Olivier Bournez 
  
Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy

Keywords: Real computability, C o n tinuous time computations, Dynamical systems, Hyper-arithmetical hierarchy

We pursue the study of the computational power of Piecewise Constant Derivative (PCD) systems started in 5, 6]. PCD systems are dynamical systems de ned by a piecewise constant di erential equation and can be considered as computational machines working on a continuous space with a continuous time. We p r o ve that the languages recognized by rational PCD systems in dimension d = 2 k + 3 (respectively: d = 2 k + 4 ) ,k 0, in nite continuous time are precisely the languages of the ! k th (resp. ! k + 1 th ) l e v el of the hyper-arithmetical hierarchy. Hence the reachability problem for rational PCD systems of dimension d = 2 k + 3 (resp. d = 2 k + 4 ) , k 1, is hyper-arithmetical and is ! k-complete (resp. ! k +1 -complete).

Introduction

There has been recently an increasing interest in the elds of control theory and computer science about hybrid systems. A hybrid system is a system that combines discrete and continuous dynamics. Several models have been proposed in literature. Hybrid systems can be considered as computational machines 1, 2, 3, 7, 8]: they can be seen either as machines working on a continuous space with a discrete time or as machines working on a continuous space with a continuous time.

Several theoretical models of machines working on a continuous space with a discrete time are known: in 4], Blum, Shub and Smale introduce the real Turing machine. Many papers are devoted to this model: see 12] for an up-to-date survey. In 13], Meer introduces a restricted class of real Turing machines called the linear machines: Meer proves that P 6 = NPin this class of systems. [START_REF] Hopcroft | Introduction to Automata Theory Languages and Computation[END_REF][START_REF] Koiran | Computing over the reals with addition and order[END_REF], Koiran characterizes the boolean part of the languages recognized by l i n e a r m a c hines as P=poly in polynomial discrete time and as unbounded in exponential discrete time.

Simultaneously, i n 1 , 2 , 7, 8], it is shown that several very simple dynamical systems can be considered as non trivial machines that work on a continuous space with a discrete time. In particular, in 1, 2, 3] the attention is focused on a very simple type of hybrid systems: Piecewise Constant Derivative Systems (PCD systems) are dynamical systems de ned by a piecewise constant di erential equation. It is shown that the reachability problem for PCD systems of dimension d = 2 is decidable and undecidable for dimensions d 3 1, 3 ] . I n 7 ], the computational power of Piecewise Constant Derivative systems is characterized as P=poly in polynomial discrete time, and as unbounded in exponential discrete time.

However, hybrid systems are very interesting models since they can be considered as natural computational machines working on a continuous space with a continuous time. The studies of this type of machines are only beginning. In 14], Moore proposes a recursion theory for computations on the reals in continuous time. Recently, Asarin and Maler 2] s h o wed, using Zeno's paradox, that every set of the arithmetical hierarchy can be recognized in nite continuous time by a PCD system of nite dimension: every set of the arithmetical hierarchy i n k k can be recognized by a rational PCD system in dimension 5k + 1 . Unfortunately, no precise characterization of the sets recognizable by PCD systems is given in 2]. In 6], a precise characterization is given for the restricted class of purely rational PCD systems. However no answer is given about the general class of rational PCD systems.

We provide in this paper a full characterization of the computational power of rational PCD systems: we prove t h a t e v ery arithmetical set can be recognized in nite continuous time in dimension 5. Hence, in one sense, dimension 5 is universal for the arithmetical hierarchy. However, we p r o ve in this paper that there does not exist a dimension d such that PCD systems of dimension d recognize every set of the hyper-arithmetical hierarchy: we prove that the languages recognized by rational PCD systems in dimension d = 2 k + 3 (respectively: d = 2 k + 4 ) , k 0, in nite continuous time are precisely the languages of the ! k th (resp. ! k + 1 th ) l e v el of the hyper-arithmetical hierarchy. In other words, the reachability problem for rational PCD systems of dimension d = 2 k + 3 (resp. d = 2 k + 4 ) i s ! k-complete (resp. ! k +1 -complete).

Section 2 is devoted to general de nitions about Piecewise Constant Derivative Systems and about the hyper{arithmetical hierarchy. In section 3, we i n troduce Real Continuous Time (RCT) machines: we prove that RCT machines can recognize some hyper{arithmetical sets. In section 4, we s h o w that RCT machines can be simulated by PCD systems and we deduce that PCD systems can also recognize some hyper{arithmetical sets. In section 5, we p r o ve that the bounds given in section 4 are optimal: the languages recognized by rational PCD systems in dimension d = 2 k + 3 (respectively: d = 2 k + 4 ) , k 0 in nite continuous time are precisely the languages of the ! k th (resp. ! k + 1 th ) l e v el of the hyper-arithmetical hierarchy.

2 De nitions 2.1 PCD systems A convex polyhedron of R d is any nite intersection of open or closed half spaces of R d . A polyhedron of R d is a nite union of convex polyhedral of R d . In particular, a polyhedron may b e u n bounded or at. For V R d , w e d e n o t e b y V the topological closure of V . W e denote by d the distance of the maximum of R d .

De nition 2.1 (PCD System)

A dynamical system is a couple H = ( X f) where X = R d and f is a function from X to X. X is called t h e space and d is called t h e dimension of H. A trajectory of H starting from x 0 is a continuous solution to the di erential equation _

x d = f(x), with initial condition x 0 , w h e r e _ x d denotes the right derivative: that is to say : D R + ! X where D is an interval of R + containing 0, (0) = x 0 , and 8t 2 D _ d (t) = f( (t)). T rajectory is said to continue for ever if D = R + . A piecewise constant derivative (PCD) system 2, 3] is a dynamical system H = ( X = R d f ) where the range of f is a nite set C X, such that for any c 2 C (c is called a slope) f ;1 (c) is a nite union of convex polyhedral sets (called regions). In other words a PCD system consists of partionning the space into convex polyhedral sets, called regions, and assigning a constant derivative c, called slope to all the points sharing the same region. The trajectories of such systems are broken lines with the breakpoints occuring on the boundaries of the regions 2]: see gure 1. The signature of a trajectory is the sequence of the regions that are reached by the trajectory. The In this paper we will deal only with rational PCD systems:

De nition 2 . 2

A P C D s y s t e m i s c alled rational if all the slopes as well as all the polyhedral regions can be described using only rational coe cients.

A PCD system is called purely rational, if in addition, for all trajectory starting from a rational point, every time enters a region in some point x, x has rational coordinates. Some comments are in order: one must understand that a trajectory can enter a region either by a discrete transition or by converging to a point of the region: see gure 3. Hence, the de nition of purely rational PCD systems stipulates that every converging process converges towards a point with rational coordinates. We will see in theorem 5.1 that one can construct a rational PCD system of dimension 5 that is not purely rational.

We can say some words on the existence of trajectories in a PCD system: let x 0 2 X. W e s a y t h a t x 0 is trajectory well-de ned if there exists a > 0 s u c h t h a t f(x) = f(x 0 ) for all x 2 x 0 x 0 + f(x 0 )]. It is clear that, for any x 0 2 X, there exists a trajectory starting from x 0 i x 0 is trajectory well-de ned. Given a rational PCD system H, one can e ectively compute the set NoEvolution(H) of the points of X that are not trajectory well-de ned. See that a trajectory can continue for ever i it does not reach NoEvolution(H).

Computing with PCD systems

Let be a nite alphabet with at least two letters. By renaming if necessary, w e can assume without loss of generality that = f1 2 : : : n g.

The computation is accepting if the trajectory eventually reaches x 1 , a n d r efusing if it reaches x 0 . I t is assumed that the derivatives at x 1 and x 0 are z e r o. Language L is semi-recognized b y Ĥ if, for every n 2 , t h e r e i s a c omputation on entry n and the computation is accepting i n 2 L. L is said to be (fully-)recognized b y Ĥ when, in addition, this trajectory reaches x 0 i n 6 2 L. 

Measuring the time on PCD systems

De nition 2.5 (Continuous and Discrete time) Let n : R + ! X be a n a c cepting computation on entry n 2 . The continuous time T c (n) of the computation is T = minimumft 2 R + = n (t) = x 1 g

Let T n = ft= n rea c h e s a b oundary of a region at time tg. I t i s e asy to see that T n is a well ordered set 6]. The discrete time T d (n) of the computation is de ned a s t h e o r der type of well ordered set T n (= the ordinal corresponding to T n ). Note that Zeno's paradox appears: to a nite continuous time can correspond a trans nite discrete time: see gure 3. the set of the words accepted by M y . y 2 N is said to be a recursively enumerable index of X i X = W y . y is called an recursive index if in addition M y halts on all inputs. Let A . Denote by a n A exponent the relativizations to oracle A: M A y is the y th Turing machine with oracle A, A y is the function computed by M A y , a n d W A y is the set of the words accepted by M A y . y 2 N is said to be a A-recursively enumerable index of X i X = W A y . y is called an A-recursive index if in addition M A y halts on all inputs.

(-1,1/2) (-1,1) (1,-1) (1,1) x x/2 0 0 x/2
We follow the standard notations of 15, 1 6 ]: we x a bijective recursive e n c o d i n g o f into :

< n m > denotes a word of encoding word n 2 and word m 2 . For X

, w e denote

X 0 = fxjx 2 N ^x 2 W X x g. L e t A B
. W e write A m B if there exists a recursive f such that, for all w 2 , w 2 A , f(w) 2 B. I n t h a t c a s e , w e s a y t h a t A m B via f. W e write A T B if A is B-recursive. Denote A T B i A T B and B T A. We recall the following de nitions:

De nition 2.6 (Constructive ordinals 16]) We de ne by trans nite induction simultaneously O N, mapping j j from 0 t o a s e gment of the ordinal numbers and partial ordering < O on O.

The ordinals in the range of j j are c alled t h e constructive ordinals. A n o r dinal is said to have notation x i x 2 O and jxj = .

The trans nite induction is as follows:

Ordinal 0 receives notation 1: 1 2 O j1j = 0 . Let be a n o r dinal. Assume that all the ordinals < have received a notation, and assume that < o has been de ned on these notations. { If = + 1 is a successor, receives notation 2 x , for all notation x of : for all x 2 O, i f jxj = , then 2 x 2 O j2 x j = and z < 0 2 x for all z 2 O with either z = x or z < 0 x. { If is a limit, receives notation 3:5 y for all y such that f y (n)g n=1 n=1 is an increasing sequence of notations of ordinals of limit : for all y 2 N, i f f y (n)g n=1 n=1 is a sequence of integers in O, i f fj y (n)jg n=1 n=1 is an increasing sequence o f o r dinals with limit such that 8i8j i < j ) y (i) < 0 y (j), then 3:5 y 2 O j3:5 y j = and z < 0 3:5 y for all z for which there exists n such that z < 0 y (n).

No other integer y 2 N is in O.

Denote x o y if x = y or x < 0 y.

De nition 2 . 7 Let X

. We de ne H as a mapping from O to the subsets of by: H X (1) = X. H X (2 x ) = ( H X (x)) 0 . H X (3:5 y ) = f< u v > jv 2 O ^v < 0 3:5 y ^u 2 H X (v)g.

We note H for H . The following lemma is proved in 16]: Lemma 2.1 (Spector 16]) Let X

. L et x 2 O y 2 O with jxj = jyj, then H X (x) T H X (y).

As a consequence, for all constructive ordinal , w e can de ne the classes X X X unambiguously as follows:

De nition 2.8 (Hyper-arithmetical hierarchy) Let X . For any constructive ordinal 1 < ! , and for any y such that = j2 y j: { X is the class of the sets that are r ecursively enumerable in H X (y) { X is the class of the sets whose complement is in X . { X = X \ X .

For any constructive ordinal ! and for any y such that jyj = : { X is the class of the sets that are r ecursively enumerable in H X (y) { X is the class of the sets whose complement is in X . { X = X \ X . For all constructive ordinal , w e denote for .

A set R is said to be hyper-arithmetical (respectively: X-hyper-arithmetical) if R 2 (resp. R 2 X ) for some constructive ordinal . R is said to be arithmetical (resp. X-arithmetical) i in addition we h a ve < ! . Check that the classes for 1 < ! are precisely the classes of the arithmetical hierarchy de ned in 2, 6].

One can easily prove:

Proposition 2.1 [START_REF] Odifreddi | Classical Recursion Theory, v olume 125 of Studies in Logic and the foundations of mathematics[END_REF]) Let A B be some languages.

For all n 2 N, for all y 2 O with jyj = n, the following conditions are e quivalent {

B 2 A n+1 { B is recursively enumerable in H A (y) { B m H A (2 y )
For all constructive ordinal !, for all y 2 O with jyj = , the following conditions are e quivalent { B 2 A { B is recursively enumerable in H A (y) { B m H A (2 y ).

