N

N

Achilles and the Tortoise climbing up the
hyper-arithmetical hierarchy.

Olivier Bournez

» To cite this version:

Olivier Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy.. [Research
Report| LIP 1997-14, Laboratoire de I'informatique du parallélisme. 1997, 24+49p. hal-02101790

HAL Id: hal-02101790
https://hal-lara.archives-ouvertes.fr /hal-02101790
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101790
https://hal.archives-ouvertes.fr

i Laboratoire de |’ | nformatique du Parallélisme

Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

-

Achilles and the Tortoise climbing up the
hyper-arithmetical hierarchy

Olivier Bournez May 21, 1997

Research Report N© 97-14

46 Allée d'ltalie, 69364 Lyon Cedex 07, France

Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80
Adresse électronique : lip@lip.ens-lyon.fr

IIIl Ecole Normale Supérieure de Lyon

Achilles and the Tortoise climbing up the hyper-arithmetical
hierarchy

Olivier Bournez

May 21, 1997

Abstract

We pursue the study of the computational power of Piecewise Constant Derivative (PCD) systems
started in [5, 6]. PCD systems are dynamical systems defined by a piecewise constant differential
equation and can be considered as computational machines working on a continuous space with a
continuous time. We prove that the languages recognized by rational PCD systems in dimension
d = 2k + 3 (respectively: d = 2k +4), k > 0, in finite continuous time are precisely the languages
of the w*"" (resp. w” + lth) level of the hyper-arithmetical hierarchy. Hence the reachability
problem for rational PCD systems of dimension d = 2k + 3 (resp. d = 2k +4), k > 1, is
hyper-arithmetical and is X, x-complete (resp. X« 1-complete).

Keywords: Real computability, Continuous time computations, Dynamical systems, Hyper-arithmetical
hierarchy

Résumé

Nous poursuivons 1’étude de la puissance de calcul des systéemes a dérivée constante par morceaux
débutée dans [5, 6]. Les systéemes PCD sont des systémes dynamiques définis par une équation
différentielle constante par morceaux. Ils peuvent étre vus comme des modéles de calcul évoluant
sur espace continu avec un temps continu. Nous prouvons que les langages reconnus par des
systémes PCD rationnels en dimension d = 2k + 3 (respectivement: d = 2k +4), k > 0, en temps
continu fini sont précisément les langages du w*"“™* (resp. w” + lleme) niveau de la hiérarchie
hyper-arithmétique. Ainsi le probleme de ’atteignabilité des systémes PCD de dimension d =
2k+3 (resp. d = 2k+4), k > 1, est hyper-arithmétique et est £ x-complet (resp. X i-complet).

Mots-clés: Calculabilité réelle, Calculs en temps continu, Hiérarchie hyper—arithmétique, Systémes dy-
namiques.

1 Introduction

There has been recently an increasing interest in the fields of control theory and computer science about
hybrid systems. A hybrid system is a system that combines discrete and continuous dynamics. Several
models have been proposed in literature. Hybrid systems can be considered as computational machines
[1, 2, 3, 7, 8]: they can be seen either as machines working on a continuous space with a discrete time or as
machines working on a continuous space with a continuous time.

Several theoretical models of machines working on a continuous space with a discrete time are known:
in [4], Blum, Shub and Smale introduce the real Turing machine. Many papers are devoted to this model:
see [12] for an up-to-date survey. In [13], Meer introduces a restricted class of real Turing machines called
the linear machines: Meer proves that P # NP in this class of systems. In [10, 11], Koiran characterizes
the boolean part of the languages recognized by linear machines as P/poly in polynomial discrete time and
as unbounded in exponential discrete time.

Simultaneously, in [1, 2, 7, 8], it is shown that several very simple dynamical systems can be considered
as non trivial machines that work on a continuous space with a discrete time. In particular, in [1, 2, 3] the
attention is focused on a very simple type of hybrid systems: Piecewise Constant Derivative Systems (PCD
systems) are dynamical systems defined by a piecewise constant differential equation. It is shown that the
reachability problem for PCD systems of dimension d = 2 is decidable and undecidable for dimensions d > 3
[1, 3] . In [7], the computational power of Piecewise Constant Derivative systems is characterized as P/poly
in polynomial discrete time, and as unbounded in exponential discrete time.

However, hybrid systems are very interesting models since they can be considered as natural computa-
tional machines working on a continuous space with a continuous time. The studies of this type of machines
are only beginning. In [14], Moore proposes a recursion theory for computations on the reals in continu-
ous time. Recently, Asarin and Maler [2] showed, using Zeno’s paradox, that every set of the arithmetical
hierarchy can be recognized in finite continuous time by a PCD system of finite dimension: every set of
the arithmetical hierarchy in X, U Il; can be recognized by a rational PCD system in dimension 5%k + 1.
Unfortunately, no precise characterization of the sets recognizable by PCD systems is given in [2]. In [6], a
precise characterization is given for the restricted class of purely rational PCD systems. However no answer
is given about the general class of rational PCD systems.

We provide in this paper a full characterization of the computational power of rational PCD systems:
we prove that every arithmetical set can be recognized in finite continuous time in dimension 5. Hence,
in one sense, dimension 5 is universal for the arithmetical hierarchy. However, we prove in this paper
that there does not exist a dimension d such that PCD systems of dimension d recognize every set of the
hyper-arithmetical hierarchy: we prove that the languages recognized by rational PCD systems in dimension
d = 2k + 3 (respectively: d = 2k 4+ 4), k > 0, in finite continuous time are precisely the languages of the
Wk (resp. w* + lth) level of the hyper-arithmetical hierarchy. In other words, the reachability problem for
rational PCD systems of dimension d = 2k + 3 (resp. d = 2k + 4) is X x-complete (resp. X, x1-complete).

Section 2 is devoted to general definitions about Piecewise Constant Derivative Systems and about
the hyper—arithmetical hierarchy. In section 3, we introduce Real Continuous Time (RCT) machines: we
prove that RCT machines can recognize some hyper—arithmetical sets. In section 4, we show that RCT
machines can be simulated by PCD systems and we deduce that PCD systems can also recognize some
hyper—arithmetical sets. In section b, we prove that the bounds given in section 4 are optimal: the languages
recognized by rational PCD systems in dimension d = 2k + 3 (respectively: d = 2k + 4), £ > 0 in finite
continuous time are precisely the languages of the Wkt (resp. Wb 4 lth) level of the hyper-arithmetical
hierarchy.

2 Definitions

2.1 PCD systems

A convex polyhedron of R? is any finite intersection of open or closed half spaces of R%. A polyhedron of
R?is a finite union of convex polyhedral of R¢. In particular, a polyhedron may be unbounded or flat. For
V C R we denote by V the topological closure of V. We denote by d the distance of the maximum of R¢.

Definition 2.1 (PCD System) e A dynamical system is a couple H = (X, f) where X = R% and f is
a function from X to X. X 1is called the space and d s called the dimension of H. A trajectory of H
starting from xg is a continuous solution to the differential equation &4 = f(x), with initial condition
xo, where &4 denotes the right derwative: that is to say ® : D C RT — X where D is an interval of
RY containing 0, ®(0) = zo, and ¥t € D, ®4(t) = f(P(t)). Trajectory ® is said to continue for ever
if D=RT,

e A piecewise constant derivative (PCD) system [2, 3] is a dynamical system H = (X = R4 f) where
the range of f is a finite set C' C X, such that for any ¢ € C' (c is called a slope) f~1(c) is a finite
union of conver polyhedral sets (called regions).

In other words a PCD system consists of partionning the space into convex polyhedral sets, called regions,
and assigning a constant derivative ¢, called slope to all the points sharing the same region. The trajectories
of such systems are broken lines with the breakpoints occuring on the boundaries of the regions [2]: see
figure 1.

The signature of a trajectory is the sequence of the regions that are reached by the trajectory. The
restriction of a trajectory ® : D — R? to interval I C D is the restriction of function ® to domain I.

Trajectory

Direction

Figure 1: A PCD system in dimension 2.

In this paper we will deal only with rational PCD systems:

Definition 2.2 o A PCD system is called rational «f all the slopes as well as all the polyhedral regions
can be described using only rational coefficients.

e A PCD system 1is called purely rational, if in addition, for all trajectory ® starting from a rational
point, every time ® enters a region in some point x, ¥ has rational coordinates.

Some comments are in order: one must understand that a trajectory @ can enter a region either by a
discrete transition or by converging to a point of the region: see figure 3. Hence, the definition of purely
rational PCD systems stipulates that every converging process converges towards a point with rational
coordinates. We will see in theorem 5.1 that one can construct a rational PCD system of dimension 5 that
1s not purely rational.

We can say some words on the existence of trajectories in a PCD system: let zyp € X. We say that zg
is trajectory well-defined if there exists a € > 0 such that f(x) = f(xo) for all € [wo, 20 + € * f(xg)]. Tt is
clear that, for any g € X, there exists a trajectory starting from zg iff zg is trajectory well-defined. Given
a rational PCD system #, one can effectively compute the set NoEvolution(H) of the points of X that are
not trajectory well-defined. See that a trajectory can continue for ever iff it does not reach NoFEvolution(H).

2.2 Computing with PCD systems

Let X be a finite alphabet with at least two letters. By renaming if necessary, we can assume without loss
of generality that ¥ = {1,2,...,nx}.

We write &* (respectively: ¥%) for the the set of the finite (resp. finite and infinite) words over alphabet
Y. We write € for the empty word. If w € X*, we write length(w) for the length of word w. We fix a
recursive encoding of the integers over the words of ¥*: for any integer n € N, we denote by 7 a word of X*
encoding integer n.

We describe now how to encode a word of ¥* into a real of [0, 1]. Denote by by, the first power of 2 that
is greater than 2ny + 2: by = 2= for some b5, € N.

Definition 2.3 (Encoding by Z,7) Let ¥ = {1,2,...,nx} be the fized finite alphabet.

o We denote by J the mapping from X% — J that maps word w = a1as ...a; ..., with ay,as,... € X, to
real number

J(w) =3

j=1

(245)
(bs)?
o We denote by J C R the range of J.

o We denote by T the restriction of J to X~.

e We denote by I C R the range of T.
PCD systems can be considered as machines recognizing some languages I C X* as follows:

Definition 2.4 (Computation [2]) o Let H = (X, [) be a PCD system of dimension d. Let zt 2"
be two distinct points of RY. A computation of system H = (}Rd, f,Z,x', 2% on entry n € ¥* is a
trajectory that can continue forever (defined on all RY) of H = (X, f) starting from (Z(n),0,...,0).
The computation is accepting if the trajectory eventually reaches x', and refusing if it reaches x°. It
is assumed that the derivatives at ' and z° are zero.

e Language L C X° 1s semi-recognized by H i, for every n € X%, there is a computation on entry n and
the computation is accepting iff n € L. L is said to be (fully-)recognized by H when, in addition, this
trajectory reaches z° iff n ¢ L.

: Accepting Point
Accepted Input ; pang

Rejected Input

Non-accepted Input

Input Port
\ Rejecting Point

Figure 2: Some examples of computations by a PCD system.

2.3 Measuring the time on PCD systems

Definition 2.5 (Continuous and Discrete time) Let ®, : RT — X be an accepting computation on
entry n € X%,

e The continuous time T.(n) of the computation is T = minimum{t € R*/®, () = z'}

o Lelt T, = {t/®,, reaches a boundary of a region at time t}. It is easy to see that T, is a well ordered
set [6]. The discrete time Tyq(n) of the computation is defined as the order type of well ordered set T,
(= the ordinal corresponding to T,).

Note that Zeno’s paradox appears: to a finite continuous time can correspond a transfinite discrete time:
see figure 3.

(—1,1)’/ \ (-1,1/2)

x/2'

Y2 X

(1,-1)\ /(1,1)

Figure 3: Zeno’s paradox: at finite continuous time bz = 2.5(x + #/2 + x/4 4 ...) the trajectory is in (0, 0),
but it takes a transfinite discrete time w to reach this point.

2.4 Hyper-arithmetical hierarchy
2.4.1 Definition

For y € N, denote by M, the y*" Turing machine, by ¢y : X — X* the function computed by M,, and by
W, C X the set of the words accepted by M,. y € Nis said to be a recurswely enumerable index of X C X*
iff X = W,. yiscalled an recursive index if in addition M, halts on all inputs. Let A C X£*. Denote by an
A exponent the relativizations to oracle A: M;‘ is the y'* Turing machine with oracle A, qb;;‘ 1s the function
computed by M;‘, and Wf is the set of the words accepted by M;‘. y € N is said to be a A-recursively
enumerable index of X C X* iff X = Wf. y 1s called an A-recursive indezx if in addition M;‘ halts on all
inputs.

We follow the standard notations of [15, 16]: we fix a bijective recursive encoding of £* x X* into X*:
< mn,m > denotes a word of ¥* encoding word n € ¥* and word m € ¥*. For X C X*, we denote
X' ={zlx €N A € WX} Let A,B C X*. We write A <,,, B if there exists a recursive f such that,
for all w € ¥*, w € A & f(w) € B. In that case, we say that A <, B via f. We write A <p B if A is
B-recursive. Denote A =p B iff A <p B and B <p A.

We recall the following definitions:

Definition 2.6 (Constructive ordinals[16]) We define by transfinite induction simultaneously O C N,
mapping | | from 0 to a segment of the ordinal numbers and partial ordering <o on O.

The ordinals in the range of | | are called the constructive ordinals. An ordinal « is said to have notation
ziffe €0 and x| = a.

The transfinite induction is as follows:

e Ordinal 0 receives notation 1: 1 € O,]1] = 0.

o Lel v be an ordinal. Assume that all the ordinals < v have received a notation, and assume that <,
has been defined on these notations.

— If vy = a+ 1 is a successor, v receives notation 27, for all notation x of a: for all x € O, «f
|#] = @, then 2% € O, 27| = v and z <o 27 for all z € O with either z = x or z <y x.

— If v is a limit, v receives notation 3.5Y for all y such that {¢,(n)}2=5° is an increasing sequence
of notations of ordinals of limit v: for all y € N, if {¢,(n)}NZ° is a sequence of integers in

O, if {|gy(n)|InZS° is an increasing sequence of ordinals with limit v such that YiVj i < j =
dy (1) <o ¢y(j), then 3.5Y € O,[3.5Y| =~ and z < 3.5Y for all z for which there exists n such that
z <p ¢y(n).

e No other integer y € N is wn O.
Denote x <, yifx =y or x <g y.
Definition 2.7 Let X C X*. We define H as a mapping from O to the subsets of ¥.* by:
o HX(1) = X.
o HX(27) = (HX (@)Y
o HX(35Y) = {<u,7>[vEO A v<g35Y A ue€ HX(v)}.
We note H for H®. The following lemma is proved in [16]:
Lemma 2.1 (Spector [16]) Let X C X*. Let x € O,y € O with |z| = |y|, then HX () = HX (y).

As a consequence, for all constructive ordinal o, we can define the classes ©X TIX AX unambiguously
as follows:

Definition 2.8 (Hyper-arithmetical hierarchy) Let X C X*.

e For any constructive ordinal 1 < o < w, and for any y such that o = |2Y]:

— %X s the class of the sets that are recursively enumerable in H* (y)
— IIX is the class of the sets whose complement is in XX
_ AKX X ATIX,

e For any constructive ordinal @ > w and for any y such that |y| = «:

— %X s the class of the sets that are recursively enumerable in H* (y)

— TX s the class of the sets whose complement is in X
_ AKX X ATIX,

For all constructive ordinal a, we denote %, 11, A, for Eg, Hg, Ag.

A set R is said to be hyper-arithmetical (respectively: X-hyper-arithmetical) if R € X5 (resp. R € E?)
for some constructive ordinal 8. R is said to be arithmetical (resp. X-arithmetical) iff in addition we have
0 < w. Check that the classes X, for 1 < a < w are precisely the classes of the arithmetical hierarchy
defined in [2, 6].

One can easily prove:

Proposition 2.1 ([16]) Let A, B C X* be some languages.

o Foralln e N, for all y € O with |y| = n, the following conditions are equivalent
— B is recursively enumerable in H(y)
- B <m HA(Qy)

o For all constructive ordinal B > w, for all y € O with |y| = 3, the following conditions are equivalent

A

— B is recursively enumerable in H(y)
— B <, HA(2Y).

We mention that the hyper-arithmetical hierarchy is strict: for all constructive ordinal o > w (respec-
tively: o < w), for ally € O, |ly| = o, H(2Y) (resp. H(y)) isin Xy — UgcaXp
We also mention that the hyper-arithmetical hierarchy can be related to the analytical hierarchy: see

[16] for the definition of A}.

Proposition 2.2 (Kleene [16]) One has:

Ay

= Uﬁ constructive ordinal>s

We will use the following two lemmas proved in [16]:
Lemma 2.2 ([16]) There exists a recursive h such that for all x,y € O,x <, y, H(x) <m H(y) via ¢z y)-

Lemma 2.3 (+,) There exisls a recursive function +y of two variables such that for all x,y € O,
e r4+oycO
o |z 4oyl =lz|+ |yl

ceytl=zr<gr+oy

3 Real Continuous Time machines and the hyper-arithmetical hi-
erarchy

We introduce Real Continuous Time machines (RCT machines). We prove in this section that they can
recognize every set of the arithmetical hierarchy and some sets of the hyper-arithmetical hierarchy. We will
see in next section that PCD systems can simulate RCT machines.

3.1 RCT machines
3.1.1 First example

We present here an informal description of RCT machines. A formal definition will be given in next subsec-
tion.

