	Rd� R	Rd as follows� assume Q � P� t � R� x� Rd are �xed�

� Set HyperJump�g���� Q� t� x� 
 �t� x�

� Let k � �� Denote HyperJump�g��k � �� Q� t� x� 
 �tk��� xk���� tk�� � R� xk�� � Rd�

� If g is Zeno for Q� tk��� xk�� or if there exists some k� � N such that x�k� � Q�NoEvolution�H�
where g�k�� Q� tk��� xk��� 
 �t�k� � x

�
k�
�� then set HyperJump�g��k�Q� t� x� as the limit of the se�

quence �g�k�� Q� tk��� xk����k��N

��



� Otherwise� set HyperJump�g��k�Q� t� x� 
 g�k�Q� tk��� xk���

Lemma 
��� Assume we have a sampling g of H up to local dimension �d��� for some integer d��
Then�

� HyperJump�g� is a sampling of H up to local dimension �d� � ����

� Assume HyperJump�g� is Zeno for some Q � P� t � R� x � Rd� Then for all k � N� xk is of local
dimension � �d� � ��� where HyperJump�g� �k�Q� t� x� 
 �tk� xk�� tk � R� xk � R

d�

� For all t � R� for all x � Rd� denote by Rg�t� x� the relation associated to real sequence g corresponding
to �t� x��

There exists a �xed �rst order formula F such that for all k � N� Q � P� t � R� x � Rd�
dHyperJump�g��k � �� Q� t� x�e is de�nable by formula F from relation Rg�HyperJump�g��k�Q� t� x��
and from some recursive relations�

Proof� By the remark page ��� there exists a �xed �rst order formula over relation Rg�t� x� that tells
if g is Zeno for Q� t� x� There exists clearly a �xed �rst order formula G such that for all real sequence
�g��k�� Q� x��k��Nconverging to some g

���Q� x� � Rd� dg
�
�Q� x�e is de�nable by formula G from relation

Rg��x�� where Rg� denotes the relation associated to g� corresponding to x� As a consequence� the last
assertion is clear� since de�nition ��� can be translated directly into a �xed �rst order formula F that�
for all k�Q� t� x� de�nes dHyperJump�g��k � �� Q� t� x�e from some recursive relations and from relation
Rg�HyperJump�g��k�Q� t� x���

We prove now that HyperJump�g� is a sampling of H up to local dimension �d� � ����
Assume Q � P� t � R� x� Rd are �xed� Denote HyperJump�g��k�Q� t� x� 
 �tk� xk�� tk � R� xk � Rd� for

all k � N� Let � be the trajectory of H starting from x at time t�
From the fact that g is a sampling it is easy to show by induction over k that for all k � N��tk� 
 xk� Now�

if there is some k� with xk� � Q�NoEvolution�H�� since g is a sampling� it is clear than xk 
 xk� � tk 
 tk�
for all k � k�� If for all k� xk �� Q � NoEvolution�H�� it is easy to see that tk�� � tk for all k � N� Hence
HyperJump�g� is a sampling�

Assume that HyperJump�g� is Zeno for some Q� t� x� For all k � N� g must be Zeno for Q� tk��� xk���
hence� �tk� xk� is the limit of g�k�� Q� tk��� xk���� k� � N� Since g is a sampling up to local dimension �d����
the local dimension of xk must be � �d��� for all k � N� This proves the second assertion�

Denote t� 
 supk�Ntk and x� 
 ��t��� By lemma ���� the local dimension of x� is � �d� � ���� This
proves the �rst assertion�

�


�
�� CycleFree operation

De�nition 
�� �Cycle Free operation� Assume we have a sampling g of H�
We de�ne CycleFree�g� � N	P 	R	Rd� R	Rd as follows� assume Q � P� t � R� x � Rd are �xed�

� Set CycleFree�g���� Q� t� x� 
 �t� x�

� Let k � �� Denote CycleFree�g� �k � �� Q� t� x� 
 �tk��� xk���� tk�� � R� xk�� � Rd�

� Either there exists k� � N� k� � k� some x� � Qd� a rational polyhedron F not intersecting Q� such
that Cycle�xk��� z��H� F� x�� is true� xk�� �� Q� z� �� Q� z� �� F c� where F c is the complement of
polyhedron F on Rd and HyperJump�g��k�� Q� F c� tk��� xk��� 
 �t�� z���

Set CycleFree�g��k�Q� t� x� 
 Cycle���tk��� xk���� �t�� z���H� F� x��

� or this is false�

Set CycleFree�g��k�Q� t� x� 
 HyperJump�g��k�Q� tk��� xk���

Lemma 
��� Assume g is a sampling of H up to local dimension �d��� for some d� � N�
Then�

��



� CycleFree�g� is a sampling of H up to local dimension �d� � ����

� For all k � N� t � R� x � Rd� denote by R�k
HyperJump
g��t� x� the relation associated to real sequence

HyperJump�g� corresponding to �t� x� up to rank k�

There exists a �xed �rst order formula F such that for all k � N� Q � P� t � R� x � Rd�
dCycleFree�g��k � �� Q� t� x�e is de�nable by formula F from some recursive relations and from re�
lation R�k

HyperJump
g�
�CycleFree�g��k�Q� t� x���

Proof� It is easy to see that there exists a �xed �rst order formula G such that� for all z�� z� � Rd�
f� Q� x� � jQ � P� x� � Qd� Cycle�z�� z��H� Q� x�� is true g is de�nable by formula G from relations
dz�e� dz�e and from some recursive relations� Now� see that there also exists a �xed �rst order formula H
such that dCycle���t�� z��� �t�� z���H� Q� x��e is de�ned by formulaH from relations d�t�� z��e� d�t�� z��e and
from some recursive relations� As a consequence� de�nition ��� can be translated directly into a �xed �rst
order formula F such that� for all k � N� Q � P� t � R� x � Rd� dCycleFree�g��k � �� Q� t� x�e is de�nable
by formula F from relation R�k

HyperJump
g��CycleFree�g��k�Q� t� x�� and from some recursive relations� This

proves the second assertion�
We prove now that CycleFree�g� is a sampling of H up to local dimension �d������ Assume Q � P� t �

R� x � Rd are �xed� Denote CycleFree�g��k�Q� t� x� 
 �tk� xk�� tk � R� xk � Rd� for all k � N� Let � be the
trajectory of H starting from x at time t�

Using lemma ���� and lemma ��
� it is easy to show by induction over k that for all k� ��tk� 
 xk�
If there is some k� with xk� � Q � NoEvolution�H�� since HyperJump�g� is a sampling� it is clear than
xk 
 xk� � tk 
 tk� for all k � k�� If for all k � N� xk �� Q�NoEvolution�H�� it is easy to see that tk�� � tk
for all k � N� Hence CycleFree�g� is a sampling�

Assume that CycleFree�g� is Zeno for some Q� t� x� Denote t� 
 supk�Ntk and x� 
 ��t��� If x� is of local
dimension � �d� � ��� the lemma is proved� Assume now that the the local dimension of x� is � �d� � ����

For all k � N� HyperJump�g� must be Zeno for Q� tk��� xk��� As a consequence� by lemma ���� and by
lemma ���� all the xk� k � N must be of local dimension � �d� � ��� By corollary ���� only a �nite number
of the xk� k � N must be of local dimension � �d� � ��� and only a a �nite number of the xk� k � N must
be of local dimension �d� � ��� Hence� there must exists some k� � N such that for all k � k� xk is of local
dimension �d� � ����

Apply lemma ��� on the subsequence �xk�k�k� � There musts exists k� � i� � i� � N� x� � Qd an a
rational polyhedron F such that Cycle�xi� � xi��H� Q� x

�� is true and such that the trajectory does not leave
F between time ti� � ti�� Take i� and i� as the least integers such that the previous property hold and such
that i� � i� � i�� By de�nition ��� we have �ti���� xi���� 
 Cycle���ti� � xi��� �ti� � xi���H� F� x

��� This is
impossible since by lemma ��� this would imply that the local dimension of xi��� is � �d� � ���

�


�
�	 Outputting recursive sampling

Lemma 
��	 For all k � ��

� one can construct a sampling gk � N	P 	R	Rd� R	Rd up to local dimension �
 � �k���

� For all t � R� x� Rd� denote by Rgk�t� x� the relation associated to gk corresponding to �t� x��

There exists some nk � N� zk � O� jzkj 
 �k if k � �� jzkj 
 � if k 
 �� such that� for all t � R� x � Rd�

W
Hd�t�x�e�zk�
nk 
 Rgk�t� x�

Proof� We prove the assertion by induction over k � N �
The case k 
 � is corollary ����
Assume k � �� Consider gk 
 CycleFree�gk���� By lemma ���� and by induction hypothesis gk is a

sampling up to local dimension �
 � �k��� By induction hypothesis� n�k�� is a Hd�t�x�e�zk����recursively
enumerable index of Rgk�� �t� x� for all t� x�

Let n � N� Q � P� t � R� x � Rd be �xed� Assume we have H�y�d�t�x�e�recursively enumerable index m of
HyperJump�gk����n�Q� t� x�� where m � N� y � O� By lemma ���� there exists a recursive r that maps m to

��



r�m� where r�m� is an an H�y �� zk�� �� ��
d�t�x�e�recursive index of Rgk���HyperJump�gk����n�Q� t� x���

By lemma ����� there exists a �xed �rst order formula F such that for all n � N� Q � P� t � R� x �
Rd� dHyperJump�gk����n� �� Q� t� x�e is de�nable by formula F from relation Rgk���HyperJump�gk���
�n�Q� t� x�� and from some recursive relations� By lemma ���� there exists yF � O� jyF j � � and a recursive g

that maps r�m� to g�r�m��� where g�r�m�� is an HRgk�� �HyperJump
gk�� ��n�Q�t�x���yF ��recursively enumerable
index of dHyperJump�gk����n� �� Q� t� x�e� By lemma ���� there exists a recursive r� that maps g�r�m��
to r��g�r�m���� where r��g�r�m��� is an H�y �� zk�� �� � �o yF �

d�t�x�e�recursively enumerable index of
HyperJump�gk����n� �� Q� t� x��

Denote by h � N� O the recursive mapping such that r��� 
 �� r�n� �� 
 r�n� �� zk�� �� � �o yF for
all n � N�

As a consequence� for all n � N� R�n
HyperJump
gk�� �

is semi�recognized by the machine with oracle

Hd�t�x�e�h�n� ��� that on input � n�Q� P �� compute for i 
 �� � � � � n� � an Hd�t�x�e�h�i � ����recursively
enumerable indexmi ofHyperJump�gk��� �i� Q� t� x� from the Hd�t�x�e�h�i�����recursively enumerable index
mi�� of HyperJump�gk����i� �� Q� t� x� by the formulami 
 r��g�r�mi����� and then simulate the machine
with oracle of number mn��� This machine has a �xed number independent of t� x�

Let n � N� Q � P� t � R� x � Rd be �xed� Assume we have H�y�d�t�x�e�recursively enumerable in�
dex m of CycleFree�gk����n�Q� t� x�� where m � N� y � O� By lemma ���� there exists a recursive r
that maps m to r�m� where r�m� is an H�y �� h�n � �� �� ��d�t�x�e�recursive index of R�n

HyperJump
gk�� �

�CycleFree�gk����n�Q� t� x��� By lemma ����� there exists a �xed �rst order formula G such that for all k �
N� Q � P� t � R� x � Rd� dCycleFree�gk����n� �� Q� t� x�e is de�nable by G from relation R�n

HyperJump
gk�� �

�CycleFree�gk����n�Q� t� x�� and from some recursive relations� As before� by lemma ���� and by lemma ����
there exists some recursive g and r� that mapsm to r��g�r�m��� anH�y��h�n�������oyG�d�t�x�e�recursively
enumerable index of CycleFree�gk����n� �� Q� t� x�� for some �xed yG � O� jyGj � ��

Denote by l � N� O the recursive mapping such that l��� 
 �� l�n��� 
 r�n��� h�n� ���� ��o yG for
all n � N� Take zk 
 
��p where p � N is the number of recursive function l�

RCycleFree
gk�� � is semi�recognized by the machine with oracle Hd�t�x�e�zk� that on input � n�Q� P ��

compute for i 
 �� �� � � � � n an Hd�t�x�e�l�i���recursively enumerable index mi of CycleFree�gk����i� Q� t� x�
from the Hd�t�x�e�l�i � ����recursively enumerable index mi�� of CycleFree�gk����i � �� Q� t� x� �mi 

r��g�r�mi������ and then transform Hd�t�x�e�l�n���recursively enumerable index mn of CycleFree�gk���
�n�Q� t� x� into a Hd�t�x�e�zk� index m of CycleFree�gk����n�Q� t� x� using lemma ���� and then simulate
the machine with oracle of number m� This machine has a �xed number nk� independent of t� x�

One has jzkj 
 �k�
�


�
�
 Conclusion

Proposition 
�	 Let k � ��

� If a language L is semi�recognized by a PCD system of dimension �k�
 in �nite continuous time then
L � ��k �

� If a language L is semi�recognized by a PCD system of dimension �k�� in �nite continuous time then
L � ��k���

Proof� It is clear that for all x � Qd� dxe is recursive with a recursive index computable from x�
Let k � �� By lemma ���
� one can build a sampling gk up to local dimension �
 � �k�� and there exists

some �xed nk� and some �xed zk� zk � O� jzkj 
 �k such that� for all t � R� x� Rd� W
Hd�t�x�e�zk�
nk 
 Rgk�t� x��

Let H 
 �Rd� f�J � x�� x�� be a PCD system of dimension d recognizing language L�
Assume d 
 �k � 
� all the points of H have a local dimension � ��k � 
�� As a consequence gk can

not be Zeno for any Q� t� x� L is semi�recognized by the machine with oracle H�zk� that on input n � ���
compute the H�zk��recursively enumerable index m of S 
 Rgk���J �n�� �� � � � � ��� and then by simulating

M
H�zk�
m � tests for i 
 �� �� � � � �� if � i� x�� x� �� S� It there is such an i� the machine accepts� If no i is

found� the machine continues for ever�

��



Assume d 
 �k � �� By lemma ���� we know that all the points of local dimension d are rational
points� Denote Reach 
 f� x� y� i � jx� y � Qd i � N � i� y� y �� Rgk��� x�g� Reach is H�zk� recursively
enumerable by the machine that on input � x� y� i � computes the H�zk��recursively enumerable index m

of Rgk�x�� and then simulates M
H�zk�
m on input � i� y� y �� As a consequence� there exists a �rst order

formula H with a quanti�er � and � alternation such that Reach is de�nable from formula H from some
H�zk��recursive relations� see �����

De�ne the following relation OneStep 
 f� x� x� � jx � Qd� x� is a point of local dimension d and the
trajectory starting from x reaches x�g � ��� We claim that OneStep is de�nable by some �rst order formula
F from relation Reach� write F as the formula that says that x� is in LocDim�H� d� � �� and that either
there exists some i � N such that � x� x�� i �� Reach� or gk is Zeno for x�� �� x and there exist some i� and
some open polyhedron x� with � x� x�� i �� Reach� x� � Vx� and for all i � i�� not � x� V c

x�� i �� Reach�
where V c

x� is the complement of polyhedron Vx� in Rd�
If � x� x� �� OneStep� it is clear that the formula must be true� Assume now that the formula is true�

if there exists some i � N such that � x� x�� i �� Reach� we are done� � x� x� �� OneStep� Assume now
that the second clause of the disjunction is true� we know that the trajectory starting from x is Zeno� Hence
�gk�i� x

�� �� x� 
 �ti� xi��i�Nis a converging sequence converging to some point x� at time t� 
 supi�Nti�
Since gk is a sampling up to local dimension �
��k��� x� must be of local dimension d� Since � is Lipschitz�
since Vx� is an open polyhedron� we know that for some big enough i�� for all ti� � t � t�� ��t� � Vx� �
Hence� we must have x� � Vx� � where Vx� is the topological closure of Vx� � But� x

� is the only point of local
dimension d in V x� � Hence x� 
 x��

See that formula F starts by a quanti�er � and has � alternation�
Now� see that L is de�nable by some �rst order formula G from relation Reach� from relation OneStep

and from some recursive relations� write that n � L i	 there exists m � N� and an integer encoding m
rational points x�� x�� � � � � xm� such that for all � � i � m � xi� xi�� �� OneStep� and x� 
 �J �n�� �� � � � � ���
and there exists some i � N� with � xm� x

�� i �� Reach�
Substitute every occurrence of relation OneStep in formula G by formula F and every occurrence of

formula Reach by formula H� One gets a resulting formula de�ning L from some H�zk� recursive relations

starting with a quanti�er � and with � alternation� By lemma ���� L � �
H�zk�
� 
 ��k���

�

We get immediately from theorem ��� and from proposition ��
�

Theorem 
�� Let k� � ��

� The languages that are fully�recognized by a PCD system of dimension �k��
 in �nite continuous time
are precisely the languages of ��k� �

� The languages that are fully�recognized by a PCD system of dimension �k��� in �nite continuous time
are precisely the languages of ��k���

� The languages that are semi�recognized by a PCD system of dimension �k��
 in �nite continuous time
are precisely the languages of ��k� �

� The languages that are semi�recognized by a PCD system of dimension �k��� in �nite continuous time
are precisely the languages of ��k���

Proof� The assertions for k� 
 � are immediate consequences of theorem ��� and of ���� Now� assume
k � �� The two last assertions are proposition ��
 and the two �rst assertions are immediate by considering
the complement of the language recognized by the PCD system and by swapping the role of the point of
acception and of the point of rejection�

�

In other words� we have a full characterization of the computational power of rational PCD systems�
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