We mention that the hyper-arithmetical hierarchy is strict: for all constructive o r d i n a l ! (respectively: < ! ), for all y 2 O jyj = , H(2 y ) ( r e s p . H(y)) is in ; < We also mention that the hyper-arithmetical hierarchy can be related to the analytical hierarchy: see 16] for the de nition of 1 1 . Proposition 2.2 (Kleene 16]) One has: 1 1 = constructive ordinal We will use the following two lemmas proved in 16]: Lemma 2.2 [START_REF] Odifreddi | Classical Recursion Theory, v olume 125 of Studies in Logic and the foundations of mathematics[END_REF]) There exists a recursive h such that for all x y 2 O x o y, H(x) m H(y) via h(x y) . Lemma 2.3 (+ o ) There exists a recursive function + 0 of two variables such that for all x y 2 O,

x + 0 y 2 O j x + 0 yj = jxj + jyj y 6 = 1 ) x < 0 x + o y 3 Real Continuous Time machines and the hyper-arithmetical hierarchy

We i n troduce Real Continuous Time machines (RCT machines). We p r o ve in this section that they can recognize every set of the arithmetical hierarchy and some sets of the hyper-arithmetical hierarchy. W e will see in next section that PCD systems can simulate RCT machines.

3.1 RCT machines

First example

We present here an informal description of RCT machines. A formal de nition will be given in next subsection.

We deal with machines that have a nite number d of real registers whose values can be any real of 0 1]. These machines evolve according to a nite program made of assignments and of tests between the real registers. Any instruction I of these programs, that is to say a n y assignment o r a n y test, has some associated real function c I : 0 1] d ! R + called the cost of the instruction. The execution of any instruction I takes a time equal to c I (x 1 : : : x d ), where x 1 : : : x d are the values of the real registers of the machine when the instruction is executed.

Write for example x 1 := 2x 2 x 3 ] for the instruction that replaces the value of real register x 1 by t wo times the value of real register x 2 in a time given by real register x 3 : if this instruction is executed at time t 2 R, then the value of the rst real register at time t+x 3 will be equal to two times the value of the second real register at time t, where x 3 is the value of the third real register at time t.

We w ant t o u s e a s p e c i a l l a b e l \ limit " to specify what to do when the time becomes Zeno. Perhaps, the better is to consider a rst example:

Algorithm 1 program "Hello world".

x 1 := 1 1] x 2 := 1 1] x 3 := 0 1] /*set (x 1 x 2 x 3 ) = ( 1 1 0) at time 3.*/ while (true) do /*transform (x 1 x 2 x 3 ) = ( 1 =2 n 1=2 n 1 + 1=2 + : : : 1=2 n;1 ) at time 3 + 3 ( 1 + 1 =2 + : : : 1=2 n;1 ) for some n, t o (x 1 x 2 x 3 ) = (1=2 n+1 1=2 n+1 1 + 1 =2 + : :

: 1=2 n ) at time 3 + 3 ( 1 + 1 =2 + : : : 1=2 n )*/ x 3 := x 3 + x 1 x 2 ] x 1 := x 1 =2 x 2 ] x 2 := x 2 =2 x 2 ]
end while limit :

/*here, we have (x 1 x 2 x 3 ) = ( 0 1) at time 9. */ x 1 := x 3 1] /*now set, (x 1 x 2 x 3 ) = ( 1 0 1) at time 10. */

Try to simulate the evolution of this program. At t i m e 3 , ( x 1 x 2 x 3 ) = ( 1 1 0) and the program is starting to execute the while loop. At time 3 + 3 the program is starting to execute the loop for the second time. At time 3+3+3=2 the program is executing the loop for the third time. At time 3+3+3=2+3=2 2 +: : : +3=2 n;1 , for all n 2 N, the program is executing the loop for the n th time. And at time 9 = 3 + P 1 j=0 3=2 j ? . .. The answer is the following: the program is executing the instruction labeled by limit . So this program is made such that, at time 9, the machine copies x 3 into x 1 . Check that variables x 2 and x 1 tend to 0 and that variable x 3 tends to 1 during the execution of the in nite while loop. As a consequence, we consider that at time 9 the value of the rst two real registers of the machine is 0 and that the value of the third real register is 1. Hence, the previous program is a program that always halts and that stops with x 1 = 1 x = 0 x 3 = 1 at time 10.

In other words, we consider nite programs made of assignments and tests with a real cost, with a special label denoted by limit : label limit always denotes the instruction to do at a limit time, when the time becomes \Zeno": that is to say when a converging process happens in nite time.

Formal de nitions

Now w e give some formal de nitions of the programs we consider. We will prove in section 4 that these programs can be simulated by PCD systems.

We consider programs made of instructions with a cost: the execution of an instruction I takes a time equal to the cost of instruction I.

De nition 3.1 (Instruction, T est)

An assignment in dimension d is a couple (f c) where f, c alled the operation, i s a p artial mapping from 0 1] d to 0 1] d and c, c alled t h e cost function, i s a p artial mapping from 0 1] d to R + . A test in dimension d i s a c ouple (R c), where R is a partial relation over 0 1] d , and c, c alled t h e cost function, i s a p artial mapping from 0 1] d to R + . An instruction of dimension d is either an assignment or a test of dimension d. For the simplicity of notations, we denote by \ x i := g(x 1 : : : x d ) c]", the assignment ( g 0 h 0 ) where, for all x 1 : : : x d 2 0 1], g 0 and h 0 are de ned on (x 1 : : : x d ) i g(x 1 : : : x d ) 2 0 1], and when g 0 and h are de ned on (x 1 : : : x d ), then g 0 (x 1 : : : x d ) = ( x 1 : : : x i;1 g (x 1 : : : x d ) x i+1 : : : x d ) and h 0 (x 1 : : : x d ) = c. W e denote by \ x i := g(x 1 : : : x d ) 00 the assignment x i := g(x 1 : : : x d ) 1 ] . W e denote by \ R? c]", where R is a relation, the test (R c). We denote by \ R? 00 the test R? 1 ] .

We will de ne below the set of the assignments and the set of the tests denoted by Assgnmt d and by Test d respectively that are admissible in dimension d.

A R CT machine of dimension d is a machine with d real registers that evolves according to its program. Its program is nite and is made of the assignments of Assgnmt d and of the tests of Test d . The execution of any instruction takes a time equal to the cost of the instruction. Whenever the time becomes \Zeno" and the variables converge, the machine enters a special limit state limit , and the execution goes on from this state. Formally: De nition 3.2 (RCT machine)

A Real Continuous Time machine (RCT machine) M, o r a RCT program of dimension d, is a 6-uple P = ( Q q 0 q + f q ; f limit ) where:

{ Q is a nite set and q 0 q + f q ;

f limit 2 Q. { is a mapping from Q to Q Q (Assgnmt d Test d ) An instantaneous description (ID) of M is an element (q x 1 : : : x d t ) of Q 0 1] d R + . q is the internal state, t is the time and x 1 : : : x d are the values of the real registers of M at time t.

Let ID 1 = ( q x 1 : : : x d t ) and ID 2 = ( q 0 x 0 1 : : : x 0 d t 0 ) be two IDs of M. W e w r i t e ID 1 `d ID 2 i { either (q) = ( q 0 q 00 Assgnmt), w i t h Assgnmt = ( f c) 2 Assgnmt d , a n d :

(x 1 : : : x d ) is in the domain of function f and of function c. (x 0 1 : : : x 0 d ) = f(x 1 : : : x d ).

{ or (q) = ( q 00 q 000 Test), w i t h T e s t= ( R c) 2 Test d , a n d :

(x 1 : : : x d ) is in the domain of relation R and of function c. (x 0 1 : : : x 0 d ) = ( x 1 : : : x d )

(q 0 = q 00 and R(x 1 : : : x d )) or (q 0 = q 000 and :R(x 1 : : : x d )).

A c omputation of M starting from (x 1 : : : x d ) is a sequence (ID i = ( q i x i 1 : : : x i d t i )) i I of IDs of M, w h e r e I is an ordinal, such that:

{ ID 0 = ( q 0 x 1 : : : x d 0) { For all j I, i f j is a successor then ID j;1 `d ID j { For all j I, i f j is a limit point then f t j 0 jj 0 < j g is a set bounded a b o v e b y s o m e r eal number.

for all 1 i d, lim j 0 !j j 0 <j x j 0 i exists t j = s u p ft j 0 jj 0 < j g for all 1 i d, x j i = lim j 0 !j j 0 <j x j 0 i q j = limit

The computation is accepting (respectively: rejecting) if there exists j 0 I (this implies that t j0 2 R is nite) with q j0 = q + f (resp: q j0 = q ;

f ) and such that 8j < j 0 q j 6 2 f q + f q ; f g. I n t h a t c ase, t j0 2 R is called t h e (continuous) time of the computation. I f t h e c omputation is accepting, we say that M maps (x 1 : : : x d ) t o ( x j0 1 : : : x j0 d ) in time t j0 . Program M can be c onsidered as an instruction: the assignment corresponding to the execution of program M is the assignment (f 0 c 0 ) of dimension d where functions f 0 and c 0 are d e n e d o n (x 1 : : : x d ) 2 0 1] d i there i s a n a c cepting computation starting from (x 1 : : : x d ). When functions f 0 and c 0 are de ned o n (x 1 : : : x d ) then f 0 (x 1 : : : x d ) = ( x 0 1 : : : x 0 d ), c 0 (x 1 : : : x d ) = t 0 i M maps (x 1 : : : x d ) to (x 0 1 : : : x 0 d ) in time t 0 .

An instruction of dimension d ; 1 can be considered as an instruction of dimension d: De nition 3.3 (Embedding instructions of dimension d ; 1 into dimension d) Let d 2 be an integer.

Let (f c) be an assignment in dimension d ; 1. We still denote by (f c) the assignment (f 0 c 0 ) of dimension d de ned, for all x 1 : : : x d 2 0 1] by: f 0 (x 1 : : : x d;1 x d ) = (f(x 1 : : : x d;1 ) x d ) c 0 (x 1 : : : x d;1 x d ) = c(x 1 : : : x d;1 ) Let (R c) be a test in dimension d ; 1. We still denote by (R c) the assignment (R 0 c 0 ) of dimension d de ned, for all x 1 : : : x d 2 0 1] by: R(x 1 : : : x d;1 x d ) = R(x 1 : : : x d;1 ) c 0 (x 1 : : : x d;1 x d ) = c(x 1 : : : x d;1 ) We de ne now the transformation =x d+1 on instructions: this transformation is equivalent to making the change of variable x i becomes x i =x d+1 for all i: De nition 3.4 (Transformation =x d+1 on instructions) Let (f c) be an assignment in dimension d. We write (f=x d+1 c=x d+1 ) for the assignment in dimension d + 1 de ned as follows:

{ f=x d+1 and c= xd+1 are de ned o n (x 1 : : : x d+1 ) i all the following conditions hold:

x d+1 > 0 (x 1 =x d+1 : : : x d =x d+1 ) 2 0 1] d function f and c are de ned on value (x 1 =x d+1 : : : x d =x d+1 ) { when f=x d+1 and c= xd+1 are de ned o n (x 1 : : : x d ), f=x d+1 (x 1 : : : x d+1 ) = x d+1 f(x 1 =x d+1 : : : x d =x d+1 ) c=x d+1 (x 1 : : : x d+1 ) = x d+1 c(x 1 =x d+1 : : : x d =x d+1 ) Let (R c) be a test in dimension d. We write (R=x d+1 c = x d+1 ) for the test in dimension d + 1 de ned as follows:

{ R=x d+1 and c=x d+1 are de ned o n (x 1 : : : x d+1 ) i all the following conditions hold:

x d+1 > 0, (x 1 =x d+1 : : : x d =x d+1 ) 2 0 1] d R and c are de ned on value (x 1 =x d+1 : : : x d =x d+1 ).

{ when R=x d+1 and c=x d+1 are de ned o n (x 1 : : : x d+1 ), R=x d+1 (x 1 : : : x d+1 ) = R(x 1 =x d+1 : : : x d =x d+1 ) c=x d+1 (x 1 : : : x d+1 ) = x d+1 c(x 1 =x d+1 : : : x d =x d+1 ) Take an example: consider instruction I de ned as x 1 := x 1 + 1] where 2 Q. W h e n x 3 > 0 and x 1 =x 3 2 0 1], I=x 3 is equivalent to instruction x 1 := x 1 + x 3 x 3 ]. When x 3 = 0 o r x 1 =x 3 > 1 t h e n n o evolution is possible.

We are ready to de ne the admissible operations in dim d: this is done inductively.

De nition 3.5 (Admissible operations in dim d) We de ne inductively the set of the assignments denoted b y Assgnmt d (respectively: the set of the tests denoted b y T e s t d ) that are admissible in dimension d:

For all d, f o r a l l i j k 2 f 1 2 : : : d g, for all 2 Q, for all + 2 Q + , for all # 2 f > < = 6 =g:

\Linear machines instructions" RCT machines can be considered as machines recognizing some languages L as follows:

{ \x i := x i + x k 1]" 2 Assgnmt d { \x i := x j 1]" 2 Assgnmt d . { \x i := + x i 1]" 2
De nition 3 . 6 Let be t h e x e d nite alphabet.