We deal with machines that have a finite number d of real registers whose values can be any real of
[0,1]. These machines evolve according to a finite program made of assignments and of tests between the
real registers. Any instruction [of these programs, that is to say any assignment or any test, has some
associated real function cz : [0,1]¢ — R¥ called the cost of the instruction. The execution of any instruction

T takes a time equal to cy(z1,...,24), where #1,..., 24 are the values of the real registers of the machine
when the instruction is executed.
Write for example #1 := 2z [23] for the instruction that replaces the value of real register xy by two

times the value of real register x» in a time given by real register xs: if this instruction is executed at time
t € R, then the value of the first real register at time ¢ + x3 will be equal to two times the value of the second
real register at time ¢, where x3 is the value of the third real register at time ¢.

We want to use a special label “lzmit™” to specify what to do when the time becomes Zeno.

Perhaps, the better is to consider a first example:

Algorithm 1 program ”Hello world”.

r3:=0[1] [*set (x1,22,23) = (1,1,0) at time 3.%/

while (true) do [*transform (x1,%9,23) = (1/2°,1/2",1 +
1/2 + ...1/2"7Y) at time 3 + 3(1 + 1/2 +
/277y for some n, to (x1,x2,73) =
(1/27+1,1/274 1 4+ 1/2 + ...1/2") at time
34+3(1+1/24...1/27)%/
T3 := o3+ 21 [22]
zy = a1/2 [29]
To = 22/2 [29]
end while

limit*: [*here, we have (x1, 22, 23) = (0,0, 1) at time
9. */
zy = a3 [1] [*now set, (x1,x2,23) = (1,0,1) at time 10.

*/

Try to simulate the evolution of this program. At time 3, (21, 22, #3) = (1,1, 0) and the program is starting
to execute the while loop. At time 3 + 3 the program is starting to execute the loop for the second time. At
time 3+3+3/2 the program is executing the loop for the third time. At time 3+3+3/2+3/22+...+3/2"~ 1
for all n € N, the program is executing the loop for the n'* time. And at time 9 = 3 + Z;O:O 3/277 ... The
answer is the following: the program is executing the instruction labeled by limet*. So this program is made
such that, at time 9, the machine copies x3 into x1. Check that variables x5 and x; tend to 0 and that
variable 23 tends to 1 during the execution of the infinite while loop. As a consequence, we consider that at
time 9 the value of the first two real registers of the machine is 0 and that the value of the third real register
is 1. Hence, the previous program is a program that always halts and that stops with 1 = 1,2, =0, z3 =1
at time 10.

In other words, we consider finite programs made of assignments and tests with a real cost, with a special
label denoted by limit™: label ltmit* always denotes the instruction to do at a limit time, when the time
becomes “Zeno”: that is to say when a converging process happens in finite time.

3.1.2 Formal definitions

Now we give some formal definitions of the programs we consider. We will prove in section 4 that these
programs can be simulated by PCD systems.

We consider programs made of instructions with a cost: the execution of an instruction I takes a time
equal to the cost of instruction I.

Definition 3.1 (Instruction, Test) e An assignment in dimension d is a couple (f,c) where f, called
the operation, is a partial mapping from [0,1]¢ to [0,1]¢ and ¢, called the cost function, is a partial
mapping from [0,1]¢ to R,

e A test in dimension d is a couple (R, ¢c), where R is a partial relation over [0,1]¢, and ¢, called the
cost function, is a partial mapping from [0,1]% to R+,

e An instruction of dimension d is either an assignment or a test of dimension d.

For the simplicity of notations, we denote by “x; := g(x1,...,24)[c]”, the assignment (¢', ') where, for all
z1,...,24 €[0,1], ¢" and b are defined on (21, ..., 24) iff g(z1, ..., 24) € [0, 1], and when ¢’ and h’ are defined
on (1,...,24), then ¢'(x1,...,2q) = (x1,.. ., 21, 9(®1, ..., 24), ®ig1, ..., 2q) and A (x1,...,2q) = c. We

denote by “z; := g(#1,...,2q)" the assignment z; := g(x1,...,24) [1]. We denote by “R? [¢]”, where R is a
relation, the test (R, ¢). We denote by “R?” the test R? [1].

We will define below the set of the assignments and the set of the tests denoted by Assgnmity and by
Testy respectively that are admissible in dimension d.

A RCT machine of dimension d is a machine with d real registers that evolves according to its program.
Its program is finite and is made of the assignments of Assgnmity and of the tests of Test;. The execution
of any instruction takes a time equal to the cost of the instruction. Whenever the time becomes “Zeno” and

the variables converge, the machine enters a special limit state limit*, and the execution goes on from this
state. Formally:

Definition 3.2 (RCT machine) e A Real Continuous Time machine (RCT machine) M, or a RCT
program of dimension d, is a 6-uple P = (Q, qo, q;'[, q;,limit*,é) where:

— @ 1s a finite set and qo,q;,q;,limit* €Q.
— J is a mapping from Q to Q x Q x (Assgnmty U Testy)

e An instantaneous description (ID) of M is an element (q,1,...,24,t) of Q@ x [0,1]? x Rt. ¢ is the
internal state, ¢ is the time and z1,..., x4 are the values of the real registers of M at time .

o Let IDy = (q,21,...,24,t) and 1Dy = (¢, &}, ..., 2%, 1) be two IDs of M. We write IDy Fq IDs iff

— either §(q) = (¢', ¢", Assgnmt), with Assgnmt = (f,c¢) € Assgnmiy, and:
% (21,...,2q) is in the domain of function f and of function c.
« (2, ..., 2)) = fler, ..., zaq).
— ord(q) = (¢",¢", Test), with Test = (R, ¢) € Testy, and:
% (21,...,2q) is in the domain of relation R and of function c.
* (a:’l,...,x’d) =(x1,...,24q)
x (¢ =¢" and R(x1,...,2q4)) or (¢ = ¢ and ~R(z1,...,24)).
o A computation of M starting from (z1,...,x4) ts a sequence (ID; = (¢',x',..., 2%, 1"))i<s of IDs of
M, where I is an ordinal, such that:

— IDg = (qo,21,...,24,0)

— Forall j <1, if j ts a successor then I1D;_1 4 ID;

— Forall j <1, 1f j 1s a limit point then
* {tjl|j’ < j} is a set bounded above by some real number.
x foralll <i<d, limj/_mj/qx‘gl erists
« 11 = sup{#!'|j’ < j}
x foralll <i<d, x‘z = limj/_mj/qx‘zl
x ¢7 = limit

e The computation is acceptmg (respectively rejecting) if there exists jo < 1 (this implies that ti° € R
is finite) with ¢i° = q (resp: ¢lo = q; =) and such that ¥j < jo, ¢ ¢ {qf ,qf} In that case, /o € R
1s called the (contmuous) time of the computatlon If the computation is accepting, we say that M
maps (z1,...,24) to (2%, .. J:‘Zl”) in time t7o.

e Program M can be considered as an instruction: the assignment corresponding to the execution
of program M is the assignment (f',c¢') of dimension d where functions f' and ¢ are defined on

(x1,...,24) €10,1]¢ iff there is an accepting computation starting from (z1,...,24). When functions
f/and ¢ are defined on (x1,...,2q) then f'(x1,...,2q) = (24,...,2}), /(x1,...,2q) =" iff M maps
(1,...,2q) to (zf,..., &%) in time t'.

An instruction of dimension d — 1 can be considered as an instruction of dimension d:

Definition 3.3 (Embedding instructions of dimension d — 1 into dimension d) Let d > 2 be an in-
teger.

o Let (f,c) be an assignment in dimension d — 1.

We still denote by (f,c) the assignment (f',¢') of dimension d defined, for all x1,... x4 €[0,1] by:

Fley, . eamr,za) = (f(®r, .., 24-1), 2a)
ey, . xg-1,2q) = el®g,...,24-1)

o Let (R, c) be a test in dimension d — 1.
We still denote by (R, c) the assignment (R',¢') of dimension d defined, for all x1,... x4 € [0,1] by:

R(x1,...,24-1,24) = R(z1,...,24-1)
ey, .. xgo1,2q) = c(wr, ..., 24-1)

We define now the transformation /z 441 on instructions: this transformation is equivalent to making the
change of variable ; becomes x;/x 441 for all i:

Definition 3.4 (Transformation /z,4; on instructions) o Let (f,c) be an assignment in dimension
d. We write (f/x441,¢/xas1) for the assignment in dimension d + 1 defined as follows:

— f/xayr and ¢/q,,, are defined on (x1,...,xq41) iff all the following conditions hold:

* Tgpr > 0
* (z1/Zap1, ..., xa/Tas1) € [0,1]¢
% function f and ¢ are defined on value (21/®q41,. .., %/ ®d41)
— when f/xaqyr and ¢/q,,, are defined on (x1,...,x4q),
fleapi(en, o xap) = e f(e1/eag, - va/zay)
e/egr1(1,. .. 2ay1) = aprc(@i/®at1,. .., a/®ds1)

o Let (R, c) be a test in dimension d. We write (R/x4y1,¢/xqq1) for the test in dimension d+ 1 defined

as follows:
— R/xqy1 and ¢/x g1 are defined on (x1, ..., xq41) iff all the following conditions hold:
* 21 >0,
* (z1/Zap1, ..., xa/Tas1) € [0,1]¢
* R and ¢ are defined on value (x1/Tqy1, ..., %a/Tds1).
— when Rf/xq41 and ¢/xqqq are defined on (x1,...,2441),
Rjxgpi(xr, .. xap1) = R(ei/®agr, ..., 2q/xaq1)
ce/ear1(®1, ..., 2ay1) = @aprc(wr/®ay1, ..., q/Tas1)

Take an example: consider instruction I defined as @1 := «1 + A [1] where A € @. When z3 > 0 and
z1/axs € [0,1], I/e3 is equivalent to instruction x; := &1 + Azs[zs]. When 3 = 0 or @1/23 > 1 then no
evolution is possible.

We are ready to define the admissible operations in dim d: this is done inductively.

Definition 3.5 (Admissible operations in dim d) We define inductively the set of the assignments de-
noted by Assgnmity (respectively: the set of the tests denoted by Testy) that are admissible in dimension
d:

For alld, for all i,5,k € {1,2,...,d}, for all X € Q, for all A\t € QF, for all # € {>,>,<,<,=,#}:

o “Linear machines instructions”

“.,.

— ‘xy = a; g [1]7 € Assgnmiy
— fzi =y [1]7 € Assgnmt,.

— pp = ATxy [1]7 € Assgnmty.
— ‘o; = A [1]7 € Assgnmt,.

— “xy = a; + A [1]7 € Assgnmiy.

“ei AT [1]7 € Testy.

e “Special instructions”

— vy = ay/2 [x4]” € Assgnmiy, if d > 2.
— “wg:=2a4 [x4)” € Assgnmity, if d > 2.
— “wgi=ag+ g [wg]” € Assgnmiy, if 2 < k < d

e “Subprograms”

— If P is a program of dimension d, then (f,c+ 1) € Assgnmty, where (f,c) is the assignment
corresponding to the execution of P.

o “Assgnmity_1 C Assgnmity”, “Testq_1 C Testy”

— If (f,c) € Assgnmity_y then (f,c¢) € Assgnmiy.
— If (R,c) € Testq_1 then (R,c) € Testq.

e “Zeno instructions”

— If (f,c) € Assgnmitq_1 and d > 2 then (f/xq,c/xq) € Assgnmty.
— If (R,c) € Testqy_1 and d > 2 then (R/xq4,c/xq) € Testq.

RCT machines can be considered as machines recognizing some languages L C X* as follows:

Definition 3.6 Let X be the fixed finite alphabet.

Language L C X* s semi-recognized by RCT machine M if, for all n € X*, M has an accepting
computation starting from (Z(n),0,...,0) iff n € L.

L is fully-recognized if in addition, for all n € X*, there is a rejecting computation starting from

(Z(n),0,...,0) iff n & L.

We will write the RCT programs in a high level programming language style using all the usual flow
control instructions (while, if, for, goto) as in algorithm 1.

3.2 RCT machines can simulate Turing machines

We show in this subsection that one can simulate any Turing machine by a RCT machine. This is nothing
but a restatement of [10].

3.2.1 Two stacks pushdown automata can simulate Turing machines

It is well known that Turing machines are equivalent to two stacks pushdown automata (2PDA)[9]: the two
stacks correspond to the content of the tape on the right and on the left respectively of the head of the
Turing machine.

We go here into the precise details of what we call a 2PDA or an w-2PDA. A 2PDA is equivalent to a
Turing machine, and an w-2PDA is equivalent to a Turing machine with a semi-infinite tape.

Write ¥/ for YU {e}. If w € 3¢, write wT for the element of X’ equal to the first letter of w if w # € and
equal to ¢ if w = e. If w # ¢, denote w™ for the word such that w = wtrw™. If i € {1,2}, denote 1=3—1.

Definition 3.7 (2PDA) e A two stacks pushdown automaton (2PDA)} (respectively: an w-2PDA), is
a 5-tuple (Q, X, 4, qu, F') where Q is a finite set, qo € Q is the initial state, F C @ is the set of the final
states, 0 is a mapping from Qx X' x Y/ to Q x Q x InstructionSet, where InstructionSet is the following
finite set of symbols: InstructionSet = { Push®(a), Pop'(a), Top'(b)?|i € {1,2},a € ¥,b € X'}

o An Instantaneous Description (ID} of a 2PDA (resp. of an w-2PDA) is an element (g, w1, ws) of
Q x X* x X* (resp. of Q@ x X% x ¥*). q is the internal state, wy,ws are the contents of the first and
the second stack respectively. The 1D is accepted iff ¢ € F'.

10

e The relation 4 between IDs is defined as follows:

(Qa wi, wZ) '_d (q/a wlla w/Z)

8(q, wi"’ w;) =(q",q" ,instr)
(instr = Push'(a),q = q",

wi = aw;, wi = w;)
or (instr = Pop'(a),q = q", w;" =
and wh = (wi)‘,wﬁ» = w;)

or (instr = Top'(b)?, w} = wy, wh = wa,

(¢ = ¢q" and wf =b)
or (¢’ = ¢" and wil # b))

a,

and

o Let b5 be the transitive closure of bq. An input w € £* (respectively w € £¢) is accepted by a 2PDA
(resp. by an w-2PDA) iff there exists an accepted ID IDg.. such that (g, w,€) Y IDgee.

o We say that a 2PDA (resp.an w-2PDA) maps (w1, ws) to (w),w)), where wy, we, w), why € T* (resp.
wi, w] € LY wy, wh € T*) , iff (g0, w1, ws) &5 (¢, w], wh) for some g € F.

3.2.2 RCT machines can simulate Two stacks pushdown automata

We show now that RCT machines can simulate 2PDAs using only the linear machine instructions: this is a
restatement of [10].

Lemma 3.1 One can simulate any two stacks pushdown automaton (respectively any w-two stacks pushdown
automaton) M by a RCT machine M’ of dimension 2 whose program is only made of the linear machine
instructions.

Proof: One build a RCT machine M’ that simulates M: when the stacks of M are words wi, ws, the
registers of M’ are 1 = J(w1) and z9 = J(ws3). The program of M’ is obtained by taking the program of
M and by replacing one after the other the 2PDA instructions of M by some linear machine instructions

using the correspondence of figure 4.
O

Theorem 3.1 Let S be a discrete language.

o Assume that S s recursively enumerable. Then S s semi-recognized by a RCT machine of dimension

2
o Assume that S s recursive. Then S s fully-recognized by a RC'T machine of dimension 2.

Proof: Immediate from lemma 3.1 and from the fact that any Turing machine can be simulated by a
two stacks pushdown automaton [9)].
O

Convention 3.1 We use the following convention:

(wla wZ)
= (W), wy)
where “conditions”

denotes any RCT program M’ that, for all wy, we verifying “conditions”, maps real registers x1 = J(w1),
2 = J(wa) to &1 = J(w)), 2 = J(wh): to obtain M', consider any w-2PDA M such that, for all
wy € XY wy € X* verifying “conditions”, M maps (w1, ws) to (W), wh): recall that 2PDAs are equivalent to
Turing machines. Now apply the transformation of the proof of lemma 3.1 on M to get RCT machine M’.
(w, w')
As an example, | — (ww,e) is any RCT program that, for all w,w’ € ¥* such that
where w,w' € ¥*, w=u'

w=w, maps (J(w), J(w")) to (J (ww),0).

11

Two stacks automata RCT machine
instruction instructions
Push'(j),i € {1,2},j €% = /bs + (2% 7)/bs [1]
Pop'(j),1 €{1,2},J €Y | @ :=by* (x1— (2%)/bx) [1]

Top'(e)?,i € {1,2} z; =07 [1]
Top'(j)?,ie{l,2},j€X ((zi =2 (2% 4)/bs)7 [1]
and (z; < (2*7+1)/bx)7 [1])

Figure 4: Correspondence between 2PDA instructions and RCT instructions. The RCT instructions corre-
sponding to the 2PDA instructions Push®(j), Pop*(j), Top'(j)? will be still denoted by Push(j), Pop'(j),
Top'(j)?-

3.3 RCT machines and the arithmetical hierarchy
3.3.1 Speedup properties of RCT machines

In definition 3.4, we defined the transformation /#4417 on instructions: the transformation /#4417 on a RCT
program P is obtained by transforming instruction by instruction the instructions of P:

Definition 3.8 (Transformation /z41; on RCT programs) Let P be a RC'T program of dimension d:
P = (@, qo, q;'[, g5, limit™, J).
We denote by P/xqy1 the RCT program of dimension d+1 defined by P/xq441 = (Q, qo, q;'[, g5, limit”, ")
where for all q,q¢',¢" and Instr € Testq U Assgnmity, 6(q) = (¢, ¢", Instr) < ' (q) = (¢',¢", Instr/xq41)

We prove:

Lemma 3.2 (Speedup lemma) Let P be a RCT program of dimension d.
For all A € (0,1], for all &1, 24,...,2q € [0,1], P/eay1 started with real registers (Axy, Aza, ..., Axg, A)

simulates the evolution of P on (x1,...,2q) but the simulation of P by P/xqy1 goes 1/X times faster than
P.