Language L is semi-recognized by R CT machine M if, for all n 2 , M h a s a n a c cepting computation starting from (I(n) 0 : : : 0) i n 2 L.

L is fully-recognized if in addition, for all n 2 , t h e r e i s a r ejecting computation starting from (I(n) 0 : : : 0) i n 6 2 L.

We will write the RCT programs in a high level programming language style using all the usual ow control instructions (while, if, for, goto) as in algorithm 1.

RCT machines can simulate Turing machines

We s h o w in this subsection that one can simulate any T uring machine by a R CT machine. This is nothing but a restatement of 10].

Two stacks pushdown automata can simulate Turing machines

It is well known that Turing machines are equivalent t o t wo stacks pushdown automata (2PDA) 9]: the two stacks correspond to the content of the tape on the right and on the left respectively of the head of the Turing machine.

We g o h e r e i n to the precise details of what we c a l l a 2 P D A o r a n !-2PDA. A 2PDA is equivalent t o a Turing machine, and an !-2PDA is equivalent t o a T uring machine with a semi-in nite tape. Write 0 for f g. I f w 2 ! , write w + for the element o f 0 equal to the rst letter of w if w 6 = and equal to if w = . I f w 6 = , denote w ; for the word such that w = w + w ; . I f i 2 f 1 2g, denote ĩ = 3 ; i.

De nition 3.7 (2PDA)

A two stacks pushdown automaton (2PDA) (respectively: an !-2PDA), is a 5-tuple (Q q 0 F ) where Q is a nite set, q 0 2 Q is the initial state, F Q is the set of the nal states, is a mapping from Q 0 0 to Q Q InstructionSet, w h e r e InstructionSet is the following nite set of symbols: InstructionSet = fPush i (a) P o p i (a) T o p i (b)?ji 2 f 1 2g a 2 b 2 0 g An Instantaneous Description (ID) of a 2PDA ( r esp. of an !-2PDA) is an element (q w 1 w 2 ) of Q (resp. of Q ! ). q is the internal state, w 1 ,w 2 are t h e c ontents of the rst and the second stack respectively. The ID is accepted i q 2 F.

The relation `d between IDs is de ned as follows:

(q w 1 w 2 ) `d (q 0 w 0

1 w 0 2 ) iff 8 > > > > > > > > > > < > > > > > > > > > > :
(q w + 1 w + 2 ) = ( q 00 q 000 instr) and 8 > > > > > > > > < > > > > > > > > :

(instr = P u s h i (a) q 0 = q 00 w 0 i = aw i w 0 ĩ = w ĩ) or (instr = P o p i (a) q 0 = q 00 w + i = a w 0 i = ( w i ) ; w 0 ĩ = w ĩ) or (instr = T o p i (b)? w 0 1 = w 1 w 0 2 = w 2 and (q 0 = q 00 and w + i = b) or (q 0 = q 000 and w + i 6 = b)) Let ` d be the transitive closure o f `d. A n input w 2 (respectively w 2 ! ) i s a c cepted by a 2PDA (resp. by an !-2PDA) i there exists an accepted I D ID acc such that (q 0 w ) ` d ID acc .

We say that a 2PDA ( r esp.an !-2PDA) maps (w 1 w 2 ) to (w 0 1 w 0 2 ), where w 1 w 2 w 0 1 w 0 2 2 (resp.

w 1 w 0 1 2 ! w 2 w 0 2 2 ) , i (q 0 w 1 w 2 ) ` d (q w 0 1 w 0

2 ) for some q 2 F.

RCT machines can simulate Two stacks pushdown automata

We show n o w t h a t R CT machines can simulate 2PDAs using only the linear machine instructions: this is a restatement o f 1 0 ]. Lemma 3.1 One can simulate any two stacks pushdown automaton (respectively any !-two stacks pushdown automaton) M by a RCT machine M 0 of dimension 2 whose program is only made of the linear machine instructions.

Proof: One build a RCT machine M 0 that simulates M: when the stacks of M are words w 1 w 2 , t h e registers of M 0 are x 1 = J (w 1 ) a n d x 2 = J (w 2 ). The program of M 0 is obtained by taking the program of M, and by replacing one after the other the 2PDA instructions of M by some linear machine instructions using the correspondence of gure 4. 2 Theorem 3.1 Let S be a discrete language.

Assume that S is recursively enumerable. Then S is semi-recognized b y a R CT machine of dimension 2 Assume that S is recursive. Then S is fully-recognized b y a R CT machine of dimension 2.

Proof: Immediate from lemma 3.1 and from the fact that any T uring machine can be simulated by a two stacks pushdown automaton 9]. 2 Convention 3.1 We use the following convention: 2 4

(w 1 w 2 ) 7 ! (w 0 1 w 0 2 )
where \conditions" 3 5

denotes any RCT program M 0 that, for all w 1 w 2 verifying \conditions", maps real registers x 1 = J (w 1 ), x 2 = J (w 2 ) to x 1 = J (w 0 1 ) x 2 = J (w 0

2 ): to obtain M 0 , c onsider any !-2PDA M such that, for all w 1 2 ! w 2 2 verifying \conditions", M maps (w 1 w 2 ) to (w 0 1 w 0 2 ): r ecall that 2PDAs are e quivalent to Turing machines. Now apply the transformation of the proof of lemma 3.1 on M to get RCT machine M 0 .

As an example, 2 4 (w w 0 ) 7 ! (ww ) where w w 0 2 w= w 0 3 5 is any R CT program that, for all w w 0 2 such t h a t w = w 0 , maps (J (w) J (w 0 )) to (J (ww) 0). Two s t a c ks automata RCT machine instruction instructions P u s h i (j) i2 f 1 2g j2

x i := x i =b + ( 2 j)=b 1] P o p i (j) i2 f 1 2g j2 x 1 := b (x 1 ; (2 j)=b ) 1 ] T o p i ( )? i 2 f 1 2g x i = 0 ? 1 ]
T o p i (j)? i 2 f 1 2g j2 ((x i (2 j)=b )? 1] and (x i (2 j + 1 ) =b )? 1]) Figure 4: Correspondence between 2PDA instructions and RCT instructions. The RCT instructions corresponding to the 2PDA instructions P u s h i (j) P o p i (j) T o p i (j)? will be still denoted by Push i (j), P o p i (j), T o p i (j)?.

RCT machines and the arithmetical hierarchy

Speedup properties of RCT machines

In de nition 3.4, we de ned the transformation =x d+1 on instructions: the transformation =x d+1 on a RCT program P is obtained by transforming instruction by instruction the instructions of P: De nition 3.8 (Transformation =x d+1 on RCT programs) Let P be a R CT program of dimension d: P = ( Q q 0 q + f q ; f limit ). We denote by P=x d+1 the RCT program of dimension d+1de ned b y P=x d+1 = ( Q q 0 q + f q ; f limit 0 )

where for all q q 0 q 00 and Instr 2 T e s t d Assgnmt d , (q) = ( q 0 q 00 Instr) , 0 (q) = ( q 0 q 00 Instr=x d+1 )

We prove: Lemma 3.2 (Speedup lemma) Let P be a R CT program of dimension d. For all 2 (0 1], for all x 1 x 2 : : : x d 2 0 1], P=x d+1 started with real registers ( x 1 x 2 : : : x d )

simulates the evolution of P on (x 1 : : : x d ) but the simulation of P by P=x d+1 goes 1= times faster than P.

Proof: Let 2 (0 1] and let x 1 : : : x d 2 0 1] be xed.

Denote by ( q j x j 1 : : : x j d t j ) j2J the computation of P starting from (x 1 : : : x d ). Denote by ( q 0 j x 0 j 0 1 : : : x 0 j 0 d x 0 j 0 d+1 t 0 j 0 ) j 0 2J 0 the computation of P 0 starting from ( x 1 : : : x d ). It is easy to prove b y trans nite induction that, for all j 2 J, one has j 2 J 0 , q j = q 0 j , x 0 j d+1 = , x 0 j i = x j i for all 1 i d, a n d t 0 j = t j . 2 We get immediately: Theorem 3.2 Assume that S is semi-recognized ( r espectively: fully-recognized) by a program P in dimension d in time T. F or any k 2 N + , S is semi-recognized ( r esp. fully-recognized) in dimension d+1in time 2+T= k .

Proof:

Assume that S is semi-recognized by P. S is semi-recognized (resp. fully-recognized) in dimension d + 1 in time 2 + T= kby the following program P 0 : Algorithm 2 Program P 0

x 1 := x 1 =k 1] x d+1 := 1=k 1] P=x d+1 2 3.3.

From semi-recognition to recognition

We see now that one can transform a program that semi-recognizes a set S in dimension d to a program that fully-recognizes S in nite time in dimension d + 1 .

We need rst some de nitions: a clocked program is a program where some instructions are marked and where the execution of the marked instructions can be used as the tops of a clock: there must exists an upper bound for the time between two successive tops, and any bounded time interval must contain a nite number of tops:

De nition 3 . 9

A clocked program is any program P = ( Q q 0 q + f q ; f limit ) such that:

{ some instructions of P are marked: there exists some Q 0 Q. { there exists 2 R + , c alled t h e time period of P, such that any computation of P executes a nite number n I 1 of marked instructions on any time interval I of width : f o r a l l c omputation C = ( q j x j 1 : : : x j d t j ) j2J of P , for all t 2 R + , i f t h e r e i s s o m e j 2 J with t j t + , then the cardinality of the set fj 0 jj 0 2 J q j 0 2 Q 0 t j 0 2 t t + ] g is nite and greater than 1.

An !-clocked program is a clocked p r ogram such that a computation of P executes a nite number of marked instructions i the computation is accepting.

If P is a clock program, and R is a program, we write P R for the program that one gets by inserting in P a c o p y o f p r ogram R at each marked instruction of P As an example, take a n y 2 P D A M that semi-recognizes a set L . Assume that M never enters a \reject" state but loops for ever on an input w 2 with w 6 2 L. Then the RCT program M 0 of dimension 2 g i v en by lemma 3.1 that simulates M can be !-clocked: mark all the instructions of M 0 and take = 1 as time period. We use the following convention: we assume any program given by lemma 3.1 (and therefore any program given by the notation 2 4

(w 1 w 2 ) 7 ! (w 0 1 w 0 2 )
where conditions

x d+1 := 2x d+1 x d+1 ]
We claim: Theorem 3.3 Assume that S is semi-recognized b y a n !-clocked p r ogram in dimension d. Then:

There e x i s t s a p r ogram of dimension d + 1 that fully recognizes S.

Moreover, for all k 2 N + , there exists a program of dimension d + 1 that fully recognizes S in time 2 + 1 =k.

Proof:

Assume that S is semi-recognized by P. Let 0 < 1 be some rational constant. Consider the following program P 0 Algorithm 5 P 0

x 1 := x 1 1] x d+1 := 1] (P=x d+1 ) (Div2 d+1 ) limit : Reject It is su cient t o t a k e P 0 1 to prove the rst assertion and to take P 0 1=(2k( +d+1)) to prove the second assertion, using lemma 3.3 proved below.

2 Here is the trick: Lemma 3.3 (Super-speedup lemma) Let P be a n !-clocked R CT program of dimension d of time period

. F or all 2 (0 1], for all x 1 x 2 : : : x d 2 0 1], (P=x d+1 ) Div2 d+1 started w i t h r eal registers ( x 1 x 2 . . . , x d ) simulates the evolution of P on (x 1 : : : x k ) but the whole simulation of P by P=x d+1 is made in a nite bounded time upper bounded b y 2 ( + d + 1 ) . Moreover, whenever P accepts, (P=x d+1 ) Div2 d+1 accepts. Whenever P does not accept, (P=x d+1 ) Div2 d+1 converges to its limit state with all its real registers set to 0.

Proof: L e t 2 (0 1] and x 1 : : : x d 2 0 1] be xed.

Denote by ( q j x j 1 : : : x j d t j ) j2J the computation of P starting from (x 1 : : : x d ). Let Q 0 Q gives the marked instructions of P.

Denote by ( q 0 j 0 x 0 j 0 1 : : : x 0 j 0 d t 0 j 0 ) j 0 2J 0 the computation of (P=x d+1 ) Div2 d+1 starting from ( x 1 : : : x d ). Denote by j 1 < j 2 <: : :2 J the sequence of the indexes corresponding to the execution of the marked instructions of P : for all j 2 J, either q j 2 Q 0 and j = j k for some k or q j 6 2 Q 0 .

For j 2 J, let n j denote the numb e r o f m a r k ed instructions of P executed between time 0 and time t j : n j is the cardinality o f s e t fkjt jk < t j g.