Proof:

Let A € (0,1] and let »q,...,24 € [0,1] be fixed.

Denote by (¢7, 2], ..., 27,1);es the computation of P starting from (21, ..., 2q).

Denote by (qu, xlljl, e xljl, xlj_ll_l, tljl)jlejl the computation of P’ starting from (Axy, ..., Azg, A). Tt is

easy to prove by transfinite induction that, for all j € J, one has j € J/, ¢/ = ¢/, xlcf_l_l =} l‘;j = /\x‘g for
all 1 <i<d, and 7 = M/,
O
We get immediately:

Theorem 3.2 Assume that S is semi-recognized (respectively: fully-recognized) by a program P in dimension
d in time T. For any k € N1, S is semi-recognized (resp. fully-recognized) in dimension d+1 in time 2+T/k.

Proof:
Assume that S is semi-recognized by P. S is semi-recognized (resp. fully-recognized) in dimension d + 1
in time 2 + T'/k by the following program P’

Algorithm 2 Program P’
zy = a1 /k [1]

g1 = 1/k [1]

P/ray

12

3.3.2 From semi-recognition to recognition

We see now that one can transform a program that semi-recognizes a set S in dimension d to a program
that fully-recognizes S in finite time in dimension d + 1.

We need first some definitions: a clocked program is a program where some instructions are marked and
where the execution of the marked instructions can be used as the tops of a clock: there must exists an
upper bound A for the time between two successive tops, and any bounded time interval must contain a
finite number of tops:

Definition 3.9 e A clocked program is any program P = (@, qo, q;'[, q;,limit*,é) such that:

— some instructions of P are marked: there exists some Qy C Q).

— there exists A € BT, called the time period of P, such that any computation of P executes a finite
number ny > 1 of marked instructions on any time wnterval I of width A: for all computation
C=(¢7,a),...,20t)jes of P, for allt € R*, if there is some j € J with t > t + A, then the
cardinality of the set {j'|j’ € J, ¢ € Qo ti € [t,t+ A]} is finite and greater than 1.

e An w-clocked program is a clocked program such that a computation of P executes a finite number of
marked instructions iff the computation is accepting.

e If P 1s a clock program, and R is a program, we write P x R for the program that one gets by inserting
wmn P a copy of program R at each marked instruction of P

As an example, take any 2PDA M that semi-recognizes a set L C X*. Assume that M never enters a
“reject” state but loops for ever on an input w € X* with w & L. Then the RCT program M’ of dimension
2 given by lemma 3.1 that simulates M can be w-clocked: mark all the instructions of M’ and take A =1
as time period.

We use the following convention: we assume any program given by lemma 3.1 (and therefore any program

(w1, wa)
given by the notation | — (w}, w})) marked with all the instructions marked. Moreover, when P
where conditions
is marked, we consider that P/x 441 is marked, where the marked instructions of P/« 441 are the instructions
corresponding to the marked instructions of P. In particular, if R is a program, and P is a marked program
then (P/x441) * R is the program that one gets by transforming all the instructions of P by transformation
/2441 and by inserting a copy of R at each instruction corresponding to a marked instruction of P.
Let d > 2 be an integer. We will use the following program:

Algorithm 3 Program Div2%+!

1= a1/2 [€441]
To = 22/2 [T441]

Tg-1 = 24-1/2 [Ta41]
g :=x4/2 [2441]
Tap1 = Tay1/2 [Tat1]

And the following program:

Algorithm 4 Program M ul2¢+!

z1 = 221 [2441]
T9 1= 222 [2441]

-1 = 2041 [T441]
g :=2xq [411]

13

g1 = 2C441 [Tag]

We claim:

Theorem 3.3 Assume that S is semi-recognized by an w-clocked program in dimension d. Then:
e There exists a program of dimension d + 1 that fully recognizes S.

o Moreover, for all k € Nt there exists a program of dimension d 4 1 that fully recognizes S in time

2+ 1/k.

Proof:
Assume that S 1s semi-recognized by P. Let 0 < A <1 be some rational constant.
Consider the following program Pj

Algorithm 5 Pj

z1 = Aay [1]

Tgr1 = A [1]
(P/z4q1) * (Div24t1)
limit™: Reject

It is sufficient to take P| to prove the first assertion and to take Pll/(Zk(A-I—d-I—l)) to prove the second
assertion, using lemma 3.3 proved below.
O
Here 1s the trick:

Lemma 3.3 (Super-speedup lemma) Let P be an w-clocked RCT program of dimension d of time period
A. For all A\ € (0,1], for all z1,23,...,24 € [0,1], (P/xgs1) * Div2¢t! started with real registers (Axy, A\xa,
.., Axg, A) simulates the evolution of P on (%1, ..., x1) but the whole simulation of P by P/x 441 is made in
a finite bounded time upper bounded by 2A(A +d+1).

Moreover, whenever P accepts, (P/x411) * Div29t! accepts. Whenever P does not accept, (P/zay1) *
Div2™ converges to its limit state with all its real registers set to 0.

Proof: Let A € (0,1] and #1,..., 24 € [0, 1] be fixed.

Denote by (¢/, 27, ..., 2% t7);es the computation of P starting from (z1,...,24). Let Qo C @ gives the
marked instructions of P. .

Denote by (qul, i oo wy] ,tljl)jlejl the computation of (P/z4y1) * Div2%t! starting from (Azy, ...
s /\l‘d, /\)

Denote by j1 < j2 < ... € J the sequence of the indexes corresponding to the execution of the marked
instructions of P: for all j € J, either ¢/ € Qo and j = jj for some k or ¢/ & Qo.

For j € J, let n; denote the number of marked instructions of P executed between time 0 and time t:
n; is the cardinality of set {k|t/* < /}.

It is easy to prove by transfinite induction on j € J that, for all j € J’, one has j € J, qu+”j(d+1) =
g o P 2 xpdjans for all 1 < i < d, w7 = ajans) D 2 XS (4 — g 4 d 4
1)/26=1 4 A(#F — t973) /277 with t° = 0, and that for all k and [< d+ 1, ¢'*"* +HE=D(d+D+ corresponds to an
instruction of program Div29+!,

This means that (P/z 451)+ Div2%t! simulates P: if P accepts then (P/z441)* Div29t! accepts: ¢/o = q;'[
for some jy € J implies qu0+”j0(d+1) = q;'[. For all k € N, we have t/x — t/»=1 < A. As a consequence, for
all j € J, 7 < 2X\A +d+1). Hence, (P/z441) * Div29t! accepts at some finite time bounded above by
2A(A+d+1).

If P does not accept its input, since P is assumed to be w-clocked, a non finite number of Dip2d+1
are executed. As a consequence, for all 1 < i < d+ 1, the sequence (z7);cs converge to 0. One has have

14

supjest! < 2M(A+d+1). That means that (P/z441) * Div2?+! reaches the ID (limit*,0,...,0,t*) at finite
time ¢* = sup;est 7, with t* < 2X\(A + d+1).

O
3.3.3 Recognizing arithmetical sets
The following lemma will be used in the proof of lemma 3.5:
Lemma 3.4 There exists an injective mapping € from I to (1/2,1] such that, for any d > 3,
o There exists a RCT program Encg of dimension d that, for all yy € I, maps (y1,.,...,.,.) to
EW)yr, - Ey))-
o There exists a RCT program Decq of dimension d that maps (.,...,., &) to (y1,.,...,.) for all
y €1.

We say that a RCT machine M of dimension d maps (a1, ..., aq) to (B1,...,Bq4), where forall 1 <7< d,
either a; € [0,1] or «; is the symbol ., and either §; € [0, 1] or 3; is the symbol ., iff for all (zy,..., z4) with
z; = «; for all 7 such that «; # ., M maps (21,...,24) to some (z},...,2%) with =} = §; for all ¢ such that
Bi # .

Proof: Let # be a letter of X. Denote by number : ¥* — I the function that maps any word w € X*
onto its number in some fixed recursive enumeration of the words of ¥*. For all n € N, denote by w, the
n'" word of X*: number(w,) = n.

For all w € ¥*, we define £(Z(w)) as the unique point which is simultaneously in interval (1/2,1] and in
the set {2F /3number(w)|l ¢ 7).

It is sufficient to consider program Ency as the following RCT program:

Algorithm 6 Ency

(w, w’)
— (w’ #number(w))
where w,w’ € ¥*

/*Set Ty to I(#number(w))*/

g =1
while (z2 #07) do /*Do number(w) times x1 = x1/3,24 =
xq/3 */
2o = by * (£2 — (2% #)/bg)
zy = a1/3
zg:=aq/3
end while /¥ Now, while xq ¢ (1/2,1] multiply x1 and
zq by 2%/
while (24 < 1/27) do
ry = 214
Ty = 2xy
end while
And program Dec, as:
Algorithm 7 Decy
zs:=0 /*Do n = 0: set xo = Z(#°)*/
while (z4 # 17) do J*While (x4 # 2%/3" for some k) do*/
z9 = x2/bs + #/bx /*¥Don :=n+1: transform xo = T(#") into

vy = Z(#"H)*/

rg = 3xrg

15

while (z4 > 17) do
Tg:=xq/2
end while
end while

(w, #")
— (wn, €)
where weX* neN [*¥Put x1 =T (wy).*/

O
We need to improve theorem 3.3: we show that any language that is semi-recognized in dimension d can
be fully-recognized in dimension d + 1 by a clocked program that returns its input when it accepts.

Lemma 3.5 Let S be a discrete language. Assume that S s semi-recognized by an w-clocked program P in
dimension d. Then R
S s fully-recognized in dimension d + 1 by some clocked program P: for all w € X*

o ifw &S then P rejects input J(w) and stops with all its real registers set to 0.

o ifweE S then P accepts input J(w) and stops with its first real register set to J(w) and all its other
real registers set to 0.

Proof:

Denote by Encgqq and Decgyy the programs of lemma 3.4, and by £ : I — (1/2, 1] the function of lemma
3.4.
Take P defined as follows:

Algorithm 8 Program P

Encgyq [*Maps ®1 = y1 to 1 = E(y1)y1, Tap1 =
E(n)*/
(P/xgp1) * (Div27e+1) /*Simulate P on input y1*/

while (2441 < 1/27 [1]) do
Tag1 = 2244 [1]
end while J*If it stops then undo all the divisions by 2
done on variable x 411 during the stmulation.
At the end of the while loop we have x441 =

E(y).*/
Decgi [¥Map 441 = E(1) to x1 = p1.*/
zay1 :=0[1]
29 := 0 [1]
Accept /*And accept.*/
limit*:
Reject /*Else reject.*/

Let 1,...,2q, 2441 € [0,1] be fixed. If (z1,...,24) is not accepted by P, then from lemma 3.3,
(%1,...,24,2441) 18 rejected by this program, and all the registers are set to 0.

Now, assume (21,...,24) is accepted: by the proof of lemma 3.3, RCT program (P/x441) * (Div2%4+1)
stops with its d + 1°# real register equal to £(z1)/2%, where nj, € N is the number of marked instructions
of the accepting computation of P starting from (z1,...,24). It is easy to see that the while loop will be
executed nj, times and that the end of the while loop the content of the d + 1™ real register will be set to
E(x1). Hence, after the Decgyy program, the first real register of P will return to value 7.

By lemma 3.3, program (P/zg41) * (Div274+1) is always executed in a bounded time. As a consequence,
P can be clocked: mark all the instructions but those of (P/z4y1) * (Div2%++). Take as time period of P
the maximum of 1 and of the time needed to execute program (P/@gq1) * (Div2%a+1).

O

As a consequence, we get:

16

Lemma 3.6 Assume that B is a discrete language such that all the languages of 8 are semi-recognized by
some w-clocked RCT program in dimension d' > 2.

Let S be a discrete language with S € EkB, keN,k>1. Then S 1s semi-recognized by an w-clocked RCT
program in dimension d' + k — 1.

Proof: We prove the assertion by induction over k.

Case k = 1 is true by hypothesis.

Assume k > 2 and the hypothesis at rank k¥ — 1. Let S € EkB. There exists S’ € EkB_l such that
reS e dnelN <na>¢ S5 see [16]. By induction hypothesis 5" is semi-recognized in dimension
k+d — 2 by an w-clocked RCT program Py_;. Let Pi_1 be the marked program that one gets by applying
lemma 3.5 on program Pg_;.

S’ is semi-recognized by the following RCT program Pj:

Algorithm 9 Program Py

(w, w)
= (<0, w >, w)
where w,w’ € ¥*
while (P;;_l accepts)
(<7m,w>w')
—(<n+ Lw>w)
where w,w' € ¥* neN
end while
Accept

P can be w- clocked: mark all the instructions but those that were not marked in P;;_l. Take as time

period the maximum of 1 and of the time period of P;;_l. Py is of dimension d + k' — 1.
Od

Lemma 3.7 Assume that B is a discrete language such that all the languages of P are semi-recognized by
an w-clocked RCT program in dimension d' > 2.

Let S be a discrete language with S € AR, k € N k> 2. Then S is fully-recognized by a RCT program
in dimension d' +k — 1.

Proof: By definition of AZ there must exists S/, 5" € X8 | such that z € S IneN <n,zr >¢
and xr € S IneN <m,z>¢ 5" see [16].

By lemma 3.6, S and S’ are respectively semi-recognized by some w-clocked programs Px_1, P_; in
dimension k + d’ — 2. Denote Pj_1, Pé~—1 the programs that one gets by applying lemma 3.5 on P;_; and
P|_, respectively. S is fully recognized by the following RCT program Mj:

Algorithm 10 Program M

(w0,)
= (<0, w >, w)
where w,w’ € ¥*
while (P;;_l accepts) do
if (P/lj_1 accepts) then
(<7m,w>w')
= (<n+1w>)
where w,w’ € ¥* neN
else
Reject
end if

17

end while
Accept

Theorem 3.4 Let S be a discrete language.

o Assume S € Xy, k> 1. Then S is semi-recognized by an w-clocked RC'T program of dimension 1+ k.

o Assume S € Ag, k> 1. Then S is fully-recognized by a RCT program of dimension 1 + k.

Proof: Immediate from theorem 3.1, and from lemma 3.6 and lemma 3.7 respectively with B = @.
O

3.4 RCT machines and the hyper-arithmetical hierarchy
3.4.1 Realizing any 2PDA program in time kx4,

We prove first a technical lemma: if a 2PDA can do some job, one can build a RCT machine of dimension
d+ 1> 3 that does the same job but in time bounded by kx 441 for some k:

Lemma 3.8 Let d > 2. Let M be an w-2PDA. Assume that, for all wy € ¥¥ wy € ¥*, M maps (wy, w2)
to (fi(wi, wa), f2(wr, wy)) € B¢ x X~

There exists some kyr € RT and a RCT machine M’ of dimension d + 1 that, for all w; € %, ws € ¥*,
Jorallys,...,yq €10,1], for all n € N, maps

(T (w1)/2"%, T (wa)/2", ys /2", .. . ya/2",1/27)
to

(T (fr(wi,wa)) /27, T (f2(wi, w2)) /2%, ys /27, ... ya /2", 1/27)
in a time bounded above by kys /2".

Proof: The idea is to build a machine that simulates M, that does some Div2%t! instructions every
two steps and that counts in parallel the number of Div29+! instructions already executed. The machine
simulates M until M accepts. At this moment, the machine does some Mul2%t! instructions in order to
come back to x441 = 1/2".

Let 1 be a letter of X. If ¢ € {1,2}, denote i for 3 — i. Assume without loss of generality that any 1D of
any computation of M on any input is of type (¢, w1, w2), ¢ € Q, w1, w2 € &* with the first letter of w; and
the first letter of wo different from letter 1.

Replace one after the other the 2PDA instructions of M by some new instructions using the following
correspondence, , where RCT instructions T'op®(j)?, Pop'(j), Push'(j) are defined in figure 4:

| Old w-2PDA instruction | New RCT instructions |

Pop'(j),j€X Transfers; (Popl(j))/zar1; (Pushi(1))/zay1;
Div2%Y Transfer
Push!(j),j €X Transfers; (Push'(§))/zaz1;
(Push(1))/z4p1; Div2¢tt; Transfer;
Topt(j)?,j €X Transfers; (Top'(§)7)/2as1;
(Push(1))/zaq1; Div2¢tt; Transfers
P, T €S (Por? () rars; (Push () easr.
Dip2d+1
Push?(j),j €X (Push?(j))/zay1; (Push (1)) /xay1; Div2dt!
Top?(j)?,j €X (Top®(j)?)/xas1; (Push(1))/xay1; Div2dH!

18

where Transfer;, i € {1,2} transfers all the 1 from register i to register ¢ and is the following sequence
of instructions:

Algorithm 11 Transfer;
while ((Top' (1)?)/w441) do

(Pop'(1))/zas1 .
(Push®(1))/®a41 /* Transfer one 1 from stack i to stack i*/

(Pushi(1))/ 411

Div?d‘lfl

(Pushi(1))/as:

Div?d‘lfl

(Pushi(1))/as:

Diy2+1 /*Add 31 since the transfer of the T was done
with 3 instructions®/

end while

One gets a RCT program Py of dimension d 4+ 1: this program simulates M, does some Div2¢t!
instructions every two steps and has the following property: at every step of the simulation of M, the value
of the first real register of Py is of type J(1? w), w € ¥*, where p € N, is the number of instructions
Div24+1 already executed by Pjy.