It is easy to prove b y trans nite induction on j 2 J that, for all j 2 J 0 , o n e h a s j 2 J, q 0 j+nj(d+1) = q j x 0 j+nj(d+1) i = x j i =2 nj for all 1 i d, x 0 j+nj(d+1) d+1 = =2 nj , t 0 j+nj(d+1) = P nj k=1 (t jk ; t jk;1 + d + 1)=2 k;1 + (t j ; t jn j )=2 nj with t 0 = 0, and that for all k and l d + 1 , q 0 t j k +(k;1)(d+1)+l corresponds to an instruction of program Div2 d+1 . This means that (P=x d+1 ) Div2 d+1 simulates P : i f P accepts then (P=x d+1 ) Div2 d+1 accepts: q j0 = q + f for some j 0 2 J implies q 0 j0+nj 0 (d+1) = q + f . F or all k 2 N, w e h a ve t jk ; t jk;1 . As a consequence, for all j 2 J, t j 2 ( + d + 1). Hence, (P=x d+1 ) Div2 d+1 accepts at some nite time bounded above b y 2 ( + d + 1 ) . If P does not accept its input, since P is assumed to be !-clocked, a non nite number of Div2 d+1 are executed. As a consequence, for all 1 i d + 1, the sequence (x j i ) j2J converge to 0. One has have sup j2J t j 2 ( + d + 1). That means that (P=x d+1 ) Div2 d+1 reaches the ID (limit 0 : : : t ) at nite time t = sup j2J t 0 j , with t 2 ( + d + 1). 2

Recognizing arithmetical sets

The following lemma will be used in the proof of lemma 3.5: Lemma 3.4 There exists an injective mapping E from I to (1=2 1] such that, for any d 3, There exists a RCT program Enc d of dimension d that, for all y 1 2 I, maps (y : : : : : : ) to (E(y 1 )y 1 : : : : E(y 1 )).

There exists a RCT program Dec d of dimension d that maps (: : : : : E(y 1 )) to (y 1 : : : : : ) for all y 1 2 I.

We s a y t h a t a R CT machine M of dimension d maps ( 1 : : : d ) t o ( 1 : : : d ), where for all 1 i d, either i 2 0 1] or i is the symbol :, and either i 2 0 1] or i is the symbol :, i f o r a l l ( x : : : x d ) with x i = i for all i such that i 6 = :, M maps (x 1 : : : x d ) to some (x 0 1 : : : x 0 d ) w i t h x 0 i = i for all i such t h a t i 6 = :. Proof: Let # be a letter of . Denote by number : ! N the function that maps any w ord w 2 onto its number in some xed recursive e n umeration of the words of . F or all n 2 N, denote by w n the n th word of : number(w n ) = n. For all w 2 , w e de ne E(I(w)) as the unique point w h i c h i s s i m ultaneously in interval (1=2 1] and in the set f2 k =3 number(w) jk 2 Zg. We need to improve theorem 3.3: we s h o w t h a t a n y language that is semi-recognized in dimension d can be fully-recognized in dimension d + 1 b y a c l o c ked program that returns its input when it accepts. Lemma 3.5 Let S be a discrete language. Assume that S is semi-recognized b y a n !-clocked p r ogram P in dimension d. T h e n S is fully-recognized in dimension d + 1 by some clocked p r ogram P: for all w 2 if w 6 2 S then P rejects input J (w) and stops with all its real registers set to 0. if w 2 S then P accepts input J (w) and stops with its rst real register set to J (w) and all its other real registers set to 0. stops with its d + 1 th real register equal to E(x 1 )=2 nj 0 , where n j0 2 N is the numb e r o f m a r k ed instructions of the accepting computation of P starting from (x 1 : : : x d ). It is easy to see that the while loop will be executed n j0 times and that the end of the while loop the content of the d + 1 th real register will be set to E(x 1 ). Hence, after the Dec d+1 program, the rst real register of P will return to value x 1 .

By lemma 3.3, program (P=x d+1 ) (Div2 xd+1 ) is always executed in a bounded time. As a consequence, P can be clocked: mark all the instructions but those of (P=x d+1 ) (Div2 xd+1 ). Take as time period of P the maximum of 1 and of the time needed to execute program (P=x d+1 ) ( Div2 xd+1 ).

2 As a consequence, we g e t :

Lemma 3.6 Assume that B is a discrete language such that all the languages of B 1 are semi-recognized b y some !-clocked R CT program in dimension d 0 2.

Let S be a discrete language with S 2 B k , k 2 N k 1. Then S is semi-recognized b y a n !-clocked R CT program in dimension d 0 + k ; 1.

Proof: W e p r o ve the assertion by induction over k.

Case k = 1 is true by h ypothesis.

Assume k 2 a n d t h e h ypothesis at rank k ; 1. Let S 2 B k . There exists S 0 2 B k;1 such t h a t x 2 S , 9 n 2 N < n x >6 2 S 0 : see 16]. By induction hypothesis S 0 is semi-recognized in dimension k + d 0 ; 2 b y a n !-clocked RCT program P k;1 . Let Pk;1 be the marked program that one gets by applying lemma 3.5 on program P k;1 .

S is semi-recognized by the following RCT program P k :

Algorithm 9 Program P k 2 4

(w w 0 ) 7 ! (< 0 w > w 0 ) where w w 0 2 3 5 while ( Pk;1 accepts) 2 4

(< n w > w 0 ) 7 ! (< n + 1 w> w 0 ) where w w 0 2 n 2 N 3 5

end while Accept P k can be !-clocked: mark all the instructions but those that were not marked in Pk;1 . T ake as time period the maximum of 1 and of the time period of Pk;1 . P k is of dimension d + k 0 ; 1. 2 Lemma 3.7 Assume that B is a discrete language such that all the languages of B 1 are semi-recognized b y an !-clocked R CT program in dimension d 0 2.

Let S be a d i s c r ete language with S 2 B k , k 2 N k 2. Then S is fully-recognized b y a R CT program in dimension d 0 + k ; 1.

Proof: By de nition of B k , there must exists S 0 S 00 2 B k;1 such t h a t x 2 S , 9 n 2 N < n x >6 2 S 0 and x 6 2 S , 9 n 2 N < n x >6 2 S 00 : see 16]. We prove rst a technical lemma: if a 2PDA can do some job, one can build a RCT machine of dimension d + 1 3 that does the same job but in time bounded by kx d+1 for some k: Lemma 3.8 Let d 2. L et M be a n !-2PDA. Assume that, for all w 1 2 ! w 2 2 , M maps (w 1 w 2 ) to (f 1 (w 1 w 2 ) f 2 (w 1 w 2 )) 2 ! . There exists some k M 2 R + a n d a R CT machine M 0 of dimension d + 1 that, for all w 1 2 ! w 2 2 , for all y 3 : : : y d 2 0 1], for all n 2 N, m a p s (J (w 1 )=2 n J (w 2 )=2 n y 3 =2 n : : :

y d =2 n 1=2 n ) to (J (f 1 (w 1 w 2 ))=2 n J (f 2 (w 1 w 2 ))=2 n y 3 =2 n : : : y d =2 n 1=2 n ) in a time bounded a b ove by k M =2 n .
Proof: The idea is to build a machine that simulates M, that does some Div2 d+1 instructions every two steps and that counts in parallel the number of Div2 d+1 instructions already executed. The machine simulates M until M accepts. At this moment, the machine does some Mu l 2 d+1 instructions in order to come back t o x d+1 = 1 =2 n .

Let " b e a l e t t e r o f . I f i 2 f 1 2g, denote ĩ for 3 ; i. Assume without loss of generality t h a t a n y I D o f any computation of M on any input is of type (q w 1 w 2 ), q 2 Q w 1 w 2 2 with the rst letter of w 1 and the rst letter of w 2 di erent from letter ".

Replace one after the other the 2PDA instructions of M by some new instructions using the following correspondence, , where RCT instructions T o p i (j)?, P o p i (j), P ush i (j) are de ned in gure 4:

Old !-2PDA instruction New RCT instructions P o p 1 (j) j2

Transfer 2 ( P o p 1 (j))=x d+1 ( P ush 1 ("))=x d+1 Div2 d+1 Transfer 1 Push 1 (j) j2

Transfer 2 ( P u s h 1 (j))=x d+1 (P u s h 1 ("))=x d+1 Div2 d+1 Transfer 1 T o p 1 (j)? j2

Transfer 2 ( T o p 1 (j)?)=x d+1 (P u s h 1 ("))=x d+1 Div2 d+1 Transfer 2 P o p 2 (j) j2 (P o p 2 (j))=x d+1 ( Push 1 ("))=x d+1 Div2 d+1 Push 2 (j) j2 (Push 2 (j))=x d+1 ( Push 1 ("))=x d+1 Div2 d+1 T o p 2 (j)? j2 (T o p 2 (j)?)=x d+1 ( P u s h 1 ("))=x d+1 Div2 d+1

where Transfer i , i 2 f 1 2g transfers all the " from register ĩ to register i and is the following sequence of instructions:

Algorithm 11 Transfer i while ((T o p ĩ(")?)=x d+1 ) do (P o p ĩ("))=x d+1 (Push i ("))=x d+1 /*Transfer one " from stack ĩ to stack i*/ (Push i ("))=x d+1 Div2 d+1 (Push i ("))=x d+1 Div2 d+1 (Push i ("))=x d+1 Div2 d+1

/*Add 3 " since t h e t r ansfer of the " was done with 3 instructions*/ end while One gets a RCT program P M of dimension d + 1: this program simulates M, does some Div2 d+1 instructions every two steps and has the following property: at every step of the simulation of M, the value of the rst real register of P M is of type J (" p w), w 2 , w h e r e p 2 N, i s t h e n umber of instructions Div2 d+1 already executed by P M .

Consider now M 0 as the following RCT program: where \conditions"

Algorithm 12 Program M 0 P M /*Map x 1 = J (w 1 )=2 n , x 2 = J (w 2 )=2 n , x 3 = y 3 =2 n ,. . . ,x d = y d =2 n , x d+1 = 1 =2 n to x 1 = J (" p f 1 (w 1 w 2 ))=2 n+p , x 2 = I(f 2 (w 1 w 2 ))=2 n+p , x 3 = y 3 =2 n+p , . . . ,x d = y d =2 n+p , x d+1 = 1 =2 n+p ).
1 A jx d+1
any RCT program of dimension d+1 given by lemma 3.8 that for all w 1 w 0 1 2 ! , w 2 w 0 2 2 verifying \conditions", and for all y 3 : : : y d 2 0 1], for all n 2 N, maps (J (w 1 )=2 n J (w 2 )=2 n y 3 =2 n : : :

y d =2 n 1=2 n ) to (J (w 0 1 )=2 n J (w 0
2 )=2 n y 3 =2 n : : : y d =2 n 1=2 n ) in a time bounded b y k=2 n for some k.

Setting the m th digit of a real in time k=2 m for some k

The following lemma is the main trick that will be used in lemma 3.10 to show that one can recognize some hyper-arithmetical sets: one can build a RCT machine of dimension d + 2 that, on input m 2 N, add 1=2 m to real register x d+2 in a time proportional to maximum(1=2 m x d+1 ): Lemma 3.9 Let # $ 2 be two distinct letters of used as delimiters.

For all d 2, there exists some k 2 R + and a RCT machine WriteDigit d+2 of dimension d + 2that, for all y 3 : : : y d y d+2 2 0 1] m n 2 N w 2 ! w 0 2 , maps (J (# n m$w)=2 n I(w 0 )=2 n y 3 =2 n : : : y d =2 n 1=2 n y d+2 ) to (J (# n m$w)=2 n I(w 0 )=2 n y 3 =2 n : : : y d =2 n 1=2 n y d+2 + 1 =2 m ) in a time upper bounded b y k1=2 minimum(m n) .

Proof: The general idea is to do some Mu l 2 d+1 =Div2 d+1 instructions in order to get x d+1 = 1 =2 m , then to do a x d+2 := x d+2 +x d+1 x d+1 ] instruction, and then to do some Div2 d+1 =Mu l 2 d+1 instructions to come back t o x d+1 = 1 =2 n .

Assume without loss of generality that one can nd two distinct letters " and # in di erent from letter $ and from letter #.

WriteDigit d+2 is the following RCT program , where RCT instructions T o p i (j)? P o p i (j), Push i (j) a r e de ned in gure 4:

Algorithm 13 WriteDigit d+2 0 B B B B B B B B @ (# n m$w w 0 ) 7 ! (move 1 $move 2 $w 0 $# n m$w ) where w 2 ! w 0 2 m n 2 N move 1 m o v e 2 2 (move 1 m o v e 2 ) = 8 < : (# m;n " m;n ) if m > n (" n;m # n;m ) if m < n ( ) if m = n 1 C C C C C C C C A jx d+1
/* Map 8 < : The execution of the calls to program GoUpOrDown are done in a time upper bounded by k 3 1=2 min(m n) for some k 3 . As a consequence, there exists some k 2 R + such that the whole execution of program WriteDigit d+2 is done in a time bounded above b y k1=2 minimum(m n) . 2

x 1 = J (# n m$w)=2 n x 2 = I(w 0 )=2 n x d+1 = 1 =2 n to 8 < : x 1 = J (move 1 $move 2 $w 0 $# n m$w) =2 n x d+1 = 1 =2 n

Outputting reals encoding languages

In de nition 2.3, we de ned mapping J that encodes any w ord of ! into a real of 0 1]. Now, we de ne mapping L that encodes any discrete language L into a real of 0 1]:

De nition 3.10 (Encoding by L) Let = f0 1 : : : n g be the xed nite alphabet. Let and be t w o letters of with 6 = .