Consider now M’ as the following RCT program:

Algorithm 12 Program M’

Py [*Map ©y = J(w1)/2" |, &2 = J(w2)/2",
r3 = y3/2", ..., &g = ya/2", ®gp1 = 1/2"
to r] = j(Tp fl(wl,wz))/Q”"'p , g =
I(fz(wl,wz))/Q”"'p, xr3 = y3/2n+p geee Ld =

Ya/2" P xayr = 1/204P) %/
while ((Top*(1)?)/r4s1) do
(Pop*(1))/®as1 /*Get back to xqy1 = 1/n by undoing the
Div2¢t! instructions™®/
Mul24+!
end while

Program M’ is executed in a time bounded above by kpr1/2" for some fixed kyr € RT.

Convention 3.2 We denote by
(w1, wa)
> (], wh) 2441
where “conditions”

any RCT program of dimension d+1 given by lemma 3.8 that for all wy, w] € X%, we, wh € T* verifying “con-
ditions”, and for all ys,...,yq € [0,1], for all n € N, maps (T (w1) /2", T (w2)/2",y3/2", ..., ya/2",1/27) to
(T (wh) /2", T (wh) /27, y3/2", ..., ya/2™,1/2"7) in a time bounded by k/2" for some k.

3.4.2 Setting the m!" digit of a real in time k/2™ for some k

The following lemma is the main trick that will be used in lemma 3.10 to show that one can recognize some
hyper-arithmetical sets: one can build a RCT machine of dimension d + 2 that, on input m € N, add 1/2™
to real register #4420 in a time proportional to mazimum(1/2™, z441):

19

Lemma 3.9 Let #,% € X be two distinct letters of ¥ used as delimiters.
For all d > 2, there exisls some k € RT and a RCT machine Wrilte Digityy o of dimension d+ 2 that, for
all ys, ..., yd,Yar2 € [0,1],m,n e Nyw € X% v’ € ¥*, maps

(j(#nm$w)/2n’z(w/)/2n’ y3/2n] yd/2n’ 1/271’ yd+2)

to

(T (# mSw) /2", Z(w') /2", y3/2", ... ya/2",1/27 yaqn + 1/27)
m a time upper bounded by kl/?mmim“m(mv”),

Proof: The general idea is to do some Mul2¢+! / Div29+! instructions in order to get x4y = 1/27, then
todo a zgq9 := @gro+ @441 [€4y1] instruction, and then to do some Dind‘H/]\41112d‘|'1 instructions to come
back to x441 = 1/2".

Assume without loss of generality that one can find two distinct letters 1 and | in X different from letter
$ and from letter #.

Write Digit 412 is the following RCT program , where RCT instructions Top’(j)? Pop'(j), Push®(j) are
defined in figure 4:

Algorithm 13 Write Digitiqo
(# mSw, w')

— (movey $moveaSw'$# " mdw, €)
weX? weXmneN

movey, moves € ¥ Tgq1
where {mrAammmy iftm > n
(movey, moves) = ¢ (1"~™ ") ifm<n
(e,€) fm=n
1 = J(#F"mSw) /2"
/¥ Map { x2=ZT(w)/2" to
Tapr = 1/27
z1 = J(movey $moves w'# " mdw)
2
Tapr = 1/27
in a time bounded by k11/2™ for some ky: see
lemma 3.3.%/
GoUpOrDown J*¥Call some Mul24%!/Div2%t! instructions
to get xqpq = 1/2m%*/
Tgto = Tgeo + Tap1 [Tdr1) /¥ Add 1/2™ to a2 442/
GoUpOrDown J*¥Call some Div29t! /Mul29+! instructions

to get xqpq = 1/27%/

(w'$#"mSw, €)

— (#"mSw, w') |11

where weX¥ w eX* mnelN
[*¥Set vy = J(#"mSw) /2", xs = T(W')/2"
in time bounded by k21/2"™ for some ko. */

where program GolUpOrDown is the following RCT program:

Algorithm 14 program GolU pOrDown

20

if (Top(1))/vas1
then
while ((T'op'(1))/2a+1) do

(Pop"(1))/zat1
Mul24+1

end while
end if
if (Top! (1)/was1
then
while ((T'op'(}))/2a+1) do
(Pop (1)) as1
Dip2dt1
end while

end if
(Pop'(8))/zat1

The execution of the calls to program GolU pOrDown are done in a time upper bounded by k31/2mm(m’”)

for some k3. As a consequence, there exists some & € R7T such that the whole execution of program
WriteDigitay» is done in a time bounded above by k1/2minimum(m.n),

O

3.4.3 Outputting reals encoding languages

In definition 2.3, we defined mapping J that encodes any word of £¢ into a real of [0,1]. Now, we define
mapping £ that encodes any discrete language L C X* into a real of [0, 1]:

Definition 3.10 (Encoding by £) Let ¥ = {0,1,...,nx} be the fized finite alphabet. Let o and 5 be two
letters of X with o #£ 5.

o Let L C X be a discrete language. We denote by wi the infinite word agajas .. .a; ... such that, for
all i €N, a; = a (respectively: a; = 8) iff the i'h word of * is in L (resp. is not in L)

o Denote by P(X*) the set of the subsets of X*.
We denote by L the mapping from P(X*) to [0,1] that, for all L C X*, maps L to L(L) = J(wr).

Check that J(wg) is in @ and that a machine can do with any problem z; := £({).

Using lemma 3.9, we show that if we can enumerate a set then we can output a real encoding this set in
finite time:

Lemma 3.10 Let d > 2. Let $, # be two letters of ¥ used as delimiters.

Assume we have a function f : N x ¥* x ¥ — ¥* a constant k; € RT and a RCT machine My of
dimension d + 1 that, for alln e NJw e X*, L C X*,yp € I, maps

(T (#"$wSwr) /2%, ya /2", ., ., 1/27)

to
(T (f(n,w,wp)$wr) /2" y2/2", ., ..., ., 1/27)
in a time bounded above by ky1/2".
Then there exists a RC'T machine M} of dimension d 4+ 2 that for all discrete language L C X*, for all
word w € ¥* and real y2 € I, maps (T (wSwr),ya,....) to (j(w$wL(~w)),y2,0, ...,0) in a bounded time,

where L(w) = {v'|w € Z* A IneN f(n,w,wp) = '}

21

Proof: The general idea is to write a program that, on input z; = J(w$w), z2 = Z(w’), using lemma
3.9, writes digit by digit onto its real register x41o the real value of j(w$w’$wL(~w)).

Denote by number : ¥* — N the function that maps any word w € X* onto its number in the enumeration
of the words of ¥*. For k € N, w € X%, denote lttr(w, k) for k'? letter of word w. We assume fixed a recursive
enumeration of the finite subsets of ¥* similar to the one of [16]: for any integer n € N, D,, denotes the n'”
finite subset of X*.

M} is given by the following algorithm, where RCT instructions Top'(j), Pop'(j),Push'(j) are defined
in figure 4 and integer b5 is defined page 3:

Algorithm 15 Program M}

(wwp, w')
— (wy, ww'ug)
wy, € XY w,w € X*

where wo €N D, =0
0] y HMug —
/*Initialize the computation: set n = 0%/
Zgpr =1 /*Set initial speed to 1%/
Zgqo =0 /*Set zqy2 to 0%/

while (true) do /¥ While (true)*/
(#"wr, wSu'uy,)
= (#7005 * n — 2a,Swr, ww'$uy)
wy, € XY w,w' € X*,

where Un eNa, € X Td+1
I if n > length(w$w's)
" lttr(wSw$n) if n < length(wSw'$)
Write Digit g40 /*Set the n'* digit of x4yo to default value
an*/
(#'mSwr, ww'$u,)
— (#"SwSwr, #"Swlw'$uy,) |11
where wp € ¥ w,w' € ¥* n,u, € N
M; /*¥Get w" the n'" word of the enumeration

given by M;*/
(w"Swr,, #"*Sww'$u,)
= (#£"mSwy, alreadyinww'$u, 11)
w,w,w’ € X wy € B¢,
N, Up, Un41 € N, alreadyin € X
m = b, x (number(w) + length(w$w's) + 1)

|z a1
—2(f - a)
where if w"” € D, then
alreadyin = #, upy1 = Uy
else
alreadyin = $,Dy,,,, = Dy, U{w"}
if ((Top?($))/za41) then [*If word w' has not been yet output*/
(Pop*($))/at1
Write Digit g40 /*Then change the digit of real register @ 449
corresponding to w'' from value a to value 3.
*/
else
(Pop®(#))/ % as1 /*Else do nothing*/
end if

22

(#'mSwy,, SwSw' S, 1)
= (# T Swr, whw'ST, 1) |11
where wy € X% w,w' € ¥* upq1,n,meN
/*Don:=n+ 1%/
Div24+?

end while

limat™ :
T1 = Tago /*Copy the result into z,*/
Zgeo =0 /*Set x40 to 0%/

(ww'Swy, €)
— (wlwr, w')
where wy € X¢ w,w’ € ¥*
/¥ Put back the result in the good form*/

3.4.4 Climbing up the hyper—arithmetical hierarchy

We start by an easy lemma used in lemma 3.12:

Lemma 3.11 o Forallye O, {Zlx € O A x <o y} is recursively enumerable uniformly in y: there
exists a recursive f : N — N such that for all y € O, the range of ¢;(,) is {T|r <o y}

e Gwen z,y € O withx <,y or y <g as input, a Turing machine can effectively tell if x = y, if v <g y
or if y <p .

o There exists a recursive | such that, for all z1, za with z1 <¢ 22, H(z1) = I/Vll(i(lzzl)

Proof: See [16] for the first assertion. For the second assertion enumerate in parallel the predecessors of
z and of y until # or y is found. For all z1, z2, set {(z1, z2) as number of the Turing machine with oracle that,
on any input w, test the membership of word ¢p(., .,)(w) to its oracle, where h is the recursive function of
lemma 2.2.
O
Now, we apply recurrently lemma 3.10 in order to get some machines that output £(L) for some discrete
languages L € ¥* in higher and higher levels of the hyper-arithmetical hierarchy. We define w® as 1.

Lemma 3.12 Let k > 0.
There exists 2z, € O with |z1,| = W*, there exists fi, : N x ¥* x % — ¥* | there exists some fived Cyp € RT
and:

e a RCT machine My of dimension 2k 4+ 2 that, for all n € Wyw € ¥* L C X% y» € I, maps

(T (# " SwSwr), ya, ooy .) Lo (T (fs(n,w,wp)Swr), ya, ...y)
e a RCT machine M| of dimension 2k + 3 that, for all n € Nyw € ¥* L C T* y» € I maps
(T (F#SwSwr) /2™, y2/2", ., ..., 1/27) to (T (fu(n, w, wr)Swr), y2/2", ., ...,., 1/2") in a time bounded

above by C /27.

such that, for all z € O, if L = H(z) then L(Z) = {w'|lw' € * A In €N f(n,Z,wr) = w'} = H(z 4o 21)

Proof: It 1s known that there exists a recursive g such that for all L € ¥*,m € I, the range of function
(bé(m) 18 18 Wn% [16]. Let Mypniy be an w-2PDA such that on input #”$m, My, simulates MgL(m) on input n,
answering the queries of MgL(m) on any word w’ to its oracle I by comparing the digit of w corresponding
to w' to letter a. Mypiy is an w-2PDA that for all n e Nym € N, w' € ¥* L C ¥, maps (#"mwr, w') to
(w$wr, w'), where w* = (bé(m)(n).

23

Denote by P,pniy the RCT machine given by lemma 3.1 that simulates My, .
Using lemma 3.8, for all d > 2 one can build a RCT machine P 41 of dimension d + 1 that, for all n €

uUniv

NymeN,y: € I, L C X%, maps (J(#"$mSwr) /27, y2/2", ., ..., ., 1/27) to (T (wiSwr) /27, y2/27, ., ...,
., 1/2™) in time k/2™ for some fixed k € RT. Apply lemma 3.10 on this machine: one gets a RCT machine of
dimension d+2 that, for all L C ¥*,m € N,yz € [, maps (J (mSwz), y2, ., ..., .) to (J (MSwwz), y2,0,...,0)

in finite time. Denote this RCT machine by P:ﬁ;z.

Now, we are ready to prove the assertions of the lemma by induction over k:

Assume k = 0: it is known that there exists mg € IV, such that for all L C ¥*, L’ = Wk [16]. Consider
M as the w-2PDA that on input (#"wwr, w') calls Myn;y with input (#"$mgSwr, w’). My is the RCT
machine of dimension 2 given by lemma 3.1 that simulates M, and M/ is the RCT machine of dimension 3
given by lemma 3.8 that simulates M.

Assume now k > 1: denote by Iy, I, II3 : N — N some recursive functions such that
n = (I (n), My (n), s(n))

is a bijective recursive function from N to N x N x N. Denote by f and [the recursive functions of lemma
3.11.

Lemma 3.10 can be applied on machine M/ _;: one get a RCT machine M/ _; of dimension 2k + 2 that
for all 2’ € O, for all y, € I maps (j(7$wH(Z/)), Y2, ...y tO j(7$wH(zl+zk_l), ¥2,0,...,0) in a bounded
time. Set zx = 3.5™ where ¢,,,(0) = 1 and ¢p, (n+ 1) = ¢n, (n) +0 251 for all n € N.

Mj, is given by the following program, where RCT instructions T'op®(j), Pop'(j),Push’(j) are defined in
figure 4:

Algorithm 16 Program M

(#"$z8wr, w')
— (ZSwr, #$#"$7%w)
where wy € X% w' eX* z€0,neN
while (Top?(#)7) do [*Call I, (n) times program M | */
1
k-1
[(Zp$wr, #$#7$z8w)

— (Zpx1dwr, continueS#"$Z%w’)

wp € XY, 0w € X% 2, 2p41 €O0,n €N
Zp+1 = Zp 0 Yk—1

i 11 S G (T ()

then continue = #

else continue = $§

end while " /*Here, if the initial input was #5780 (2,
z € O, we have x1 = J(Z%wp(.,)) where

7 = ¢, (T (n)) */

where

(ZSwr, $$#"$75w)
= (#1(SmSwy, #7575/ $27$7,)
wp €XY w e¥ zeO,mnelN
where 2" = ¢4(.,)(Ils(n)) (we have 2’ <, 2,)
m = 1(z", zp) is the integer such that Wg('z”) = H(z")

Puniv /¥ Compute 2" = ¢4,)(Il3(n)). We have
2 <, zp. Get w" the Ts(n)™" word of
H(z")*/

24

(w"$wp, #"$78w'$2"$7,)

= (MSwy, #7$w"$27$w')

wp € XY, 0w 0w e X 2,2 2, € O,mn €N

m = {(z, z) is the integer such that Wg('z”) = H(z)

p k2 [*Put back in xy the value of wy(.)*/

Univ

where

(m$wy, #"$w"$2"$w)
— (< W 2" > Swp,w')
where wp € ¥¥ v’ w” € ¥* 2" €O,neN
[*Output < w”, 2" > Swyz) */

M, is easy to obtained from the program of Mj: add the instruction @apys := 1[1] at the beginning of
program My, replace
(m$wy, #7$w"$2"$w')
= (< w2 > Swp,w)
where wy € X% w' v’ e ¥* "€ 0O,neN

by o
(MSwr, #"$w"$2"$w’)
= (< w2 > $wp, 11 $w) |2 a+1
where wp € ¥¥ v’ w” € ¥* 2" €O,neN

replace in program M} all the other instructions of type

(wla wZ)
(W, wh)
where conditions

(wla wZ)
(W), wy) |21
where conditions

replace Pyniy by Pﬁﬁ»j’?’, P;’va+2 by P;ISfU+2/x2k+3, and replace the call to M/, by the instructions

M Div2?%+3 and add the program GoUpOrDown defined page 20 at the end of the program.
O

We get:

Lemma 3.13 Let k> 1.
o Any language of A x can be fully-recognized by a RC'T machine of dimension 2k + 2.
o Any language of X« can be semi-recognized by a RCT machine of dimension 2k + 2.

Proof: Consider the machine My and the integer z; € O of lemma 3.12. My is of dimension 2k 4+ 2, and
|zx| = w”. Let L be a language of ¥« (respectively: A k). L is recursively enumerable (resp. recursive) in
H(z) by some machine M,

See that there exists a recursive g such that, for all u € ¥*, v € O, u &€ H(v) < g(u) € H(2"): see [16].

L is semi-recognized (resp. fully-recognized) by the RCT machine of dimension 2k 4+ 2 that simulates
Mf(zk), simulating every query of Mf(zk) of type < u,v >€ H(z;)? by a subprogram that runs My on
input 1 = J(#"$18wg) for n = 1,2, ..., until either 21 = J(< u,v > $wy) or 1 = J(< g(u),2¥ > $wy) is

output.
O

We are ready to prove the main assertion of the section: RCT machine can recognize some hyper-
arithmetical sets. We define w® = 1.

25

Theorem 3.5 Let k > 0.
o Any language of A x can be fully-recognized by a RC'T machine of dimension 2k + 2.
o Any language of A ryy can be fully-recognized by a RCT" machine of dimension 2k + 3.
o Any language of X« can be semi-recognized by a RCT machine of dimension 2k + 2.

o Any language of X5y, can be semi-recognized by a RCT machine of dimension 2k 4 3.

Proof: If £ = 0, this is a direct application of theorem 3.4.
Assume now k > 1: the first and the third assertions are lemma 3.13. The second and the last assertions

are immediate from the third assertion and from lemmas 3.7 and 3.6 with B = H (w*), since Yyl = Ef(wk)
k
and Ay, = AT
O

4 PCD systems can simulate RCT Machines

In this section, we prove that PCD systems can simulate RCT machines. We start by seeing how to realize
the elementary instructions of RCT machines.

4.1 Linear machine instructions

Let d be an integer. A k-dimensional box of R% k < d, is a couple I = (P, B) where P is a polyhedral
subset of R of dimension k, and B is a affine basis (O, ey, e, ...,eq) of RY O € P, such that (O, ey, ..., ex)
is an affine basis' of P.

The point of coordinates (x1,...,2;) on I = (P, B) denotes the point of P, if it exists, of coordinates
(z1,...,2,0,...,0) in basis B. A trajectory is said to reach I = (P, B) iff it reaches P.

Let H be a PCD system of dimension d. Let d’ be an integer with d’ < d. Let I = (f, ¢) be an assignment?
of dimension d’. H is said to realize assignment I if there exist some d’-dimensional boxes In and Qut of
R4 such that, for all z € [0, l]dl, the trajectory of H starting from the point of coordinates x € [0, 1]dl on
In at time 0 reaches Out at time ¢(z) in point of coordinates f(x) on Out: see figure 5 and figure 6. In that
case, we say that H realizes the assignment wvia input port In and via output port Out.

For all ' € N, denote by Idy the identity function of [0, l]dl: Idgy(z) = « for all z € [0, l]dl. Let
I = (R,c) be atest of dimension d’'. H is said to realize test I if there exist three d’-dimensional boxes In,
Outt Out™ of R4 such that for all such that R(z) is true, H realizes assignment (Id, c) via input port In
and output port Out™, and for all z such that R(z) is false, # realizes assignment (/dg,c) via input port
In and output port Out~.

Lemma 4.1 (Basic linear machine instructions) Let d € N. Let d’ > d + 1.
Let I = (f,c) € Assgnmity be an admissible assignment (respectively Let I = (R,c) € Testy be an
admissible test) of dimension d. Assume that I is one of the “linear machine instructions” of definition 3.5.
For all p € R, one can build a PCD system of dimension d' that realizes assignment I = (f, pc) (resp.
that realizes test I = (R, pc)).

Proof: Forany A€ R, AT e Rt # € {> >, <, <, =, £}, figure 5 shows how one can build a PCD system
of dimension 2 that realizes x1 := ATy [1],21 := &1 + A [1], z1 := A [1], z1 := x1#£A [1] and figure 6 shows
how one can build a PCD system of dimension 3 that realizes x5 := @1 [1] and 25 := 21 + 22 [1].

It 1s easy to transform these PCD systems into PCD systems that realize all the linear machine instructions
of definition 3.5: for example to build a PCD system that realizes #; := z; [1], take the PCD system
H' = (X', f") of dimension 3 of figure 6 that realizes z2 := x; [1], and consider H = (Rdl,f) where,

L That is to say B is an affine basis of V, where V is the minimal affine variety such that P C V.
2We do not assume here that I is necessarily an admissible assignment.

26

(0,1)
(1lambda) (0.1) 1,1)
y+lambda
y lambda y y g
(1,lambda)
(0,0) (1,0) (0,0) (1,0)
@ 0,1)——— (1/,1/2) y>lambda
0,1 :
e Na2 a9
lambda 1/2,lambda)
(L0) ,
y
(0,0)
/(1,2) (1‘\/2) y<=lambda
(0,0) (1,0)

Figure 5: PCD systems realizing y := Ay [1], y ;== y + A [1],y := A [1] and y > A7 [1].

0,1,0)

(0,0,0)

Figure 6: PCD systems realizing y := « [1] and y := y + = [1].

27

for all @y,... xa, fley,.. . xa) = (2,25, ..., 2y), r, = 0 forall k & {i,j,d+ 1} and (2}, 2}, 2},,) =
ey, @i, 2asn).
To realize a linear machine instruction of cost p instead of 1, multiply all the slopes in the PCD system
by 1/p.
O

4.2 Paths and delay module

One can artificially slow down a trajectory (recall that for all d € N, Idy denotes the identity function of
[0, 1]9):

Lemma 4.2 (Delay module) Let d € N. Let d' > d+ 1 be an integer.

For any affine function ¢ : [0,1]9 = R*, one can build a delay module of time ¢ plus some constant in
dimension d': for all affine function c: [0,1]¢ — RY, there erists some A € R, such that one can construct
a PCD system of dimension d' that realizes assignment (Idg,c+ A).

Proof: Take some big enough k, k' € R and construct a PCD system as in figure 7.

(0,0,1/2)
0,1,0
() o)
(0,0,2)
(0,0,0) hyperplane of
equation z=c(x,y)+k (0,0,k)

Figure 7: A PCD system realizing a delay

Now, see that one can build some “paths” using the regions of a PCD system: for all p € R, denote
abusively by p the constant function of [0, 1]¢ whose value is p: Va € [0,1]4, u(z) = .

Lemma 4.3 (Paths) Let d € N. Let d' > d+ 1 be an integer. Let In and Out be two d-dimensional bozes
of R4

For all u € R, one can build a path of time p between In and Qut in dimension d': for all p € RT, one
can build a PCD system of dimension d' that realizes the assignment (Idg, jt) via input port d-dimensional
box In and output port d-dimensional box Out.

Figure 8: Elementary constructions used in paths: angle and straight path.

28

Figure 9: A path between 1-dimensional port /n and 1-dimensional port Out.

Proof: Using “angles” and “straight part” as in figure 8 it is easy build some regions that bring any
point of coordinates x on I'n to point of coordinates z on Qut. The time taken by a trajectory to go through
these regions from point of coordinates z on In to point of coordinates # on Out is some affine function ¢
of x: t : RY = R*. Using lemma 4.2, insert in one of the regions some regions that realize a delay module
of time —t(z) plus some constant. As a consequence, now, the time required by a trajectory to from In to
Out is a constant k independent of 2. Multiply all the slopes in the regions by u/k to get a path of time p:
see figure 9.

O

We see now that one can connect several d-dimensional ports to a same d-dimensional port in any
dimension d' > d + 2:

Lemma 4.4 (Merging paths) Let d € N. Let d > d + 2 be some integer. Let I,..., I be some d-
dimensional bozes. Let Out be a d-dimensional box.

One can connect all the I;,j € {1,...,k} to Out in dimension d': there exists a PCD system M of
dimension d' such that, for all j € {1,... k}, H realizes the assignment (Idq, 1) via input port I; and output
port Out.

Proof: Using lemma 4.3, for all j € {1,... k}, build a path between I; and Out: generalize to dimension
d the construction of figure 10 to merge all the paths. See that dimension d + 1 would not be sufficient to
connect the paths.
O

Out

Figure 10: Connecting several 1-dimensional ports I1, I», Is to a same 1-dimensional port Out in dimension

3.

4.3 PCD systems can simulate RCT machines

We show now that one can realize all the RCT machines instructions: in particular, one can realize the
“Zeno instructions”. We use an idea of [2]: see figure 11 and figure 12 to understand how it works. See in
figure 13 and in figure 14 how to realize the “special instructions”.

29

a4\ AW y=1

Homogenization

i d+1
Original System inR

ian

y=0

Figure 11: The homogenization of a PCD system of dimension d = 2: [2].

0,1 (1,1,1)
Inout O @D Qutput
npu y+lambda
Port]
(= Port
(1,lambda)
©.0) (L.0) ©o.1)

(0,0,0)

Figure 12: Realizing “Zeno instructions”: from a PCD realizing y := y + A [1] of dimension 2 (on left) one
can build a PCD system of dimension 3 (on right) that realizes Zeno instruction (y := y + A [1])/=.

30

Definition 4.1 (Homogenization,Translation) Let R’ be a region of a PCD system of dimension d':
that is to say R' is a polyhedral subset of RY with some associated slope s' = (s}, ...,s",) € RY.

e R’ is said to be homogeneous if the point of of R of coordinates (0,...,0) is in R/, where R is the
topological closure of R’.

e The translation of region R’ is the region R of RA+1 defined by:

R={(x1,...,2a11)|0 <@g <1 A (21,...,20) € R'}
with associated slope s = (s},...,s,,0).

o IfI' = (P, B') is a d-dimensional box of R the translation of I is the d + 1-dimensional box defined
by I = (P, B), where P is the translation of P', B = (O, e1,...,eq41), where B' = (0,e1,...,eq) and
eqgr41 18 the vector of coordinates (0,...,0,1).

e The homogenization of region R’ is the region R of RA+! defined by:

R={(z1,...,za4)0 <zgy1 <1 A (@1/2a41,.. . 20 /2a41) € R'}
with associated slope s = (s},..., s, 0).

o IfI' = (P, B') is a d-dimensional box of R the homogenization of I is the d + 1-dimensional
box defined by I = (P, B), where P is the homogenization of P, B = (0,e1,...,eq41) where B =
(0" e1,...,eq), O has coordinates (0, ...,0), eq11 is the vector of coordinates (01,02, ... ,04,1) where
(01,029,...,04) are the coordinates of O' in R4

Lemma 4.5 Let H' be a PCD system of dimension d’ realizing assignment (f,c) (respectively test (R, ¢)) of
dimension d via input port In and via output port Out (resp. via output ports Out™ Out™).

o Let H be the PCD system of dimension d' + 1 whose regions are the translations of the regions of H'.

H realizes assignment (f,c¢) (respectively test (R, c)) considered as an instruction of dimension d 4+ 1
(see definition 3.3) via input port the translation of In and via output port the translation of Out (resp.
via output ports the translations of Outt and of Out™).

o Let H be the PCD system of dimension d' + 1 whose regions are the homogenizations of the regions of
H.
H realizes assignment (f/xq41,c/xay1) (respectively test (R/xqy1,¢/®as1)) via input port the homog-
enization of In and via output port the homogenization of Out (resp. via output ports the homogeniza-

tions of Out™ and of Out™).

o Let I = (P,B) be a d-dimensional port of R, Assume P is homogeneous. If I' = (P, B") and
I" = (P",B") denote the translation and the homogenization of I respectively, then P" C P’.

Proof: Immediate from the definitions: see figure 11, figure 12 or see [3].

We distinguish a special type of RCT machines:
Definition 4.2 (RCT machine with property *) Let M = (Q, o, q;'[, q;,limit*,é) be a RC'T machine.
e A state q € Q) of M 1s:
— flat [3]iff, for all instantaneous description id of M of type (¢, %1, ..., xq, 1), for some x1,... 24 €

[0,1],4 € RT, for all instantaneous description id" of M with id' b4 id, then id' is of type
(¢, 2),0,2%, ..., 1), for some ¢ € Q, &, 2%, ..., 2/, €[0,1],t' e RT.

31

01) ——— oy
y \ /
2y

yl2 y

(0,0) (0,0)

Figure 13: Some PCD systems realizing instruction @4 := ¢4/2[z4] and instruction x4 := 2a4[2,].

(0,lambda, 1)
i

1,0,0)
(0,1,0) (1,0.1)
X,y+lambda
xy)

(0,0,0)

Figure 14: Some PCD system realizing instruction y := y + Az [z].

— separated [3] iff, for all instantaneous description id of M of type (q,21,...,24,1), for some
r1,...,2q4 €[0,1], t € RT, for all instantaneous descriptions id' and id" of M of type (¢, ', x%,
oot Yy and (7 2, 2, L, 2l) respectively, ¢/ ¢ € Q2. 2l d, el €0, 1], ¢t €
Rt if id' by id and id" 4 id then ¢’ = ¢".

o M has property * iff all the states ¢ € Q) of M are flat or separated.

Here 1s the main theorem of the section: one can simulate a RCT machine by a PCD system:

Theorem 4.1 o Let M be a RCT machine of dimension d.
One can build a PCD system H of dimension d 4+ 2 that simulates M.

o Let M be RCT machine of dimension d with the property *.
One can build a PCD system H of dimension d 4+ 1 that simulates M.

Proof: Assume M is of dimension d. Assume either that d* = d+2 or that d’ = d+1 and that M has the
connectivity property. Denote M = (Q, qo, q;'[, q;,limit*,é). For all ¢ € Q, denote §(q) = (¢7, ¢, Instry).

We prove the theorem by induction over the dimension d and by structural induction over the program
of M: we prove that for all M of dimension d one can build a PCD system H of dimension d’: to each
state ¢ € Q is associated a d-dimensional box I, and some regions of X such that # realizes the assignment
(respectively: the test) Instr, via input port I; and via output port I+ (resp. via output ports /,+ and
I,-) using these regions. Moreover, for all ¢ € Q, if I, = (P, By), then P, is homogeneous iff ¢ is not an
instruction corresponding to a subprogram of dimension d nor a linear machine instruction. In addition, H
has a box I, corresponding to the limit state.

Denote @' C @ for the subset of the states of M such that ¢ € Q' iff Instr, is either a special instruction,
or a Zeno instruction, or obtained from an instruction of dimension d — 1 which is not a linear machine
instruction nor a subprogram of dimension d — 1.

See that Q' is empty if d < 2: if d < 2 skip the five following paragraphs.

32

Consider M’ = (Q, q{, q;'[, g5, limit*,¢") as a program of dimension d — 1 where, for all ¢ € @, ¢'(¢q) =
(¢, ¢" Instr') iff ¢, ¢~ € Q',¢' = qT,¢" = ¢, and Instr’ = (f,c) if Instry = (f/xq4,c/zq), Instr’ = (R, ¢)
it Instry = (R/zq4,¢/xq), Instr’ = (Idq_1,1) if Instry is a special instruction of type zq := x4/2 [24] or of
type x4 := 2w q4aq], Instr’ = (x1 := &1 [ag]) if Instr, is a special instruction of type 24 := xq4+Azk, 2 < k < d,
Instr’ = (f,¢) if Instry is obtained from the instruction (f,c¢) of dimension d — 1, and Instr’ = (R, ¢) if
Instry is obtained from the test (R, ¢) of dimension d — 1.

By induction hypothesis one can build a PCD system M’ of dimension d’ — 1 that simulates M’. To each
state ¢’ € @' of M’ corresponds a d — 1-dimensional port [,. Moreover, some d — 1 dimensional box I}
corresponds to the limit state.

Consider H as the PCD system built as follows: for all ¢ € @', for all region R’ C R4=1 of PCD system
H' associated to q:

o if Instr, corresponds to a special instruction of type zq := x4/2 [24] or 24 := 2w4[24], or to a Zeno
instruction, then add to # the homogenization of region R’ and take I, as the homogenization of I

o if Instr, corresponds to an instruction obtained from an instruction of dimension d — 1 or a special
instruction of type x4 := x4 + Axg,2 < k < d then add to H the translation of region R’ and take I,
as the translation of /.

For each state ¢ € @' such that Instry is a “special instruction” modify H as follows: if Instry is of
type x4 := x4/2 [x4] or of type x4 := 2x4 [24] we can assume without loss of generality that one region
already constructed R of slope s of H corresponding to state ¢ is the homogenization of a region R’ of
H’ of slope ¢ and that R’ is of type R’ = A’ 4 [0, 1]dl_1 for some point A’ € R¥~! where s’ is of type
s’ = (v,0,...,0), for some v € RT. In that case, replace the slope s of R by s = (v,0,...,0,—v/2) if Instr,
is of type x4 := 2q/2 [24] and by s = (v,0,...,0,v) if Instry is of type zq := 2u4 [2q]. If Instr, is of type
Ty = xg+ Arg,2 < k < d, we can assume without loss of generality that one region already constructed
R of slope s of H corresponding to state ¢ is the translation of the translation of the translation of the
... translation of the homogenization of some region R’ of R4 ~4+k=1 with slope s’ and that R” is of type
R" = A" + 0, 1]dl_d+k_1 for some point A” € R4 =d+k=1 where s is of type 5" = (v,0,...,0), for some
v € RT. In that case, replace the slope s of R by s = (v,0,...,0,v).

All the ports I, constructed up to know are either the homogenization of I</1 or the translation of I(’I:
but in this latter case, I</1 is always homogeneous. As a consequence, by lemma 4.5, for all ¢ € Q’, it is
true that # realizes the assignment (respectively the test) Instr, via d-dimensional input port I, and via
d-dimensional output port I;’ (resp. via output ports I;’, Iq_).

Now, for all ¢ € Q,¢q ¢ Q' does the following: choose any arbitrary d-dimensional port I, of R4 not
containing the point of coordinates (0,...,0). See that Instr, corresponds to an instruction Instr, that is
either equivalent to a linear machine instruction or either a subprogram of dimension d or d — 1.

o If Instry corresponds to a subprogram of dimension d (respectively: d — 1), by induction hypothesis,
one can build some regions of a PCD system H;;,5¢r, of dimension d’ (resp. d’ —1) that realizes Instr,.
Add to H the regions of Hypsir, (resp. the translation of the regions of %instrq) and a path of time
1/2 between the d-dimensional port I, of # and the input port of Hinstr, (resp. and the translation of
the input port of %instrq) and a path of time 1/2 between the output port of Hinstr, (resp. between
the translation of the output port of %instrq) and the d-dimensional port [+ of #.

o If Instr, corresponds to a linear machine assignment (f,¢) (respectively: to a test (R, ¢)), by lemma
4.1, build a PCD system Hins¢r, of dimension d’ that realizes (f, ¢/3) (resp. (R,¢/3)). Add to H the
regions of H;nsir, and a path of time 1/3 between the d 4 1-dimensional port I, of % and the input
port of Hipser, and a path (respectively: and two paths) of time 1/3 between the output port of Hipser
and the d-dimensional port I+ of H (resp. and the d-dimensional ports I+ and I,-).

See that, if d = d + 2, by lemma 4.4, all the connections between the ports using the paths can be
realized. Now, if d’ = d + 1, there might be some problems of connections between the paths: however, if
we assume that M has the property *, when several d- dimensional ports I, , I, have to be connected to
an unique d-dimensional port [+, we are sure that this port corresponds to a state qt € @ that is either

33

separated or flat. If ¢T is separated, there is no problem since the paths connect I,,, I, to different subsets
of I+ [3]. If gt is flat, the paths can be taken of dimension d — 1 by ignoring the value of real register z»
always equals to 0 [3]: see figure 15.