Let L be a d i s c r ete language. We denote by w L the in nite word a 0 a 1 a 2 : : : a i : : :such that, for all i 2 N, a i = (respectively: a i = ) i the i th word o f is in L (resp. is not in L) Denote by P( ) the set of the subsets of . We denote by L the mapping from P( ) to 0 1] that, for all L , m a p s L to L(L) = J (w L ). Check that J (w ) i s i n Q and that a machine can do with any p r o b l e m x 1 := L( ).

Using lemma 3.9, we s h o w that if we can enumerate a set then we can output a real encoding this set in nite time: Lemma 3.10 Let d 2. L et $ # be two letters of used as delimiters.

Assume we have a function f : N ! ! , a c onstant k f 2 R + and a RCT machine M f of dimension d + 1 that, for all n 2 N w 2 L y 2 2 I, maps (J (# n $w$w L )=2 n y 2 =2 n : : : : : 1=2 n ) to (J (f(n w w L )$w L )=2 n y 2 =2 n : : : : : 1=2 n ) in a time bounded a b ove by k f 1=2 n .

Then there e x i s t s a R CT machine M 0 f of dimension d + 2 that for all discrete language L , for all word w 2 and real y 2 2 I, maps (J (w$w L ) y 2 : : : : ) to (J (w$w L(w) ) y 2 0 : : : 0) in a bounded time, where L(w) = fw 0 jw 0 2 9 n 2 N f(n w w L ) = w 0 g Proof: The general idea is to write a program that, on input x 1 = J (w$w L ), x 2 = I(w 0 ), using lemma 3.9, writes digit by digit onto its real register x d+2 the real value of J (w$w 0 $w L (w) ).

Denote by number : ! N the function that maps any w ord w 2 onto its numb e r i n t h e e n umeration of the words of . F or k 2 N w 2 , denote lttr(w k) for k th letter of word w. W e assume xed a recursive enumeration of the nite subsets of similar to the one of 16]: for any i n teger n 2 N, D n denotes the n th nite subset of . M 0 f is given by the following algorithm, where RCT instructions T o p i (j), P o p i (j),P u s h i (j) are de ned in gure 4 and integer b 0 is de ned page 3:

Algorithm 15 Program M 0 f 2 6 6 4 (w$w L w 0 ) 7 ! ($w L w $w 0 $u 0 ) where w L 2 ! w w 0 2 u 0 2 N D u0 = 

(# n $w L w $w 0 $u n ) 7 ! (# n b 0 n ; 2a n $w L w $w 0 $u n )
where We start by an easy lemma used in lemma 3.12:

w L 2 ! w w 0 2 , n u n 2 N a n 2 a n = if n > length(w$w 0 $) lttr(w$w'$,n) if n length(w$w 0 $) 1 C C C C C C A jx d+1 WriteDigit d+2 /*Set the n th digit of x d+2 to default value a n */ 0 @ (# n m$w L w $w 0 $u n ) 7 ! (# n $w$w L # n $w$w 0 $u n ) where w L 2 ! w w 0 2 n u n 2 N 1 A jx d+1
Lemma 3.11 For all y 2 O, fxjx 2 O ^x < 0 yg is recursively enumerable uniformly in y: t h e r e exists a recursive f : N ! N such that for all y 2 O, the range of f(y) is fxjx < 0 yg Given x y 2 O with x o y or y 0 as input, a Turing machine can e ectively tell if x = y, i f x < 0 y or if y < 0 x. There e x i s t s a r ecursive l such that, for all z 1 z 2 with z 1 0 z 2 , H(z 1 ) = W H(z2) l(z1 z2) Proof: See 16] for the rst assertion. For the second assertion enumerate in parallel the predecessors of x and of y until x or y is found. For all z 1 z 2 , s e t l(z 1 z 2 ) a s n umber of the Turing machine with oracle that, on any input w, test the membership of word h(z1 z2) (w) to its oracle, where h is the recursive function of lemma 2.2. 2 Now, we apply recurrently lemma 3.10 in order to get some machines that output L(L) for some discrete languages L 2 in higher and higher levels of the hyper-arithmetical hierarchy. W e de ne ! 0 as 1. Lemma 3.12 Let k 0.

There exists z k 2 O with jz k j = ! k , there exists f k : N ! ! , t h e r e exists some xed C k 2 R + and: a R CT machine M k of dimension 2k + 2 that, for all n 2 N w2 L y 2 2 I, m a p s (J (# n $w$w L ) y 2 : : : : : ) to (J (f k (n w w L )$w L ) y 2 : : : : : ) a R CT machine M 0 k of dimension 2k + 3 that, for all n 2 N w2 L y 2 2 I maps (J (# n $w$w L )=2 n y 2 =2 n : : : : : 1=2 n ) to (J (f k (n w w L )$w L ) y 2 =2 n : : : : : 1=2 n ) in a time bounded above by C k =2 n .

such that, for all z 2 O, i f L = H(z) then L (z) = fw 0 jw 0 2 9 n 2 N f(n z w L ) = w 0 g = H(z + 0 z k ) Proof: I t i s k n o wn that there exists a recursive g such that for all L 2 m2 N, the range of function

L g(m) is is W L m 16
]. Let M univ be an !-2PDA such that on input # n $m, M univ simulates M L g(m) on input n, answering the queries of M L g(m) on any w ord w 0 to its oracle L by comparing the digit of w L corresponding to w 0 to letter . M univ is an !-2PDA that for all n 2 N m 2 N w 0 2 L , maps (# n $m$w L w 0 ) t o (w m n $w L w 0 ), where w m n = L g(m) (n).

Denote by P univ the RCT machine given by lemma 3.1 that simulates M univ . Using lemma 3.8, for all d 2 one can build a RCT machine P 0 d+1 univ of dimension d + 1 that, for all n 2 N m 2 N y 2 2 I L , m a p s ( J (# n $m$w L )=2 n y 2 =2 n : : : : : 1=2 n ) t o ( J (w n m $w L ) =2 n y 2 =2 n : . . . , : 1=2 n ) in time k=2 n for some xed k 2 R + . Apply lemma 3.10 on this machine: one gets a RCT machine of dimension d+2 that, for all L m2 N y 2 2 I, maps (J (m$w L ) y 2 : : : : : ) t o ( J (m$w W L m ) y 2 0 : : : 0) in nite time. Denote this RCT machine by P 00 d+2 univ . Now, we are ready to prove the assertions of the lemma by induction over k: Assume k = 0 : i t i s k n o wn that there exists m 0 2 N, such that for all L , L 0 = W L m0 16]. Consider M as the !-2PDA that on input (# n $w$w L w 0 ) calls M univ with input (# n $m 0 $w L w 0 ). M 0 is the RCT machine of dimension 2 given by lemma 3.1 that simulates M, and M 0 0 is the RCT machine of dimension 3 given by lemma 3:8 that simulates M. Assume now k 1: denote by 1 2 3 : N ! N some recursive functions such that n 7 ! ( 1 (n) 2 (n) 3 (n)) is a bijective recursive function from N to N N N. Denote by f and l the recursive functions of lemma 3.11.

Lemma 3.10 can be applied on machine M 0 k;1 : one get a RCT machine M 00 k;1 of dimension 2k + 2 that for all z 0 2 O, for all y 2 2 I maps (J (z 0 $w H(z 0 ) ) y 2 : : : : : ) t o J (z 0 $w H(z 0 +zk;1) y 2 0 : : : 0) in a bounded time. Set z k = 3 :5 nk where nk (0) = 1 and nk (n + 1 ) = nk (n) + 0 z k;1 for all n 2 N.

M k is given by the following program, where RCT instructions T o p i (j), P o p i (j),P ush i (j) are de ned in gure 4:

Algorithm 16 Program M k 2 4 (# n $z$w L w 0 ) 7 ! (z$w L #$# n $z$w 0 ) where w L 2 ! w 0 2 z2 O n 2 N 3 5 while (T o p 2 (#)?) do /*Call 1 (n) times program M 00
k;1 */ M 00 k;1 2 6 6 6 6 6 6 6 6 6 6 4

(z p $w L #$# n $z$w 0 ) 7 ! (z p+1 $w L continue$# n $z$w 0 )
where w L 2 ! w 0 2 z p z p+1 2 O n2 N z p+1 = z p + 0 y k;1 if z p+1 o nk ( 1 (n)) then continue = # else continue = $ 3 7 7 7 7 7 7 7 7 7 7 5 end while /*Here, if the initial input was # n $z$w H(z) , z 2 O, we have x 1 = J (z p $w H(zp) ) where z p = nk ( 1 (n)) */ 2 6 6 6 6 4

(z p $w L $$# n $z$w 0 ) 7 ! (# 2(n) $m$w L # n $z$w 0 $z 00 $z p )
where w L 2 ! w 0 2 z2 O m n 2 N z 00 = f(zp) ( 3 (n)) (we h a ve z 0 0 z p ) m = l(z 00 z p ) i s t h e i n teger such t h a t W H(zp) m = H(z 00 ) 3 7 7 7 7 5 P univ /* Compute z 00 = f(zp) ( 3 (n)). We have z 00 o z p . Get w 00 the 2 (n) th word o f H(z 00 )*/ 2 6 6 4

(w 00 $w L # n $z$w 0 $z 00 $z p )

7 ! (m$w L # n $w 00 $z 00 $w 0 ) where w L 2 ! w 0 w 00 2 z z 00 z p 2 O m n 2 N m = l(z z p ) i s t h e i n teger such that W H(zp) m = H(z) (m$w L # n $w 00 $z 00 $w 0 ) 7 ! (< w 00 z 00 > $w L w 0 ) where w L 2 ! w 0 w 00 2 z 00 2 O n 2 N 3 5 /*Output < w 00 z 00 > $w H(z) */ M 0 k is easy to obtained from the program of M k : add the instruction x 2k+3 := 1 1] at the beginning of program M k , replace 2 4 (m$w L # n $w 00 $z 00 $w 0 ) 7 ! (< w 00 z 00 > $w L w 0 ) where w L 2 ! w 0 w 00 2 z 00 2 O n2 N 3 5 by 0 @ (m$w L # n $w 00 $z 00 $w 0 ) 7 ! (< w 00 z 00 > $w L " 1(n) $w 0 ) where w L 2 ! w 0 w 00 2 z 00 2 O n 2 N where conditions 1 A jx d+1 replace P univ by P 0 2k+3 univ , P 00 2k+2 univ by P 00 2k+2 univ =x 2k+3 , and replace the call to M 00 k;1 by the instructions M 00 k;1 Div2 2k+3 , and add the program GoUpOrDown de ned page 20 at the end of the program. 2 We get: Lemma 3.13 Let k 1.

Any language of ! k can be fully-recognized b y a R CT machine of dimension 2k + 2 . Any language of ! k can be semi-recognized b y a R CT machine of dimension 2k + 2 .

Proof: Consider the machine M k and the integer z k 2 O of lemma 3.12. M k is of dimension 2k + 2, and jz k j = ! k . L e t L be a language of ! k (respectively: ! k). L is recursively enumerable (resp. recursive) in

H(z k ) b y s o m e m a c hine M H(zk) n .
See that there exists a recursive g such that, for all u 2 v2 O, u 6 2 H(v) , g(u) 2 H(2 v ): see 16].

L is semi-recognized (resp. fully-recognized) by t h e R CT machine of dimension 2k + 2 that simulates M H(zk) n , simulating every query of M H(zk) n of type < u v > 2 H(z k )? by a subprogram that runs M k on input x 1 = J (# n $1$w ) for n = 1 2 : : : until either x 1 = J (< u v > $w ) o r x 1 = J (< g (u) 2 v > $w ) i s output.

2 We are ready to prove the main assertion of the section: RCT machine can recognize some hyperarithmetical sets. We de ne ! 0 = 1 . Theorem 3.5 Let k 0.

Any language of ! k can be fully-recognized b y a R CT machine of dimension 2k + 2 . Any language of ! k +1 can be fully-recognized b y a R CT machine of dimension 2k + 3 . Any language of ! k can be semi-recognized b y a R CT machine of dimension 2k + 2 . Any language of ! k +1 can be semi-recognized b y a R CT machine of dimension 2k + 3 .

Proof: I f k = 0, this is a direct application of theorem 3.4.

Assume now k 1: the rst and the third assertions are lemma 3.13. The second and the last assertions are immediate from the third assertion and from lemmas 3.7 and 3.6 with B = H(! k ), since

! k +1 = H(! k ) 2 and ! k +1 = H(! k ) 2 . 2

PCD systems can simulate RCT Machines

In this section, we prove that PCD systems can simulate RCT machines. We start by seeing how t o r e a l i z e the elementary instructions of RCT machines. is an a ne basis1 of P. The point of coordinates (x 1 : : : x k ) on I = ( P B) denotes the point o f P , if it exists, of coordinates (x 1 : : : x k 0 : : : 0) in basis B. A trajectory is said to reach I = ( P B) i i t r e a c hes P.

Linear machine instructions

Let H be a PCD system of dimension d. L e t d 0 be an integer with d 0 < d . L e t I = ( f c) be an assignment2 of dimension d 0 . H is said to realize assignment I if there exist some d 0 -dimensional boxes Inand Out of R d , such that, for all x 2 0 1] d 0 , the trajectory of H starting from the point of coordinates x 2 0 1] d 0 on Inat time 0 reaches Out at time c(x) in point of coordinates f(x) o n Out: see gure 5 and gure 6. In that case, we s a y that H realizes the assignment via input port Inand via output port Out.

For all d 0 2 N, denote by Id d 0 the identity function of 0 1] d 0 : Id d 0 (x) = x for all x 2 0 1] d 0 . Let I = ( R c) be a test of dimension d 0 . H is said to realize test I if there exist three d 0 -dimensional boxes In, Out + ,Out ; of R d such that for all x such that R(x) i s t r u e , H realizes assignment ( Id d 0 c ) via input port In and output port Out + , and for all x such that R(x) is false, H realizes assignment ( Id d 0 c ) via input port Inand output port Out ; . For all 2 R + , one can build a PCD system of dimension d 0 that realizes assignment I = ( f c) (resp.

that realizes test I = ( R c)).

Proof: F or any 2 R + 2 R + , # 2 f > < = 6 =g, gure 5 shows how one can build a PCD system of dimension 2 that realizes x 1 := + x 1 1],x 1 := x 1 + 1], x 1 := 1], x 1 := x 1 # 1] and gure 6 shows how one can build a PCD system of dimension 3 that realizes x 2 := x 1 1] and x 2 := x 1 + x 2 1].

It is easy to transform these PCD systems into PCD systems that realize all the linear machine instructions of de nition 3.5: for example to build a PCD system that realizes x i := x j 1], take the PCD system H 0 = ( X 0 f 0 ) of dimension 3 of gure 6 that realizes x 2 := x 1 1], and consider H = ( R d 0 f ) w h e r e , (0,1) (0,2,1) Proof: Using \angles" and \straight part" as in gure 8 it is easy build some regions that bring any point of coordinates x on Into point of coordinates x on Out. The time taken by a trajectory to go through these regions from point o f c o o r d i n a t e s x on Into point of coordinates x on Out is some a ne function t of x: t : R d ! R + . Using lemma 4.2, insert in one of the regions some regions that realize a delay module of time ;t(x) plus some constant. As a consequence, now, the time required by a trajectory to from Into Out is a constant k independent o f x. Multiply all the slopes in the regions by =k to get a path of time : see gure 9.

y (1,lambda) (1,lambda-1) (0,0) lambda y (1,0) (1,0) y y+lambda (1,lambda) (0,1) (1,1) (1,0) (0,0) y lambda (1,0) (1,1) (0,1) (0,0) (1,-2) (1,0) (1,2) (0,1) (0,0) (1/2,lambda) (1,0) (1,1/2) y>lambda y<=lambda y (1,-1/2)
(x,y) (x,x) (0,0,1) (1,0,0) (0,0,1) (0,0,0) (0,1,0) (0,-2,1) (0,0,0) (1,0,0) (x,y) (0,1,0) (0,0,1) (0,0,1) (0,1,1) (x,y+x)
2 We see now that one can connect several d-dimensional ports to a same d-dimensional port in any dimension d 0 d + 2 : One can connect all the I j j2 f 1 : : : k g to Out in dimension d 0 : there exists a PCD system H of dimension d 0 such that, for all j 2 f 1 : : : k g, H realizes the assignment (Id d 1) via input port I j and output port Out.

Proof: Using lemma 4.3, for all j 2 f 1 : : : k g, build a path between I j and Out: generalize to dimension d the construction of gure 10 to merge all the paths. See that dimension d + 1 w ould not be su cient t o connect the paths. 2 

PCD systems can simulate RCT machines

We s h o w n o w that one can realize all the RCT machines instructions: in particular, one can realize the \Zeno instructions". We use an idea of 2]: see gure 11 and gure 12 to understand how i t w orks. See in gure 13 and in gure 14 how to realize the \special instructions". 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 00 00 00 00 00 [START_REF] Koiran | Computing over the reals with addition and order[END_REF] 

y y+lambda (1,lambda) (0,0) (0,1) (1,1) (1,0) (1,lambda) (0,0,0) (1,1,1) (1,0,1) (0,1,1) Input Port Output Port (y,z) (y 
+ lambda z,z)

Output port

Input Port (0,0,1)

Figure 12: Realizing \Zeno instructions": from a PCD realizing y := y + 1] of dimension 2 (on left) one can build a PCD system of dimension 3 (on right) that realizes Zeno instruction (y := y + 1])=z.

De nition 4.1 (Homogenization,Translation) Let R 0 be a r egion of a PCD system of dimension d 0 : that is to say R 0 is a polyhedral subset of R d 0 with some associated s l o p e s 0 = ( s 0 1 : : : s 0 d 0 ) 2 R d 0 . R 0 is said to be homogeneous if the point of of R d 0 of coordinates (0 : : : 0) is in R 0 , w h e r e R 0 is the topological closure o f R 0 .

The translation of region R 0 is the region R of R d 0 +1 de ned b y : R = f(x 1 : : : x d 0 +1 )j0 x d 0 +1 1 ^(x 1 : : : x d 0 ) 2 R 0 g with associated slope s = ( s 0 1 : : : s 0 d 0 0).

If I 0 = ( P 0 B 0 ) is a d-dimensional box of R d 0 , the translation of I is the d + 1 -dimensional box de ned by I = ( P B), where P is the translation of P 0 , B = ( O e 1 : : : e d 0 +1 ), where B 0 = ( 0 e 1 : : : e d 0 ) and e d 0 +1 is the vector of coordinates (0 : : : 0 1).

The homogenization of region R 0 is the region R of R d 0 +1 de ned b y : R = f(x 1 : : : x d 0 +1 )j0 < x d 0 +1 1 ^(x 1 =x d 0 +1 : : : x d 0 =x d 0 +1 ) 2 R 0 g with associated slope s = ( s 0 1 : : : s 0 d 0 0). (o 1 o 2 : : : o d 0 ) are the coordinates of O 0 in R d 0 . Lemma 4.5 Let H 0 be a PCD system of dimension d 0 realizing assignment (f c) (respectively test (R c)) of dimension d via input port Inand via output port Out (resp. via output ports Out + O u t ; ).

If I 0 = ( P 0 B 0 ) is a d-dimensional box of R d 0 ,
Let H be the PCD system of dimension d 0 + 1 whose regions are the translations of the regions of H 0 . H realizes assignment (f c) (respectively test (R c)) c onsidered as an instruction of dimension d + 1 (see de nition 3.3) via input port the translation of Inand via output port the translation of Out (resp. via output ports the translations of Out + and of Out ; ).

Let H be the PCD system of dimension d 0 + 1 whose regions are the homogenizations of the regions of H 0 . H realizes assignment (f=x d+1 c = x d+1 ) (respectively test (R=x d+1 c = x d+1 )) via input port the homogenization of Inand via output port the homogenization of Out (resp. via output ports the homogenizations of Out + and of Out ; ).

Let I = ( P B) be a d-dimensional port of R d 0 . Assume P is homogeneous. If I 0 = ( P 0 B 0 ) and I 00 = ( P 00 B 00 ) denote the translation and the homogenization of I respectively, then P 00 P 0 .

Proof: Immediate from the de nitions: see gure 11, gure 12 or see 3].

2

We distinguish a special type of RCT machines: De nition 4.2 (RCT machine with property * ) Let M = ( Q q 0 q + f q ; f limit ) be a R CT machine.

A state q 2 Q of M is: { at 3] i , for all instantaneous description id of M of type (q x 1 : : : x d , t), f o r s o m e x 1 : : : x d 2 0 1] t2 R + , for all instantaneous description id 0 of M with id 0 `d id, then id 0 is of type (q 0 x 0 1 0 x 0 3 : : : x 0 d t 0 ), for some q 0 2 Q x 0 1 x 0 3 : : : x 0 d 2 0 1] t 0 2 R + .

(0,0) ( (1,0,1) (0,1,0) (0,0,0) (0,lambda,1) { separated 3] i , for all instantaneous description id of M of type (q x 1 : : : x d t ), for some

(x,y) (1,0,0) (x,y+lambda x)
x 1 : : : x d 2 0 1], t 2 R + , for all instantaneous descriptions id 0 and id 00 of M of type (q 0 x 0 1 x 0 2 , . . . ,x 0 d t 0 ) and (q 00 x 00 1 x 00 2 ,. . . ,x 00 d t 00 ) respectively, q 0 q 00 2 Q,x 0 1 : : : x 0 d x 00 1 : : : x 00 d 2 0 1], t 0 ,t 00 2 R + , i f id 0 `d id and id 00 `d id then q 0 = q 00 . M has property i all the states q 2 Q of M are at or separated.

Here is the main theorem of the section: one can simulate a RCT machine by a PCD system: Theorem 4.1

Let M be a R CT machine of dimension d.

One can build a PCD system H of dimension d + 2 that simulates M.

Let M be R CT machine of dimension d with the property *.

One can build a PCD system H of dimension d + 1 that simulates M. Proof: Assume M is of dimension d. Assume either that d 0 = d+2 or that d 0 = d+1 and that M has the connectivity property. Denote M = ( Q q 0 q + f q ; f limit ). For all q 2 Q, denote (q) = ( q + q ; Instr q ).

We prove the theorem by induction over the dimension d and by structural induction over the program of M: w e p r o ve that for all M of dimension d one can build a PCD system H of dimension d 0 : t o e a c h state q 2 Q is associated a d-dimensional box I q and some regions of H such t h a t H realizes the assignment (respectively: the test) Instr q via input port I q and via output port I q + (resp. via output ports I q + and I q ; ) using these regions. Moreover, for all q 2 Q, i f I q = ( P q B q ), then P q is homogeneous i q is not an instruction corresponding to a subprogram of dimension d nor a linear machine instruction. In addition, H h a s a b o x I corresponding to the limit state.

Denote Q 0 Q for the subset of the states of M such t h a t q 2 Q 0 i Instr q is either a special instruction, or a Zeno instruction, or obtained from an instruction of dimension d ; 1 w h i c h is not a linear machine instruction nor a subprogram of dimension d ; 1.

See that Q 0 is empty i f d 2: if d 2 skip the ve following paragraphs.

Consider M 0 = ( Q q 0 0 q + f q ; f limit 0 ) as a program of dimension d ; 1 where, for all q 2 Q, 0 (q) = (q 0 q 00 Instr 0 ) i q + q ; 2 Q 0 q 0 = q + q 00 = q ; , a n d Instr 0 = ( f c) i f Instr q = ( f=x d c = x d ), Instr 0 = ( R c) if Instr q = ( R=x d c = x d ), Instr 0 = ( Id d;1 1) if Instr q is a special instruction of type x d := x d =2 x d ] o r o f type x d := 2x d x d ], Instr 0 = ( x 1 := x 1 x k ]) if Instr q is a special instruction of type x d := x d + x k 2 < k < d , Instr 0 = ( f c) i f Instr q is obtained from the instruction (f c) of dimension d ; 1, and Instr 0 = ( R c) i f Instr q is obtained from the test (R c) of dimension d ; 1.

By induction hypothesis one can build a PCD system H 0 of dimension d 0 ; 1 t h a t s i m ulates M 0 . T o e a c h state q 0 2 Q 0 of M 0 corresponds a d ; 1-dimensional port I 0 q 0 . Moreover, some d ; 1 dimensional box I 0 corresponds to the limit state.

Consider H as the PCD system built as follows: for all q 2 Q 0 , for all region R 0 R d 0 ;1 of PCD system H 0 associated to q: if Instr q corresponds to a special instruction of type x d := x d =2 x d ] o r x d := 2x d x d ], or to a Zeno instruction, then add to H the homogenization of region R 0 and take I q as the homogenization of I 0 q .

if Instr q corresponds to an instruction obtained from an instruction of dimension d ; 1 or a special instruction of type x d := x d + x k 2 < k < d then add to H the translation of region R 0 and take I q as the translation of I 0 q .