Define I, as {(z1,...,2¢)|0 < zg <1 A (21,...,24-1) € I.}: I. is the translation of I,. Add a path
from port I, to the port Ijjmies.

One gets a PCD system H that simulates M: H realizes the assignment corresponding to the execution
of M via input port Iy, and via output port Iq;r. Moreover, for all I, = (P,, By), P, is homogeneous iff ¢
is not an instruction corresponding to a subprogram of dimension d nor a linear machine instruction. This

proves the assertion for dimension d from the assertion in dimension d — 1.
O

Figure 15: Realizing entrances to input ports of separated (left) and flat (right) states [3].

We claim:

Proposition 4.1 All the theorems and lemmas proved up to know can be proved using RC'T machines with
property *

Proof: We say that a RCT program M has the property ** if, in all the IDs of the computations of M, real
register x5 has a value in I. Check that all the programs obtained up to now have the property **.

It is easy to use the trick of claim 17 of [3], to transform any RCT program with the property ** into a
RCT program with the property *: transfer all the data from the second real register to the first one when
a critical transition must be done: see [3].

O

As a consequence, we get immediately from theorem 4.1 and from theorem 3.5:

Theorem 4.2 Let k' > 0.

o Any language of A can be fully-recognized by a PCD system of dimension 2k’ 43 in finite continuous
time.

o Any language of A w,, can be fully-recognized by a PCD system of dimension 2k' + 4 in finite con-
tinuous time.

o Any language of ¥ can be semi-recognized by a PCD system of dimension 2k’ +3 in finite continuous
time.

e Any language of
tinuous time.

wk' 11 can be semi-recognized by a PCD system of dimension 2k + 4 in finite con-

5 Upper bounds on the computational power of PCD systems

In this section, we show that theorem 4.2 is optimal. We start by some geometrical considerations.

34

g %)<y

Figure 16: From left to right: z* is of local dimension 17,27, 3 in a PCD system of dimension 3.

5.1 Geometrical considerations
5.1.1 Local dimension

We define:

Definition 5.1 (Local dimension) Let # = (X, f) be a PCD system in dimension d. Let * be a point of
X. Let A be a polyhedral subset A C X of marimal dimension d —d' (1 < d' < d) such that there exists an
open convex polyhedron V C X, withz* € ANV, A CV, and such that, for any region F of H, FNV # 0
implies A C F (F is the topological closure of).

If d' < d then x* is said to be of local dimension dt. If d = d then x* is said to be of local dimension
d' and we can always choose V small enough such that x* is the only point of local dimension d' in V: see

figure 16.

Note that given a rational PCD system H = (X, f) and k = d' or k = d't one can effectively compute
LocDim(HM, k) defined as the set of the points # € X that have a local dimension equal to k.

The idea is that if a point z* is of local dimension (d’)* in a PCD of dimension d, to study the trajectories
in a neighborhood of z*, one can restrict the attention to a PCD system of dimension d’.

e

Figure 17: Proposition 5.1: if * is of local dimension 2% in a PCD H of dimension 3, the projections on P
of the trajectories of H in a neighborhood V' of #* are the trajectories of a PCD system H .+ of dimension 2.

Proposition 5.1 Let H = (X, f) be a PCD system in dimension d. Let ™ be a point of local dimension
(d")t with d’ < d. Call P the affine variety of dimension d' which is the orthogonal of A in x*. It is possible
to construct a PCD system H' = (X' =]Rdl,f’) in dimension d’' such that the trajectories of H' are the
orthogonal projections on P of the trajectories of H in V.

Proof: Choose an affine basis of R? of the form (z* e, e2,...,ea,...,e4) with (2%, e1,e2,...,eq) taken
as a basis of P and (z*,eq41,...,€4) taken as a basis of A. Call p : RY — R? the projection that

35

sends (21, %2,...,24) to (#1,...,24). By hypothesis, in V the regions are organized as a ‘pencil of regions’:
therefore speed in point (x1, 22, ..., 24, ...,24) € V does not depend on the coordinates zg 41, 2g42, ..., 4.
The reader can check that H' = (X' = R4, 1) where f'(x1,22,...,24) = p(f(x1,22,...,24,0,...,0)) is a
solution. See figure 17.

O

For any point z*, the corresponding open convex polyhedron V is denoted by V,:. H’, A are respectively
denoted by H,+ and A,.. If d < d we denote by p,+ and g,+ the functions that map all point z € X onto
its orthogonal projection on P and onto its orthogonal projection on A respectively. If d’ = d, we define p+
and ¢+ as respectively the identity function and the null function.

A rational polyhedron is any polyhedron whose equation can be written using only rational numbers.
When H is a rational PCD system, see that for all point z* € IR% one can always choose V,« and A« such
that they are rational polyhedral, even if £* has some non rational coordinates.

We assume the natural order 1 < 1T <2 < 2t < ...

5.1.2 Fundamental properties of points of low or high local dimension
Next lemma is easy:

Lemma 5.1 For all d € N, any point of local dimension d of any rational PCD system s a point with
rational coordinates.

Proof: See that if # is a point of local dimension d of some PCD system H (H must be of local dimension
d), then the intersection of all the regions of H that intersect V, is reduced to singleton {z}. Since all the
regions must be rational polyhedral, the unique point of the intersection must have rational coordinates: see
figure 16.
O
In [6], we proved:

Lemma 5.2 ([6]) Let H = (X, f) be a PCD system of dimension d. Let & be a trajectory of H of finite
continuous time T, and discrete time Ty > w converging to * = ®(T;). Assume that ™ is of local dimension
d’" < 3%. Then necessarily the signature of ® is ultimately cyclic.

5.1.3 Trajectories that make some cycles
We define the following relation C'ycle: see lemmas 5.3 and lemma 5.4 for the motivation.

Definition 5.2 (Relation Cycle) Let d be an integer. Let H be a PCD system of dimension d. Let z1, z2
be two points of R, Let x* € Q4N X be a rational point. Let Q be a rational polyhedron.

We say that Cycle(z1, 22, H, Q, #*) is true iff all the following conditions hold simultaneously (see figure
18):

e Q CVpr, @ is a open convex polyhedron and z1, 22 € Q.

o 21 F 22, 21,70 & Ag» and the line (21, z2) defined by z1 and zy intersects Ay« in some point z*.

o z* € Q, where Q is the topological closure of polyhedron ().

. d(px* (ZZ)apx*($*)) < d(px* (Zl)apx* (l‘*))

Recall that d denotes the distance of the maximum. Note that we have always pg«(z*) = #*. We prove
first that any positive instance of this problem implies that the trajectory is cycling: see figure 18.

Lemma 5.3 Let H be a PCD system of dimension d. Let ® be a trajectory of H. Let 21,20 € R? be two
points reached by ® at time t1,ty € R respectively witht, < to. Let z* € Q% Let Q be a rational polyhedron.

Assume Cycle(z1, 22,1, Q, x*) is true and that the trajectory stays in @ between time t; and time ta:
Vt € [t1,t2], ®(t) € Q.

Then trajectory ® s cycling and reaches the point z* of definition 5.2 at timet* = 3 —1—2;020 M(ta—t1) =
t1+ (ta—t1)1/(1 = A), where A € (0, 1) is such that d(py+(22), pe+ (%)) = Ad(pe+(21), o= (7).

Moreover the trajectory stays in @) between time t1 and time t*: for allt € [t1,t*), (1) € Q.

36

B

Figure 18: If predicate C'ycle(z1, 22, H, @, x*) is true for some rational polyhedron @ and some rational point
z* € Q9 if the trajectory reaches z; and z» and does not leave (Q between z; and z», then the trajectory is
ultimately cycling and converging to z*.

When the hypotheses of lemma 5.3 hold, we denote Cycle.((t1,21), (t2,22),H,Q,z*) for the couple
(t*,2*) ER x R4,

Proof: Denote Hy« = (X', f'). By lemma 5.1, ® = p,«(®) must be a trajectory of H,«. Fix the origin
in 2*. Cyele(z1,22,H,Q, 2") implies that there exists some real 0 < A < 1 with pg«(z2) = Apg~(21): see
figure 18.

By definition of V« all the regions of M« intersecting py(Vy+) contain pgye«(2*) in their topological
closure. Hence we have f'(z) = f'(px), for all & € pye (Vye), o € (0,1]. If ®'(2) is solution to differential
equation &4 = f'(x), then ¥'(t) = A®'(¢/A) is also solution. As a consequence, for all n > 2 € N| trajectory
@’ must reach the point A"~ 1p,.(z1) at time ¢ + (t2 — ¢1) Z;L:_OZ M see figure 18.

From the definition of K.« this implies that, for all n > 2 € N, ® reaches the point z, defined by
P (2n) = A" pee (21) and g (20) = g (21) + (g (22) = g (20)))20 N at time 1 + (f2 — 1) 3720 M.
Hence, trajectory ® must reach z* at time ¢*: see figure 18. By convexity of), ® must stay in ¢ between

time ¢; and time ¢*.
Od

5.1.4 Sequence of points of local dimension k

We claim:

Lemma 5.4 Let H = (X, f) be a PCD system of dimension d. Let ® be a trajectory of H: ® is a function
from an interval D of Rt containing 0 to RY. Assume that we have a bounded increasing sequence (;);ex
of real numbers in the domain of function ®: for all i € N, {; < t;41, t; € D and there exists some T € R
with t; <T for all i € N. Denote t* = sup;ent;-

e One can always assume that ® is defined at time t*.

o ¥ = O(t*) is the limit in RY of the sequence (®(t;))ien.

o Let k= (d') ork = (d")* for some integer d'. Assume that for all i € N, ®(t;) is of local dimension k.
Then

— 2" = ®(t*) is of local dimension > k.

— If 2* 1s of local dimension (d' 4+ 1) or (d' 4+ 1)T, then there must exists iy < iz € IN, e €04 a
rational polyhedron @ such that trajectory ® stays in @Q between time t;, and time t;, and such
that predicate Cyele(®(t;,), ®(t;,), H,Q,z*') is true. Moreover, if t € R,z € R? are such that
(t,x) = Cycle. ((ts,, B(ti,)), (tiy, ®(ts,)), H, Q, &) then the local dimension of x is > (d' 4+ 1).

37

— L

—— Trajectory

Figure 19: Proof of lemma 5.4: here d = d’ = 3. L is the set of the one dimensional regions that intersect
Py (Ver). L is made of a finite number of segments. Every time the trajectory reaches a point of local
dimension 2% | it reaches L. If the trajectory reaches two times £ in a same segment in points z;, 29 then
predicate Cycle(zy, z2, H, Ve, l‘*l) is true for all rational point ¥ € Ay,

Proof: By a well-known result of analysis, since ® is a continuous function and has a bounded right
derivative, ® can always be extended to a function defined on ¢*.

Since trajectory @ is a continuous function, #* = ®(¢*) must be the limit of sequence (®(%;))sen.

Assume that for all ¢ € N, ®(¢;) is of local dimension k. Denote by d” the local dimension of z*. By
continuity of ®, there exists iy € N such that for all ¢ > iy, ®(¢;) € Vi». For all ¢ > iy, point ®(¢;) is of local
dimension k and is in V;+. By considering the dimension of affine subspace Ag,y, for any i > ig, one gets
d’ > k.

Assume d” = k: By some easy geometrical considerations (see figure 16), #* is the only point of local
dimension & in pe«(Vy+). As a consequence, for all i > iy, ®(t;) € Ay+. Denote by tfirs¢ the first point of
local dimension k = d” reached by ® after time ¢;,: tipse = inf{t|t €R A t > t;; A ®(t) € LocDim(H, k)}.
®' = py+ (P) must be a trajectory of Hy«. ® does not reach any point of local dimension k at any time ¢ with
tiy <1 <tfipst. One has ®'(t;,) = ®'({1irs¢). As a consequence, for all n € N, &' (t;, + n(t — t;,)) = ¥’ ()
and all the points of local dimension k reached by ® at some time ¢ > ¢;, must necessarily be reached at
some time ¢ of type t = t;, + n(t —t;,) for some n € N. In particular, sequence (¢;);eny must be a subsequence
of sequence (¢;, +i(t —t;,))sen. We reach a contradiction, since (¢;);en is assumed to be a bounded sequence.
Hence, it is not possible that d” = k and necessarily d” > k.

Assume d” = (d' + 1) or d’ = (d' + 1)*. The image £ of LocDim(H, k) by py+ is a finite set of
one-dimensional segments: see figure 19. Since (®'(¢;));>i, is an infinite sequence, there must exists some
i1 < id9 €N,z = ®(t;,), 22 = P(ty,) such that py«(z1) and pys(z2) belong to a same segment of £, and
such that d(pg«(x*), pps (22)) < d(pg-(2*), py=(21)): see figure 19 or figure 18. Take @ = V,+. Check that
predicate Cyele(zy1, z2,H, @, =*') is then true for any rational point z*' € Q4N A,.:

Denote (t,z) = Cyecle.((tiy, 71), (tiy, 22)), H, @, z*). By lemma 5.3, ® must be converging to z at time ¢.
By definition of C'yele., © must belong to Ay.. As a consequence, x must be of local dimension > (d' 4+ 1).

O

Corollary 5.1 Let H = (X, f) be a PCD system. Let ® be a trajectory of H Assume that we have a bounded
increasing sequence (t;);en of real numbers in the domain of function ®. Denote t* = sup;ent;.

o For all d' € N, only a finite number of the points x; = ®(t;),71 € N are of local dimension d'.

o If the local dimension of x* = ®(t*) is k = (d") or k = (d")*, d’ € N, then all but a finite number of
the z;,i € N are of local dimension < (d" —1)*.

Proof: If some z; is of local dimension d’, the dimension d of the PCD system must be equal to d’.
If there are a non finite number of points of local dimension d’, one can extract from sequence (¢;);en an

infinite sequence (t});ew such that for all i € N, ®(t!) is a point of local dimension d' with t* = sup;ent!.

38

This is impossible since by lemma 5.4, 2* must be of local dimension > d’ and the dimension of the space
must be d’.

By the pigeon hole lemma, since the local dimension is bounded by d the dimension of the space, if the
second assertion were false, there must exists some d > d"”' > (d") such that one can extract from sequence
(t;)iem an infinite sequence (#});¢m, such that for all i € N, ®(#!) is of local dimension d”’. This is impossible,

since by lemma 5.4 one must have d’ > d”'.
O

5.2 Some hyper—arithmetical analysis
5.2.1 Representing reals by languages
We represent every point x of R% d € N by the set of the rational polyhedral that contain z.

Definition 5.3 (Encoding reals by languages) Let d € N. Assume that a representation of the rational
polyhedral of R over ©* is fived.

Let ¢ € RY. Let L, C T* be the language defined as the set of the words w € ¥* that encodes a rational
polyhedron P of R? such that x € P. L, is called the language associated to x. For all x € R¢, d € N, the
language L, associated to x, is denoted by [z].

We define also:

Definition 5.4 (Encoding real sequences) o A real sequence is any function h from N x T* x R?
to R? for some integers d.

o For all x € RY the relation associated to h corresponding to x is the langage Rp(x) C T* defined
by Ry = {< n,w,P > |n € Njw € ¥*, P € ¥* encodes a rational polyhedron of R such that
P e [h(n,w,z)]}.

e Forallk € N, the relation associated to h corresponding to « up to rank k is the langage R,fk(x) C X
defined by Ry, = {< n,w,P>|n €EN,n < k,w € ¥* P € X" encodes a rational polyhedron of R such
that P € [h(n,w,z)]}.

5.2.2 Relativizations and the hyper—arithmetical hierarchy

We start by the following lemma:

Lemma 5.5 There exists a recursive function g such that, for all y,z € O, for all m € N, if m s an
H (y)-recursively enumerable index of some set S C ¥* and if y <, z, then g(y,m, z) is an H(z)-recursively
enumerable index of S.

Proof: Denote by h the recursive function of lemma 2.2. Assume y,z € O, y <, z. Assume m € N is an

(2)

H (y)-recursively enumerable index of set S C £*. S is H(z)-recursively enumerable via the machine Mrf,,
with oracle H(z) that on input w € ¥* simulates M,f{(y), but that replaces any query of machine M,f{(y) of
type “w’ € H(y)?”, w’ € ¥* to its oracle by the query “¢j(, .y(w’) € H(2)?” to oracle H(z).

The number m/" of this machine depends uniformly in y,m and z and can be given by some recursive

function g.
O

Lemma 5.6 (Composition) Let X C X*.

o There exists a recursive g such that, for all x,y € O, HHX(x)(y) <m HX(z 40 y) via DQy(z,y)-

o There erists a recursive h (resp. a recursive h') such that, for all myn € N,z,y € O, if m is some
H* (z)-recursively enumerable index of some set S C X%, and if n is some H*(y)-recursively enumer-
able inder of some set S' C X%, then h(z,y, m,n) is an HX (z +¢y)-recursively enumerable inder (resp.
H*(z +0 y +o 2)-recursive index) of S'.