For each state q 2 Q 0 such t h a t Instr q is a \special instruction" modify H as follows: if Instr q is of type x d := x d =2 x d ] o r o f t ype x d := 2x d x d ] w e can assume without loss of generality that one region already constructed R of slope s of H corresponding to state q is the homogenization of a region R 0 of H 0 of slope s 0 and that R 0 is of type R 0 = A 0 + 0 1] d 0 ;1 for some point A 0 2 R d 0 ;1 , w h e r e s 0 is of type s 0 = ( v 0 : : : 0), for some v 2 R + . In that case, replace the slope s of R by s = ( v 0 : : : 0 ;v=2) if Instr q is of type x d := x d =2 x d ] and by s = ( v 0 : : : 0 v ) i f Instr q is of type x d := 2x d x d ]. If Instr q is of type x d := x d + x k 2 < k < d , w e can assume without loss of generality that one region already constructed R of slope s of H corresponding to state q is the translation of the translation of the translation of the .. .translation of the homogenization of some region R 00 of R d 0 ;d+k;1 with slope s 00 and that R 00 is of type R 00 = A 00 + 0 1] d 0 ;d+k;1 for some point A 00 2 R d 0 ;d+k;1 , where s 00 is of type s 00 = ( v 0 : : : 0), for some v 2 R + . In that case, replace the slope s of R by s = ( v 0 : : : 0 v ).

All the ports I q constructed up to know are either the homogenization of I 0 q or the translation of I 0 q : but in this latter case, I 0 q is always homogeneous. As a consequence, by lemma 4.5, for all q 2 Q 0 , i t i s true that H realizes the assignment (respectively the test) Instr q via d-dimensional input port I q and via d-dimensional output port I + q (resp. via output ports I + q , I ; q ). Now, for all q 2 Q q 6 2 Q 0 does the following: choose any arbitrary d-dimensional port I q of R d 0 not containing the point of coordinates (0 : : : 0). See that Instr q corresponds to an instruction Instr q that is either equivalent to a linear machine instruction or either a subprogram of dimension d or d ; 1. If Instr q corresponds to a subprogram of dimension d (respectively: d ; 1), by induction hypothesis, one can build some regions of a PCD system H instrq of dimension d 0 (resp. d 0 ;1) that realizes Instr q .

Add to H the regions of H instrq (resp. the translation of the regions of H instrq ) a n d a p a t h o f t i m e 1=2 b e t ween the d-dimensional port I q of H and the input port of H instrq (resp. and the translation of the input port of H instrq ) and a path of time 1=2 b e t ween the output port of H instrq (resp. between the translation of the output port of H instrq ) and the d-dimensional port I q + of H.

If Instr q corresponds to a linear machine assignment ( f c) (respectively: to a test (R c)), by lemma 4.1, build a PCD system H instrq of dimension d 0 that realizes (f c=3) (resp. (R c=3)). Add to H the regions of H instrq and a path of time 1=3 b e t ween the d + 1-dimensional port I q of H and the input port of H instrq and a path (respectively: and two paths) of time 1=3 b e t ween the output port of H instr and the d-dimensional port I q + of H (resp. and the d-dimensional ports I q + and I q ; ).

See that, if d 0 = d + 2 , b y lemma 4.4, all the connections between the ports using the paths can be realized. Now, if d 0 = d + 1, there might be some problems of connections between the paths: however, if we assume that M has the property *, when several d-dimensional ports I q1 I q2 have to be connected to an unique d-dimensional port I q + , w e are sure that this port corresponds to a state q + 2 Q that is either separated or at. If q + is separated, there is no problem since the paths connect I q1 I q2 to di erent subsets of I q + 3]. If q + is at, the paths can be taken of dimension d ; 1 b y ignoring the value of real register x 2 always equals to 0 3]: see gure 15.

De ne I as f(x 1 : : : x d 0 )j0 x d 0 1 ^(x 1 : : : x d 0 ;1 ) 2 I 0 g: I is the translation of I 0 . Add a path from port I to the port I limit .

One gets a PCD system H that simulates M: H realizes the assignment corresponding to the execution of M via input port I q0 and via output port I q + f . Moreover, for all I q = ( P q B q ), P q is homogeneous i q is not an instruction corresponding to a subprogram of dimension d nor a linear machine instruction. This proves the assertion for dimension d from the assertion in dimension d ; 1. 2 Any language of ! k 0 can be f u l l y -r ecognized by a PCD system of dimension 2k 0 +3in nite continuous time.

Any language of ! k 0 +1 can be fully-recognized by a PCD system of dimension 2k 0 + 4 in nite continuous time.

Any language of ! k 0 can be semi-recognized by a PCD system of dimension 2k 0 +3in nite continuous time.

Any language of ! k 0 +1 can be semi-recognized by a PCD system of dimension 2k 0 + 4 in nite continuous time.

5 Upper bounds on the computational power of PCD systems

In this section, we show that theorem 4.2 is optimal. We start by some geometrical considerations. Note that given a rational PCD system H = ( X f) a n d k = d 0 or k = d 0 + one can e ectively compute LocDim(H k ) de ned as the set of the points x 2 X that have a local dimension equal to k.

The idea is that if a point x is of local dimension (d 0 ) + in a PCD of dimension d, to study the trajectories in a neighborhood of x , one can restrict the attention to a PCD system of dimension d 0 .

x* P P x* Figure 17: Proposition 5.1: if x is of local dimension 2 + in a PCD H of dimension 3, the projections on P of the trajectories of H in a neighborhood V of x are the trajectories of a PCD system H x of dimension 2. Proposition 5.1 Let H = ( X f) be a PCD system in dimension d. L et x be a p oint of local dimension (d 0 ) + with d 0 < d . Call P the a ne variety of dimension d 0 which is the orthogonal of in x . I t i s p ossible to construct a PCD system H 0 = ( X 0 = R d 0 f 0 ) in dimension d 0 such that the trajectories of H 0 are t h e orthogonal projections on P of the trajectories of H in V .

Proof: Choose an a ne basis of R d of the form (x e 1 e 2 : : : e d 0 : : : e d ) with (x e 1 e 2 : : : e d 0 ) t a k en as a basis of P and (x e d 0 +1 : : : e d ) t a k en as a basis of . Call p : R d ! R d 0 the projection that ) is true for some rational polyhedron Q and some rational point x 2 Q d , if the trajectory reaches z 1 and z 2 and does not leave Q between z 1 and z 2 , then the trajectory is ultimately cycling and converging to z .

When the hypotheses of lemma 5.3 hold, we denote Cycle ((t 1 z 1 ) (t 2 z 2 ) H Q x ) for the couple (t z ) 2 R R d .

Proof: Denote H x = ( X 0 f 0 ). By lemma 5.1, 0 = p x ( ) must be a trajectory of H x . Fix the origin in x . Cycle(z 1 z 2 H Q x ) implies that there exists some real 0 < < 1 with p x (z 2 ) = p x (z 1 ): see gure 18. By de nition of V x all the regions of H x intersecting p x (V x ) c o n tain p x (x ) in their topological closure. Hence we h a ve f 0 (x) = f 0 ( x), for all x 2 p x (V x ) 2 (0 1]. If 0 (t) is solution to di erential equation _ x d = f 0 (x), then 0 (t) = 0 (t= ) is also solution. As a consequence, for all n 2 2 N, trajectory 0 must reach the point n;1 p x (z 1 ) at time t 1 + ( t 2 ; t 1 ) P n;2 j=0 j : see gure 18.

From the de nition of H x this implies that, for all n 2 2 N, reaches the point z n de ned by p x (z n ) = n;1 p x (z 1 ) and q x (z n ) = q x (z 1 ) + ( q x (z 2 ) ; q x (z 1 )) P n;2 j=0 j at time t 1 + ( t 2 ; t 1 ) P n;2 j=0 j .

Hence, trajectory must reach z at time t : see gure 18. By convexity o f Q, m ust stay i n Q between time t 1 and time t . 2

Sequence of points of local dimension k

We claim:

Lemma 5.4 Let H = ( X f) be a PCD system of dimension d. L et be a t r ajectory of H: is a function from an interval D of R + containing 0 to R d . Assume that we have a bounded increasing sequence (t i ) i2N of real numbers in the domain of function : for all i 2 N, t i < t i+1 , t i 2 D and there exists some T 2 R with t i T for all i 2 N. Denote t = sup i2N t i .

One can always assume that is de ned a t t i m e t .

x = ( t ) is the limit in R d of the sequence ( (t i )) i2N . Let k = ( d 0 ) or k = ( d 0 ) + for some integer d 0 . Assume that for all i 2 N, (t i ) is of local dimension k. L is the set of the one dimensional regions that intersect p x (V x ). L is made of a nite number of segments. Every time the trajectory reaches a point o f l o c a l dimension 2 + , i t r e a c hes L. If the trajectory reaches two t i m e s L in a same segment in points z 1 z 2 then predicate Cycle(z 1 z 2 H V x x 0 ) is true for all rational point x 0 2 x .

Proof: B y a w ell-known result of analysis, since is a continuous function and has a bounded right derivative, can always be extended to a function de ned on t . Since trajectory is a continuous function, x = ( t ) m ust be the limit of sequence ( (t i )) i2N .

Assume that for all i 2 N, ( t i ) is of local dimension k. Denote by d 00 the local dimension of x . B y continuity of , there exists i 0 2 N such that for all i i 0 , ( t i ) 2 V x . F or all i i 0 , point ( t i ) i s o f l o c a l dimension k and is in V x . By considering the dimension of a ne subspace (ti) , f o r a n y i i 0 , one gets d 00 k.

Assume d 00 = k: By some easy geometrical considerations (see gure 16), x is the only point o f l o c a l dimension k in p x (V x ). As a consequence, for all i i 0 , ( t i ) 2 x . Denote by t first the rst point o f local dimension k = d 00 reached by after time t i0 : t first = i n f ftjt 2 R ^t > t i0 ^ (t) 2 LocDim(H k )g. 0 = p x ( ) must be a trajectory of H x . does not reach a n y point of local dimension k at any t i m e t with t i0 < t < t first . One has 0 (t i0 ) = 0 (t first ). As a consequence, for all n 2 N, 0 (t i0 + n(t ; t i0 )) = 0 (t i0 ) and all the points of local dimension k reached by at some time t > t i0 must necessarily be reached at some time t of type t = t i0 + n(t; t i0 ) for some n 2 N. In particular, sequence (t i ) i2N must be a subsequence of sequence (t i0 +i(t;t i0 )) i2N . W e reach a contradiction, since (t i ) i2N is assumed to be a bounded sequence. Hence, it is not possible that d 00 = k and necessarily d 00 > k .

Assume d 00 = ( d 0 + 1 ) o r d 00 = ( d 0 + 1 ) + . The image L of LocDim(H k ) b y p x is a nite set of one-dimensional segments: see gure 19. Since ( 0 (t i )) i i0 is an in nite sequence, there must exists some i 1 < i 2 2 N, z 1 = ( t i1 ) z 2 = ( t i2 ) such that p x (z 1 ) and p x (z 2 ) belong to a same segment o f L, and such that d(p x (x ) p x (z 2 )) < d (p x (x ) p x (z 1 )): see gure 19 or gure 18. Take Q = V x . C h e c k t h a t predicate Cycle(z 1 z 2 H Q x 0 ) is then true for any rational point x 0 2 Q d \ x : Denote (t x) = Cycle ((t i1 z 1 ) (t i2 z 2 )) H Q x ). By lemma 5.3, must be converging to x at time t.

By de nition of Cycle , x must belong to x . As a consequence, x must be of local dimension (d 0 + 1). 2

Corollary 5.1 Let H = ( X f) be a PCD system. Let be a t r ajectory of H Assume that we have a bounded increasing sequence (t i ) i2N of real numbers in the domain of function . Denote t = sup i2N t i .

For all d 0 2 N, only a nite number of the points x i = ( t i ) i2 N are o f l o cal dimension d 0 .

If the local dimension of x = ( t ) is k = ( d 00 ) or k = ( d 00 ) + , d 00 2 N, then all but a nite number of the x i i2 N are o f l o cal dimension (d 00 ; 1) + . Proof: I f s o m e x i is of local dimension d 0 , the dimension d of the PCD system must be equal to d 0 .

If there are a non nite number of points of local dimension d 0 , one can extract from sequence (t i ) i2N an in nite sequence (t 0 i ) i2N such that for all i 2 N, ( t 0 i ) is a point of local dimension d 0 with t = sup i2N t 0 i . This is impossible since by lemma 5.4, x must be of local dimension > d 0 and the dimension of the space must be d 0 .

By the pigeon hole lemma, since the local dimension is bounded by d the dimension of the space, if the second assertion were false, there must exists some d d 000 > (d 00 ) such that one can extract from sequence (t i ) i2N an in nite sequence (t 0 i ) i2N , s u c h that for all i 2 N, ( t 0 i ) is of local dimension d 000 . This is impossible, since by lemma 5.4 one must have d 00 > d 000 . 2 5.2 Some hyper{arithmetical analysis

Representing reals by languages

We represent e v ery point x of R d , d 2 N by the set of the rational polyhedral that contain x. De nition 5.3 (Encoding reals by languages) Let d 2 N. Assume that a representation of the rational polyhedral of R d over is xed. Let x 2 R d . L et L x be the language de ned as the set of the words w 2 that encod e s a r ational polyhedron P of R d such that x 2 P . L x is called t h e language associated to x. F or all x 2 R d , d 2 N, t h e language L x associated t o x, is denoted b y dxe.