39

Proof: There exists a recursive f, such that foralln € N, A, B C ©*, if A <,,, B via ®,,, then A’ <,, B’
via ¢¢(n) [16]. Denote by no any integer such that &, is the identity function.
Let z,z € N be given, define ¢ by

ng ife=1
f(¢:(y)) ify=2P for somep €N
n' if # =3.5%, ¢ € N, where n’ is the number of the

Turing machine such that ¢,/(< u, 7 >) =< ¢4_)(u), +0 v) >,
forallu e X*,v e 0.
0 otherwise

1 1s partial recursive and an index for ¢ can be obtained uniformly from = and z. That is to say, there is a
recursive [such that ¢ = ¢;(, »). Applying the fixed point theorem [16], we obtain a recursive function n such
that ¢y, (2) = di(n(e),e). Take g as Axy.dp (o) (y). g is such that for all z,y € O, HHX(x)(y) <m H*(z +09)
via @z -

Assume m € N is some HX (z)-recursively enumerable index of set S C ¥*, and n € N is some H?*(y)-
recursively enumerable index of some S’ C ¥*. By proposition 2.1, we have S <, HX(2%) = (HX(z)) via
some ¢;. As a consequence, H*(y) <, HHX(ZI)(y) via some ¢y : see [16] and H® (y) <., HX (2% +¢ y). For
all z,y,2% 40y <, 2°T°Y. Hence, H*(y) <, H (2% °¥) via some ¢;» and by proposition 2.1, 5" is recursively
enumerable in HX (z 44 y) with an index n’. Now, see that {,{’,ll',n' can be computed effectively from m
and n, y and 2: see [16]. Hence, n’ can be given as a recursive function h of m,n, z,y.

Now, if S’ is recursively enumerable in HX (z +, y), it is recursive in HX (x +¢ y +, 2) with a recursive
index computable from any H* (z +, y +, 2) recursively enumerable index of S’: this proves the existence
of recursive h'.

O

5.2.3 Languages first order definable

We will not distinguish the relations on X* from the languages over X* : a relation R or arity k over ¥* is

considered as the language {< ny,ng,...,n5 > |R(n1,...,n5)} C T*.
Definition 5.5 (First order definition [16]) Let Fay...a, a first—order logic expression with free vari-
ables ay .. .ay: that is to say Fay .. .a, is built up from quantifiers 3V, =, sentential connectives A\, V, =, —
and relation symbols Ry, Ra, ..., Rg

Let the relation symbols Ry, Ra, ..., Ry be interpreted as certain fived relations T, ..., T, C X*.

Then the relation R = {< 1,..., &, > |Fay...ay, is true over domain X* when ay, . .., a, are interpreted

as x1,..., &, € X* respectively and Ry, Ra, ..., Ry are interpreted as Ty, ..., Ty C X respectively } C T* is
said to be definable by first order formula F' from relations 74,...,T}.

In a first—order logic expression, the quantifications over functions are not allowed. All the quantifications
are on variables. Here, the variables are interpreted as words of X*. As an example, if " C X* is some binary
relation, then {n € £*|3t € T* T'(n,t) is true} is first order definable by formula 3t R(n,t) from relation T

Proposition 5.2 (Tarski-Kuratowski algorithm [16]) o Let F be a first order formula. F can al-
ways be transformed into a first order formula in prenexr form logically equivalent to F' beginning with
a quantifier 3.

e Assume F is a first order formula in prenex form beginning with a quantifier 1. Let n € N be the
number of quantifier alternations® in formula F.

— Let R C X" be a language defined by formula F' from some recursive relations Ty, ..., T}, (respec-
tively: defined by formula F from some A-recursive relations Ty, ..., Ty).

Then R is in the arithmetical hierarchy (resp. in the A-arithmetical hierarchy): R € ¥,41 (resp.
ReX)

3The number of alternations is the number of pairs of adjacent but unlike quantifiers in the prefix of the prenex formula[16].

40

— The dependence of R on relations 11, ..., Ty 1s uniform: assume first order formula F s firved.
There exists a recursive gp, such that, for all ny,... ,ngy € N (resp. for all ny,...,n; € N, for
all ACXY*), if ny,...,ny are recursive (respectively: A-recursive) indexes of relations Ty, ..., T}
respectively, then gp(ny,...,ng) is an H(y)-recursively enumerable index (resp. is an H*(y)-
recursively enumerable index) of language R defined by formula F from relations Ty, ..., T.

5.3 Sampling a PCD system up to local dimension 3*
5.3.1 Linear machines and affine maps

Definition 5.6 (Linear machines [13]) A rational linear machine M of dimension d is a finile dimen-
stonal linear machine of [13] whose constants are in Q: see [13] for a formal definition.

A computation of M on discrete input w € ¥* and on continuous input x = (x1,...,24) € Rdl, d < d,
is a computation of M starting from (Z(w),z1,...,2q¢, 0,...,0).

Here is an informal definition: a rational linear machine is a RC'T machine of dimension d whose program
is made only of the “linear machine instructions” (see definition 3.5) and whose real registers are not restricted
to have a value in [0, 1] but can have any value of R. Thus, in a rational linear machine the real registers a;
can have any value of R, all the instructions have cost 1, and all the instructions are of type z; := x; + xy,
T =Xy, B = AL, L = A 2= 4+ A, B, where # € {>, >, <, <, =, #}and A € Q.

A rational affine map is any affine map h : R? — R< of type h(z) = Az + b for some rational matrices
A, B. We prove:

Lemma 5.7 Let h : R? — R? be a rational affine map: h(z) = Az + B for some rational matrices A and
B.
There exists some ny, € N such that for all € R, [h(z)] <m [#] via ¢n, .

Proof: We have h(z) € P, for some polyhedron P, iff # € h=*(P). For all rational polyhedron P, h=!(P)
is a computable rational polyhedron. Hence [A(z)] <, [#] via the recursive function ¢,, of number nj that

maps any encoding of a polyhedron P of R to an encoding of polyhedron h=1(P) of R4
O

5.3.2 Rational and Purely rational PCD systems

In [6] the following lemma is proved:
Lemma 5.8 One can build a rational linear machine M such that:

o if M is given as discrete input a rational PCD system " = (X, f) of dimension d, a finite sequence
of distinct regions (Fo, F1, ..., F;) of H and as continuous input a point © € R?, then M answers the
following question:

“Does the trajectory ® starting from x have a periodic signature of type (Fy, Fi,..., F;)* and then
reach a point z* € X of local dimension < 3% at a finite continuous time t* 27

e whenever the answer is positive, M outputs ©* and t*.

Proof: See that the proof given in [6] can be transformed easily into a linear machine algorithm, using
lemma 3.1 and the technics of [10] to simulate any arbitrary division or multiplication of some real register
by some computable rational number. This is clear for most of the instructions of the algorithm given
in [6] except, may be, for the instructions of type z} = z? + EﬁOOffi(x{, x’,): see the notations of [6].

0
But, check that for any linear map A from R? to R? (resp. R to R) with a rational matrix, the linear
map Y52 A7, when it exists, is always a linear map XA from R? to R? (resp. R to R) with a rational
matrix whose coefficients are computable from the coefficients of A. As a consequence, the instruction
v =) + E;?OIOOffi(x‘i, x‘Zl,) can be simulated by computing the rational matrix of ¥ A and by replacing
0

this instruction by z¥ = 2? + Of fi (L A(29, 29)): see the proof in [6].

O

41

Theorem 5.1 o Any rational PCD system H of dimension d < 4 is purely rational.

e There exists a rational PCD system of dimension b that is not purely rational.

Proof: Let @ be a trajectory of a PCD system of dimension d < 4 starting from a rational point. Assume
® enters a region in a point ¥ = ®(¢), where has some non-rational coordinates, and # is the first point
reached by ® with this property. By lemma 5.1, must be of local dimension (d’')* for some d’. We must
have d’ < 3. By lemma 5.2, from some time ¢y < ¢ up to time ¢, the signature of the restriction of ® to [tg,)
must be cyclic of type (Fu, F1,...,F;)¥ . Let t' € (to,t) with ®(') € Fy. By lemma 5.8, a rational linear
machine M with discrete input #, (Fo, F1,..., F;) and continuous input 2’ outputs : it is clear that if a
rational linear machine is started with all its continuous inputs in @, then any value output by the machine
is in @Q@. Hence, x cannot have some non rational coordinates.

Now, the second assertion is immediate from theorem 4.2 that proves that one can recognize some non-
arithmetical sets in dimension 5 and from [6] that proves that any set recognized by a purely rational PCD
system is arithmetical.

O

5.3.3 Sampling a PCD system up to local dimension 3T using linear machines

Denote by P C X* the set of the rational polyhedron of R% We define the sampling of a trajectory: see
lemma 5.9 for the motivation.

Definition 5.7 (Sampling of a PCD system) Assume a rational PCD system H = (X, f) of dimension
d is fired.

o A sampling of H is a mapping g from N x P x R x R? — R x R? with the following properties: assume
QeP, tcR, x cR? are fired. Denote by ® the trajectory of H starting from = at time t.

— Forallk €N, g(k,Q,t,z) is a couple (ty,zx), t € R,z € R? such that ®,(t) = z.
—tg=1t,x0=x.
— 41 >ty forall k € N.
— Only one of two following cases hold:
% there is some ko € N with xy, € QU NoFEvolution(M), and for all k > ko, x5 = 2r,, te = th,-
%ty <lpy1 for all k € N and ® does not reach QU NoEvolution(H) at any time t < supgents.

o [f there emists a rational number t,yp € Q such that 1, <tsup,tr <tpq1 for all k € N, then sampling g
is said to be Zeno for Q,t and x. By lemma 5.4, when g is Zeno for Q,t and x, the sequence (xy)pen
is converging to some x* = ®(t*), where t* = suppents.

e Sampling g is said to be a sampling up to local dimension I, where { = d' orl = (d')* for some integer
d <d, if foral Q € P,t € R,z € R? when g is Zeno for Q,t,x, then the point reached at time
t* = supkenty has a local dimension > 1.

Note that a sampling is a real sequence. See that there exists a fixed first order formula F' such that, for
all t € R, 2 € RY the language {Q|g is Zeno for @, ¢, x} is first order definable by formula F from relation
Ry(t, x): this formula F is Ft,up € Q Vk € Nty < toup AVkar & QU NoEvolution(H).

Here is a restatement of a lemma of [6]:

Lemma 5.9 Let ‘H be a rational PCD system.

One can build a rational linear machine M that computes a sampling of H up to local dimension 3%:
there exists a sampling g - N x P x R xR 5 R x R? of # and a rational linear machine M that on discrete
input < k,Q >, k € N,Q € P and on real inputs t € R,z € R outputs g(k,Q,t,z).

42

Proof: On discrete input < k,@Q >,k € N,Q € P and on continuous inputs ¢ € R,z € R M starts
by subdividing the regions of H if necessary, so that @ (respectively: NoFEvolution(#)) is a finite union of
regions of H: denote by m the number of regions of the resulting PCD system. Then M evolves according
to the following algorithm:

Algorithm 17 Program M

to =t, 29 =z, Stopg = False
fori=0tok—1do
if Stop; is true then
Set ;41 := 1, i1 := x;, Stop;y1 = True.
else
Determine the first m + 1 regions F°, F2 ..., F™ of the signature of the trajectory starting from
Ti.
Take j, if it exists, as the least integer such that F'° = [7,
if j exists and all the regions F° ... FY~! are not in Q U NoEwvolution(H)

then
Using the Turing linear machine of lemma 5.8, test if the trajectory starting from z; has a
periodic signature of type (F°, F1 ... F7=1)* and then reach some point z* of local dimension

< 3T at some finite continuous time t*.
if it is so then
Compute t* and z* using lemma 5.8.
Set xjy1 =%t = 1"
end if
end if
end if
if 2,141,141 have not received a value yet then
Compute the point « and the time ¢ respectively of the next intersection of the trajectory of H
starting from z; at time ¢; with some region of H
Set #5411 := &, tj41 := 1.
end if
if 2,41 € QU NoFvolution(H) then
Set Stop;41 = True
else
Set Stop;y1 = False.
end if
end for
Output t; and zy.

This algorithm is clearly a rational linear machine algorithm. Denote by ® the trajectory starting
from # at time ¢. All the t, z; output are such that ®(tx) = xy. If there is some ky € N with x4, €
Q U NoFvolution(M), then z; = wxy, for all k > ko. If for all k € N 2 € Q U NoFEvolution(H), then it
clear then #; < t541 for all & € N and it is easy to see that ® does not reach @ U NoEvolution(H) at any
time ¢ < t* = suppenty. Assume now, that ¢ is Zeno for @,¢,x: denote z* = ®(t*). Assume z* is of local
dimension < 3%: by lemma 5.2 there must exist some #; < t* such that the trajectory starting from zj has
a periodic signature of type (F° F! ... Fi=1)¥ By this algorithm, we must have ;) = t*, 2411 = z*.
This is in contradiction with the definition of t* as t* = supgenty, since it implies that tx42 >ty = t*.

O

5.3.4 Sampling a PCD system up to local dimension 31 using Turing machines

We show that any rational linear machine can be simulated by a Turing machine with oracle:

Lemma 5.10 Let M be a rational linear machine of dimension k, k € N.

43

Assume M computes some function fyr : £* x R4 = R4 for all w € X%, for all 2 € RY, M started with
discrete input w and continuous input x outputs fyr(w,z) € R<.

There exists a recursive hyy : ¥* — N such that for all w € ¥, for all z € R, Whrfj(w) = [far(w,2)].

Proof:

Assume w € * and z € R? are momentarily fixed.

We build a Turing machine M’ with oracle [#] that, on input «w’ € ¥*, simulates M on discrete input
w € ¥* and real input & € R until M accepts and then accepts iff w’ € [far(w, 2)].

For all ¢ € N, denote by (¢, z%,..., %, t) the ID of M at time ¢ € N on discrete input w and real input
z. Denote ' = (2f,...,2%) € R*. M’ simulates M as follows: at time ¢, M’ has ¢*,¢,n; € N on its tape
where [2'] <,,, [2] Via ¢, .

Check that simulating a test of M at time ¢ is equivalent to answer the question “is (2%, zs,...,2}) in
P 7”7 for some rational polyhedron P of R*. As a consequence, it can be simulated by M’ by the query
“On,(P) € [2]7” to oracle [2]. M’ sets ny11 = ny and sets gi41 according to the answer of the query.

Check that simulating an assignment of M at time ¢ is equivalent to doing (2{**, ..., x?’l) =h(zt,. ..,
z}) for some rational affine map h : R* 5 RF. As a consequence, it can be simulated by M’ by setting ¢'+!
to the state corresponding to the next instruction of M and by setting n;y1 to the number of the Turing
machine such that ¢,, ., = é,,(¢n,), where nj, is the number given by lemma 5.7 applied on mapping h.

Hence, M’ simulates all the instructions of M until M accepts at some time ¢ € N. Then M’ determines
if w € [far(w, z)] by making the query “¢,,(w') € [2]7”.

This gives a Turing machine M’ with oracle [#] that recognizes [far (w, z)]. One can easily compute the
number of this machine M’: this number is independent of x and can be given as a recursive function hps
of w e X*.

O

We get:

Corollary 5.2 Let ‘H be a rational PCD system.

There exists a sampling g : N x P x R x R 5 R x R? of H up to local dimension 3* and n € N, such
that, for allt € R, for all x € R, Wg(t’xﬂ = Ry(t, z), where Ry is the relation associated to g corresponding
to (t,x).

Proof: By lemma 5.9, there exists a sampling ¢ : N x P x R x R = R x R? of # up to local dimension
3% and a rational linear machine M that on input < k,@Q >, k € N, Q € P and on real inputs t € R,z € R?
outputs g(k, @,t,z). By lemma 5.10, one can find a recursive hps, such that for all £ € N, Q € P for all

teR xeR? WJS{QL,Q>) = [g(k,Q,t,2)]. Take n as the number of the Turing machine with oracle that

on input < k, @, P > simulates the machine with oracle of number Ay (< k, @ >) on input P.
O
5.4 Sampling a PCD system up to local dimension d

We fix in this subsection a PCD system #H of dimension d.

5.4.1 HyperJump operation

Definition 5.8 (HyperJump operation) Assume we have a sampling g of M.
We define HyperJumplg] : N x P xR x R* = R x R? as follows: assume Q € P,t € R,z € R? are fired.

o Set HyperJumplg](0,Q,t,2) = (¢, x)
o Let k> 1. Denote HyperJump[gl(k —1,Q,t,%) = (t—1,%5_1),tk—1 € R, x5_; € RL

— If g 15 Zeno for Q,t;_1, k1 or if there exists some ko € N such that z), € QU NoFEvolution(H)
where g(ko, Q,tk—1,zk-1) = (1}, 2},), then set HyperJumplg](k,Q,t,) as the limit of the se-
quence (g(k',Q,tk—1,ZK-1))k'en

44

— Otherwise, set HyperJumplg](k, @, t,2) = g(k, Q,ts—1, Tx—1)

Lemma 5.11 Assume we have a sampling g of H up to local dimension (d')* for some integer d'.
Then:

e HyperJumplg] is a sampling of H up to local dimension (d' + 1)*.

o Assume HyperJumplg] is Zeno for some Q € P,t € R,z € RY Then for all k € N, x, is of local
dimension > (d' + 1), where HyperJumplg] (k,Q,t,x) = (ty, 1), tx € R, xp € R

o Forallt e R, forall x € RY, denote by Ry(t,) the relation associated to real sequence g corresponding
to (t,x).
There exists a fived first order formula F such that for all k € N,Q € P,t € R,z € RY

[HyperJumplg](k +1,Q,t,z)] is definable by formula F from relation R,(Hyper Jumplg](k, Q,t,z))
and from some recursive relations.

Proof: By the remark page 42, there exists a fixed first order formula over relation Ry(¢,) that tells
if ¢ 18 Zeno for @,t,x. There exists clearly a fixed first order formula G such that for all real sequence
(¢'(K',Q,x))pen converging to some gl*(Q,x) € R, [gI(Q,x)] is definable by formula G from relation
Ry (z), where Ry denotes the relation associated to ¢’ corresponding to z. As a consequence, the last
assertion is clear, since definition 5.8 can be translated directly into a fixed first order formula F' that,
for all k,Q,t,x, defines [HyperJump[g](k +1,Q,t,z)] from some recursive relations and from relation
Ry(Hyper Jumplg](k, Q,t, x)).

We prove now that HyperJumplg] is a sampling of # up to local dimension (d’' 4+ 1)*.

Assume Q € P,t € R,z € R? are fixed. Denote HyperJumplg)(k,Q,t,) = (t,zx), tx € R, 2, € RY for
all £ € N. Let ® be the trajectory of H starting from z at time ¢.

From the fact that g is a sampling it is easy to show by induction over k that for all k € N ®(¢;) = z5. Now,
if there is some kg with xp, € QU NoEvolution(H), since ¢ is a sampling, it is clear than zx = 2, , tk = tk,
for all k > ko. If for all k, z; € QU NoFEvolution(H), it is easy to see that 541 > &5 for all & € N. Hence
HyperJumplg] is a sampling,.

Assume that HyperJumplg] is Zeno for some @,¢,z. For all k € N, g must be Zeno for Q,{5_1,25_1:
hence, (tx,zg) is the limit of g(k', Q,tx—1,zk—1), k" € . Since g is a sampling up to local dimension (d’)7,
the local dimension of z; must be > (d’)* for all k € N. This proves the second assertion.

Denote t* = supgenty and z* = ®(¢*). By lemma 5.4, the local dimension of 2* is > (d’ + 1)*. This
proves the first assertion.

O

5.4.2 CycleFree operation

Definition 5.9 (Cycle Free operation) Assume we have a sampling g of M.
We define CycleFree[g] : N x P x R x R* = R x R? as follows: assume Q € P,t € R,z € R¢ are fired.

o Set CycleFreelg](0,Q,t, x) = (t,»)
e Let k> 1. Denote CycleFree[g] (k—1,Q,t,2) = (tp—1,%r_1), th—1 € R, 25— € RY.

— Either there exists ko € N, ky < k, some 2* € Q¢, a rational polyhedron F not intersecting Q, such
that Cycle(xk—1, 22, H, F,x*) is true, x_1 € Q,22 & Q, 22 € I'°, where F° is the complement of
polyhedron F on R® and HyperJump[g](ks, QU F t)_1,x5_1) = (t2, 22).

Set CycleFree[gl(k,Q,t,x) = Cycle. ((t—1, 2p—1), (t2, z2), H, F, x¥)

— or this is false:

Set CycleFree[gl(k,Q,t,) = HyperJumplg)(k, @, th—1, Tx—1)

Lemma 5.12 Assume g is a sampling of H up to local dimension (d')t for some d’' € N.
Then:

45

o CycleFree[g] is a sampling of H up to local dimension (d' + 2)7.

o Forallk € N, t € R,z € RY, denote by Rfl@peuump[g] (t,x) the relation associated to real sequence

HyperJumplg] corresponding to (¢,) up to rank k.

There exists a fived first order formula F such that for all k € N,Q € P,t € R,z € RY
[CycleFree[gl(k +1,Q,t,)] is definable by formula F from some recursive relations and from re-
lation Rfl@peuump[g] (CycleFreelg)(k,Q,t, z)).

Proof: It is easy to see that there exists a fixed first order formula G such that, for all z;, 25 € R%
{< Q,z* > |Q € P,z* € Q% Cycle(z1,29,H,Q, %) is true } is definable by formula G from relations
[21],[#2] and from some recursive relations. Now, see that there also exists a fixed first order formula H
such that [Cycle.((t1, z1), (t2, 22), H, @, #*)] is defined by formula H from relations [(¢1, z1)], [(t2, z2)] and
from some recursive relations. As a consequence, definition 5.4 can be translated directly into a fixed first
order formula F such that, for all k € N,Q € P,t € R,z € R% [CycleFree[g](k +1,Q,t,z)] is definable
by formula F' from relation Rfl@peuump[g] (CycleFreelg](k, @,t,x)) and from some recursive relations. This
proves the second assertion.

We prove now that C'ycle Free[g] is a sampling of H up to local dimension (d’ +2)*. Assume Q € P,t €
R,z € R? are fixed. Denote CycleFree[g](k,Q,t,z) = (tx,zr), tx € R, x5 € RY for all k € N. Let ® be the
trajectory of H starting from z at time ¢.

Using lemma 5.11 and lemma 5.3, it is easy to show by induction over k that for all k, ®(t;) = zy.
If there is some ko with #5, € Q U NoFEvolution(H), since HyperJumplg] is a sampling, it is clear than
T = Thy,ty = g, for all k > ko. If for all k € N, 2, € QU NoFEvolution(H), it is easy to see that t541 >t
for all k € N. Hence C'ycle Freelg] is a sampling.

Assume that C'ycle Frree[g] is Zeno for some @, ¢, z. Denote t* = supients and * = ®(¢*). If «* is of local
dimension > (d' + 2)T the lemma is proved. Assume now that the the local dimension of z* is < (d' + 2)7.

For all k € N, Hyper Jump[g] must be Zeno for Q,{x_1,25_1. As a consequence, by lemma 5.11 and by
lemma 5.4, all the 3, k € N must be of local dimension > (d’ + 1). By corollary 5.1, only a finite number
of the zx, k € N must be of local dimension > (d’ + 2), and only a a finite number of the zx, & € N must
be of local dimension (d’ + 1). Hence, there must exists some kg € N such that for all & > ko #j, is of local
dimension (d' + 1)*.

Apply lemma 5.4 on the subsequence (zx)r>k,: There musts exists ko < i1 < iy € N, 2" € Q% an a
rational polyhedron F' such that Cycle(z;, , %;,, H, @, z*) is true and such that the trajectory does not leave
F between time ¢;,,¢;,. Take #; and 75 as the least integers such that the previous property hold and such
that i — i3 < é;. By definition 5.4 we have (t;,41,%i,11) = Cycle((tiy, %5,), (tiy, i), 1, F,2*). This is
impossible since by lemma 5.4 this would imply that the local dimension of #;,41 is > (d' + 2).

O

5.4.3 Outputting recursive sampling
Lemma 5.13 For all k> 0,
e one can construct a sampling g, - N x P x R x RY — R x R? up to local dimension (3 + 2k)*.

o Forallt € R, xc R denote by Ry, (t,x) the relation associated to gj, corresponding to (t,z).

There exists some n, €N, 2z, € O, |zi| = W ifk > 1, |zx| = 0 if k = 0, such that, for allt € R, x € RY,
sy

W, (r) = ng(t’$)

Proof: We prove the assertion by induction over & € N.

The case & = 0 1s corollary 5.2.

Assume k > 1. Consider gy = CycleFree[gy—1]. By lemma 5.12 and by induction hypothesis g; is a
sampling up to local dimension (3 + 2k)*. By induction hypothesis, n}_, is a HID (2, _p)-recursively
enumerable index of R, , (¢, x) for all ¢, z.

Let n € N, Q € P,t € R,z € R? be fixed. Assume we have H(y)[(t’xﬂ -recursively enumerable index m of
HyperJumplgr-1](n, @,t,), where m € N,y € O. By lemma 5.6, there exists a recursive r that maps m to

46

r(m) where r(m) is an an H(y 4o zx-1 +o 1)[(t’xﬂ—recursive index of Ry, , (HyperJumplgr_1](n, Q. t,x)).
By lemma 5.11, there exists a fixed first order formula F' such that for all n € N, Q € P,t € R,z €
R [HyperJumplgr-1](n +1,Q,t,2)] is definable by formula F' from relation Ry, ,(HyperJump[gx_1]
(n,@,t,x)) and from some recursive relations. By lemma 5.2, there exists yp € O, |yr| < w and a recursive g¢
that maps 7(m) to g(r(m)), where g(r(m)) is an HRax (Hype”ump[gk‘1](”’Q’t’x))(yp)—recursively enumerable
index of [HyperJumplgs—1](n+ 1,Q,t,2)]. By lemma 5.6, there exists a recursive ' that maps g(r(m))
to (g(r(m))), where #(g(r(m))) is an H(y +o zx_1 4o | +o yp)[&®recursively enumerable index of
HyperJumplge—1](n + 1,Q, 1, z).

Denote by h : N — O the recursive mapping such that »(0) = 1,r(n+ 1) = r(n) 40 2k—1 +0 1 +, yr for
all n € N.

As a consequence, for all n € N, RS

HyperJump[gr—1]
HIE)1 (h(n — 1)) that on input < n,Q, P >, compute for i = 1,...,n— 1 an HIEoN (h(i — 1))-recursively
enumerable index m; of HyperJumplgr_1] (i, Q,t, z) from the H(®®)1(h(i—2))-recursively enumerable index
mi_1 of HyperJumplgr-1](i — 1, @, t, x) by the formula m; = #'(¢(r(m;_1))) and then simulate the machine
with oracle of number m,, _1. This machine has a fixed number independent of ¢, x.

Let n € N,Q € P,t € R,z € R? be fixed. Assume we have H(y)[(t’xﬂ -recursively enumerable in-
dex m of CycleFree[gr-1](n,Q,t,z), where m € N,y € O. By lemma 5.6, there exists a recursive r

that maps m to r(m) where r(m) is an H(y +o h(n — 1) +o 1)) recursive index of Rflzpeuump[gk_l]

(CycleFree[gi—1](n, Q,t, x)). By lemma 5.12, there exists a fixed first order formula G such that for all k£ €

N,QeP,tcR,zec R [CycleFree[gi_1](n + 1,Q,t,z)] is definable by G from relation Rflzpeuump[gk_l]

(CycleFree[gi—1](n, @, t, x)) and from some recursive relations. As before, by lemma 5.2, and by lemma 5.6,
there exists some recursive g and #/ that maps m to #/(g(r(m))) an H(y+oh(n—1)+01+,yc) [recursively
enumerable index of Cyele Free[gi_1](n + 1,Q,t, z), for some fixed yg € O, lyg| < w.

Denote by { : N — O the recursive mapping such that {(0) = 1,{(n+1) = r(n) 4o h(n — 1) 40 1 4+, yg for
all n € N. Take z; = 3.5P where p € N is the number of recursive function [.

ReycteFree[gn_,] 18 semi-recognized by the machine with oracle H[(t’xﬂ(zk) that on input < n,Q, P >,

i1s semi-recognized by the machine with oracle

compute for i = 0,1,...,n an HIE1(1(3))-recursively enumerable index m; of Cycle Free[gr_1](i,Q,1, z)
from the HI®®N([(i — 1))-recursively enumerable index m;_, of CycleFree[gi_1](i — 1,Q,t,2) (m; =
7 (g(r(m;—1)))) and then transform HIEo)] ({(n))-recursively enumerable index m, of CycleFree[gs_1]
(n,Q,t,z) into a HIGD1(z) index m of CycleFree[gr_1](n,Q,t,) using lemma 5.5, and then simulate
the machine with oracle of number m. This machine has a fixed number nj. independent of ¢, x.

One has |z;| = w*.

5.4.4 Conclusion

Proposition 5.3 Let k > 1.

e If a language L 1s semi-recognized by a PCD system of dimension 2k + 3 in finite continuous time then
L e Ewk.

e If a language L 1s semi-recognized by a PCD system of dimension 2k +4 in finite continuous time then
L E Ewk-l—l’

Proof: It is clear that for all z € Q% [2] is recursive with a recursive index computable from =.
Let k > 1. By lemma 5.13, one can build a sampling g5 up to local dimension (3 + 2k)™ and there exists

some fixed ng, and some fixed zy, 2z € O, |2x| = w* such that, for allt € R,z € R, Wrﬁr(t’m (%) Ry, (t,).
Let H = (R4 £, 7,2, 2°%) be a PCD system of dimension d recognizing language L.
Assume d = 2k + 3: all the points of % have a local dimension < (2k 4+ 3). As a consequence g can
not be Zeno for any Q,¢,x. L is semi-recognized by the machine with oracle H(z) that on input n € X*,

compute the H(z)-recursively enumerable index m of S = R,,(0,7(n),0,...,0), and then by simulating

M,f{(“), tests for s = 0,1,...,00 if < i, 2!, ' >& S. It there is such an i, the machine accepts. If no ¢ is
found, the machine continues for ever.

47

Assume d = 2k 4+ 4. By lemma 5.1, we know that all the points of local dimension d are rational
points. Denote Reach = {< ,y,i > |,y € Q% i € N < i,y,y >€ Ry, (0,2)}. Reach is H(zy) recursively
enumerable by the machine that on input < z,y,i > computes the H(zj)-recursively enumerable index m
of Ry, (), and then simulates M,f{(”) on input < %,y,y >. As a consequence, there exists a first order
formula H with a quantifier 3 and 0 alternation such that Reach is definable from formula H from some
H (z1)-recursive relations: see [16].

Define the following relation OneStep = {< z,z' > |z € Q¢ ' is a point of local dimension d and the
trajectory starting from x reaches '} C ¥*. We claim that OneStep is definable by some first order formula
F from relation Reach: write I’ as the formula that says that ! is in LocDim(H,d + 1) and that either
there exists some i € N such that < z,z' ¢ >€ Reach, or g is Zeno for z',0, z and there exist some iy and
some open polyhedron z’ with < x,2’,¢ >€ Reach, ' C V1 and for all i > iy, not < x, V¢, i >€ Reach,
where V% is the complement of polyhedron V1 in R

If < z,x' >€ OneStep, it is clear that the formula must be true. Assume now that the formula is true:
if there exists some i € N such that < z,2',i >€ Reach, we are done: < z,z' >€ OneStep. Assume now
that the second clause of the disjunction is true: we know that the trajectory starting from « is Zeno. Hence
(gx(i,21,0,2) = (t;,2;))ien is a converging sequence converging to some point z* at time t* = sup;ent;.
Since g is a sampling up to local dimension (34 2k)*, * must be of local dimension d. Since ® is Lipschitz,
since V1 is an open polyhedron, we know that for some big enough 4, for all ¢;;, <t < ¢*, ®(t) € V1.
Hence, we must have z* € V1, where V1 is the topological closure of V1. But, 2! is the only point of local
dimension d in V*'. Hence z* = 2.

See that formula F' starts by a quantifier 3 and has 1 alternation.

Now, see that L is definable by some first order formula G from relation Reach, from relation OneStep
and from some recursive relations: write that n € L iff there exists m € N, and an integer encoding m
rational points 21, #a, ..., Zm, such that for all 1 < i < m < #;, 2,41 >€ OneStep, and zg = (J(\),0,...,0),
and there exists some i € N, with < z,,, 2!, >€ Reach.

Substitute every occurrence of relation OneStep in formula G by formula F' and every occurrence of
formula Reach by formula H. One gets a resulting formula defining L from some H (z) recursive relations

starting with a quantifier 3 and with 1 alternation. By lemma 5.2, L € Ef(zk) =X, ky1-
O

We get immediately from theorem 4.2 and from proposition 5.3:
Theorem 5.2 Let k' > 0.

o The languages that are fully-recognized by a PCD system of dimension 2k’ 43 in finite continuous time
are precisely the languages of A x .

o The languages that are fully-recognized by a PCD system of dimension 2k’ 4+4 in finite continuous time
are precisely the languages of A w

o The languages that are semi-recognized by a PCD system of dimension 2k’ +3 in finite continuous time
are precisely the languages of X 1.

o The languages that are semi-recognized by a PCD system of dimension 2k’ +4 in finite continuous time
are precisely the languages of X w4

Proof: The assertions for &' = 0 are immediate consequences of theorem 5.1 and of [6]. Now, assume
k > 1. The two last assertions are proposition 5.3 and the two first assertions are immediate by considering
the complement of the language recognized by the PCD system and by swapping the role of the point of
acception and of the point of rejection.
O
In other words, we have a full characterization of the computational power of rational PCD systems.

References

[1] Eugene Asarin and Oded Maler. On some Relations between Dynamical Systems and Transition Sys-
tems. In Proceedings of ICALP, pages 59-72, 1994. Lecture Notes in Computer Science, 820.

48

[2]

[3]

[9]

[12]

[13]

[14]

[15]

[16]

Eugene Asarin and Oded Maler. Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy. In
Proceedings of FSTTCS, pages 471-483, 1995. Lecture Notes in Computer Science, 1026.

Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science, 138:33-65, 1995.

Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation and Complexity over the Real
Numbers: NP-completeness, Recursive Functions and Universal Machines. Bulletin of the American
Mathematical Society, 21(1):1-46, July 1989.

Olivier Bournez. Some bounds on the computational power of piecewise constant derivative systems.

Proceeding of ICALP’97, July 1997.

Olivier Bournez. Some bounds on the computational power of purely rational piecewise constant deriva-
tive systems. Technical report, LIP ENS-Lyon, 1997.

Olivier Bournez and Michel Cosnard. On the computational power of hybrid and dynamical systems.

Theoretical Computer Science, 168(2):417-459, 1996.

Michael S. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical
systems. Theoretical Computer Science, 138:67-100, 1995.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Languages and Computation.
Addison-Wesley, 1979.

P. Koiran. Computing over the reals with addition and order. Theoretical Computer Science, 133:35-47,
1994.

Pascal Koiran. A Weak Version of the Blum Shub Smale Model. Technical Report 005, NeuroCOLT
Technical Report Series, August 1994. A preliminary version can be found in Proceedings of 34th IEEE
Symposium on Foundations of Computer Science, pages 486-495, 1993.

K. Meer and C. Michaux. A Survey on real Structural Complexity Theory. To be published in Bulletin
of the Belgian Mathematical Society - Simon Steuvin.

Klaus Meer. A note on a P # N P Result for a Restricted Class of Real Machines. Journal of Complexity,
8:451-453, 1992.

Cristopher Moore. Recursion theory on the reals and continuous-time computation. Theoretical Com-
puter Science, 162:23-44, 1996.

P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the foundations of math-
ematics. Elsevier, 1992.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.

49