We de ne also:

De nition 5.4 (Encoding real sequences)

A real sequence is any function h from N R d to R d for some integers d. For all x 2 R d , the relation associated to h corresponding to x is the langage R h (x) de ned by R h = f<n w P>jn 2 N w2 P2 encodes a rational polyhedron of R d such that P 2 d h(n w x)eg. For all k 2 N, the relation associated to h corresponding to x up to rank k is the langage R <k h (x) de ned b y R h = f<n w P>jn 2 N n <k w2 P2 encodes a rational polyhedron of R d such that P 2 d h(n w x)eg.

Relativizations and the hyper{arithmetical hierarchy

We start by the following lemma: Lemma 5.5 There exists a recursive function g such that, for all y z 2 O, f o r a l l m 2 N, i f m is an H(y)-recursively enumerable index of some set S and if y o z, then g(y m z) is an H(z)-recursively enumerable index of S.

Proof: Denote by h the recursive function of lemma 2.2. Assume y z 2 O, y o z. Assume m 2 N is an H(y)-recursively enumerable index of set S . S is H(z)-recursively enumerable via the machine M H(z) m 00

with oracle H(z) that on input w 2 simulates M H(y) m , but that replaces any query of machine M H(y) m of type \w 0 2 H(y)?", w 0 2 to its oracle by the query \ h(y z) (w 0 ) 2 H(z)?" to oracle H(z).

The number m 00 of this machine depends uniformly in y m and z and can be given by some recursive function g. 2

Lemma 5.6 (Composition) Let X

.

There e x i s t s a r ecursive g such that, for all x y 2 O, H H X (x) (y) m H X (x + 0 y) via g(x y) . There e x i s t s a r ecursive h (resp. a recursive h 0 ) such that, for all m n 2 N x y2 O, i f m is some H X (x)-recursively enumerable index of some set S , a n d i f n is some H S (y)-recursively enumerable index of some set S 0 , then h(x y m n) is an H X (x+ 0 y)-recursively enumerable index (resp. H X (x + 0 y + 0 2)-recursive index) of S 0 . r(m) where r(m) i s a n a n H(y + 0 z k;1 + 0 1) d(t x)e -recursive index of R gk;1 (HyperJump g k;1 ](n Q t x)).

By lemma 5.11, there exists a xed rst order formula F such that for all n 2 N Q2 P t2 R x2 R d , dHyperJump g k;1 ](n + 1 Q t x )e is de nable by f o r m ula F from relation R gk;1 (HyperJump g k;1 ] (n Q t x)) and from some recursive relations. By lemma 5.2, there exists y F 2 O jy F j < ! and a recursive g that maps r(m) t o g(r(m)), where g(r(m)) is an H Rg k;1 (HyperJump gk;1](n Q t x)) (y F )-recursively enumerable index of dHyperJump g k;1 ](n + 1 Q t x )e. By lemma 5.6, there exists a recursive r 0 that maps g(r(m)) to r 0 (g(r(m))), where r 0 (g(r(m))) is an H(y + 0 z k;1 + 0 1 + o y F ) d(t x)e -recursively enumerable index of HyperJump g k;1 ](n + 1 Q t x ).

Denote by h : N ! O the recursive mapping such that r(0) = 1 r (n + 1 ) = r(n) + 0 z k;1 + 0 1 + o y F for all n 2 N.

As a consequence, for all n 2 N, R <n HyperJump gk;1] is semi-recognized by the machine with oracle H d(t x)e (h(n ; 1)) that on input <n Q P> , compute for i = 1 : : : n ; 1 a n H d(t x)e (h(i ; 1))-recursively enumerable index m i of HyperJump g k;1 ] ( i Q t x) from the H d(t x)e (h(i;2))-recursively enumerable index m i;1 of HyperJump g k;1 ](i ; 1 Q t x ) b y the formula m i = r 0 (g(r(m i;1 ))) and then simulate the machine with oracle of number m n;1 . This machine has a xed number independent o f t x.

Let n 2 N Q2 P t2 R x2 R d be xed. Assume we h a ve H(y) d(t x)e -recursively enumerable index m of CycleFree g k;1 ](n Q t x), where m 2 N y2 O. By lemma 5.6, there exists a recursive r that maps m to r(m) where r(m) i s a n H(y + 0 h(n ; 1) + 0 1) d(t x)e -recursive i n d e x o f R <n HyperJump gk;1] (CycleFree g k;1 ](n Q t x)). By lemma 5.12, there exists a xed rst order formula G such that for all k 2 N Q 2 P t2 R x2 R d , dCycleFree g k;1 ](n + 1 Q t x )e is de nable by G from relation R <n HyperJump gk;1] (CycleFree g k;1 ](n Q t x)) and from some recursive relations. As before, by lemma 5.2, and by lemma 5.6, there exists some recursive g and r 0 that maps m to r 0 (g(r(m))) an H(y+ 0 h(n;1)+ 0 1+ o y G ) d(t x)e -recursively enumerable index of CycleFree g k;1 ](n + 1 Q t x ), for some xed y G 2 O jy G j < ! .

Denote by l : N ! O the recursive mapping such t h a t l(0) = 1 l (n + 1 )=r(n) + 0 h(n ; 1) + 0 1 + o y G for all n 2 N. T ake z k = 3 :5 p where p 2 N is the number of recursive function l. R CycleFree gk;1] is semi-recognized by t h e m a c hine with oracle H d(t x)e (z k ) that on input <n Q P> , compute for i = 0 1 : : : nan H d(t x)e (l(i))-recursively enumerable index m i of CycleF ree g k;1 ](i Q t x) from the H d(t x)e (l(i ; 1))-recursively enumerable index m i;1 of CycleFree g k;1 ](i ; 1 Q t x ) ( m i = r 0 (g(r(m i;1 )))) and then transform H d(t x)e (l(n))-recursively enumerable index m n of CycleF ree g k;1 ] (n Q t x) i n to a H d(t x)e (z k ) index m of CycleFree g k;1 ](n Q t x) using lemma 5.5, and then simulate the machine with oracle of number m. T h i s m a c hine has a xed number n k . independent o f t x. If a language L is semi-recognized by a PCD system of dimension 2k + 3in nite continuous time then L 2 ! k.

If a language L is semi-recognized by a PCD system of dimension 2k + 4in nite continuous time then L 2 ! k +1 . Proof: It is clear that for all x 2 Q d , dxe is recursive with a recursive index computable from x.

Let k 1. By lemma 5.13, one can build a sampling g k up to local dimension (3 + 2k) + and there exists some xed n k , and some xed z k z k 2 O jz k j = ! k such that, for all t 2 R x 2 R d , W H d(t x)e (zk) nk = R gk (t x).

Let H = ( R d f J x 1 x 0 ) be a PCD system of dimension d recognizing language L. Assume d = 2 k + 3: all the points of H have a local dimension (2k + 3). As a consequence g k can not be Zeno for any Q t x. L is semi-recognized by t h e m a c hine with oracle H(z k ) that on input n 2 , compute the H(z k )-recursively enumerable index m of S = R gk (0 J (n) 0 : : : 0), and then by simulating M H(zk) m , tests for i = 0 1 : : : 1 if < i x 1 x 1 >2 S. It there is such a n i, the machine accepts. If no i is found, the machine continues for ever. Assume d = 2 k + 4 . By lemma 5.1, we know that all the points of local dimension d are rational points. Denote Reach = f<x y i>jx y 2 Q d i 2 N <i y y> 2 R gk (0 x )g. Reach is H(z k ) recursively enumerable by the machine that on input < x y i > computes the H(z k )-recursively enumerable index m of R gk (x), and then simulates M H(zk) m on input <i y y> . As a consequence, there exists a rst order formula H with a quanti er 9 and 0 alternation such t h a t Reach is de nable from formula H from some H(z k )-recursive relations: see 16].

De ne the following relation OneStep = f< x x 1 > jx 2 Q d x 1 is a point of local dimension d and the trajectory starting from x reaches x 1 g . W e claim that OneStep is de nable by some rst order formula F from relation Reach: write F as the formula that says that x 1 is in LocDim(H d 0 + 1) and that either there exists some i 2 N such t h a t < x x 1 i> 2 Reach, o r g k is Zeno for x 1 0 xand there exist some i 0 and some open polyhedron x 0 with < x x 0 i> 2 Reach, x 0 V x 1 and for all i i 0 , n o t < x V c

x 1 i> 2 Reach, where V c

x 1 is the complement of polyhedron V x 1 in R d .

If < x x 1 >2 OneStep, it is clear that the formula must be true. Assume now t h a t t h e f o r m ula is true:

if there exists some i 2 N such t h a t < x x 1 i> 2 Reach, w e are done: < x x 1 >2 OneStep. Assume now that the second clause of the disjunction is true: we k n o w that the trajectory starting from x is Zeno. Hence (g k (i x 1 0 x ) = ( t i x i )) i2N is a converging sequence converging to some point x at time t = sup i2N t i . Since g k is a sampling up to local dimension (3+2k) + , x must be of local dimension d. Since is Lipschitz, since V x 1 is an open polyhedron, we know that for some big enough i 1 , for all t i1 t < t , ( t) 2 V x 1 . Hence, we m ust have x 2 V x 1 , where V x 1 is the topological closure of V x 1 . B u t , x 1 is the only point o f l o c a l dimension d in V x 1 . Hence x = x 1 .

See that formula F starts by a quanti er 9 and has 1 alternation. Now, see that L is de nable by some rst order formula G from relation Reach, from relation OneStep and from some recursive relations: write that n 2 L i there exists m 2 N, and an integer encoding m rational points x 1 x 2 : : : x m , such that for all 1 i < m < x i x i+1 >2 OneStep, a n d x 0 = ( J (n) 0 : : : 0), and there exists some i 2 N, with < x m x 1 i> 2 Reach.

Substitute every occurrence of relation OneStep in formula G by f o r m ula F and every occurrence of formula Reach b y formula H. One gets a resulting formula de ning L from some H(z k ) recursive relations starting with a quanti er 9 and with 1 alternation. By lemma 5.2, L 2 H(zk) 2 = ! k +1 .

2 We get immediately from theorem 4.2 and from proposition 5.3: Theorem 5.2 Let k 0 0.

The languages that are fully-recognized by a PCD system of dimension 2k 0 +3in nite continuous time are p r ecisely the languages of ! k 0 .

The languages that are fully-recognized by a PCD system of dimension 2k 0 +4in nite continuous time are p r ecisely the languages of ! k 0 +1

The languages that are semi-recognized by a PCD system of dimension 2k 0 +3in nite continuous time are p r ecisely the languages of ! k 0 .

The languages that are semi-recognized by a PCD system of dimension 2k 0 +4in nite continuous time are p r ecisely the languages of ! k 0 +1 Proof: The assertions for k 0 = 0 are immediate consequences of theorem 5.1 and of 6]. Now, assume k 1. The two last assertions are proposition 5.3 and the two rst assertions are immediate by considering the complement of the language recognized by the PCD system and by s w apping the role of the point o f acception and of the point of rejection.

2 In other words, we h a ve a full characterization of the computational power of rational PCD systems.

Figure 1 :

 1 Figure 1: A PCD system in dimension 2.

Figure 2 :

 2 Figure 2: Some examples of computations by a PCD system.

Figure 3 :

 3 Figure 3: Zeno's paradox: at nite continuous time 5x = 2 :5(x + x=2 + x=4 + : : : ) the trajectory is in (0 0), but it takes a trans nite discrete time ! to reach this point.

  It is su cient to consider program Enc d as the following RCT program: x 2 to I(# number(w) )*/ x d := 1 while (x 2 6 = 0 ? ) do /*Do number(w) times x 1 := x 1 =3 x d = x d =3 * / x 2 := b (x 2 ; (2 #)=b ) x 1 := x 1 =3 x d := x d =3 end while /*Now, while x d 6 2 (1=2 1] multiply x 1 and x d by 2*/ while (x d 1=2?) do x 1 := 2x 1 x d := 2x d end while And program Dec d as: Algorithm 7 Dec d x 2 := 0 /*Do n := 0: set x 2 = I(# 0 )*/ while (x d 6 = 1?) do /*While (x d 6 = 2 k =3 n for some k) d o */ x 2 := x 2 =b + # =b /*Do n := n + 1 : t r ansform x 2 = I(# n ) into x 2 = I(# n+1 )*/ x d := 3x d while (x d > 1?) do x d := x d x 1 = I(w n ).*/ 2

  Proof: Denote by Enc d+1 and Dec d+1 the programs of lemma 3.4, and by E : I ! (1=2 1] the function of lemma 3.4. Take P de ned as follows: Algorithm 8 Program P Enc d+1 /*Maps x 1 = y 1 to x 1 = E(y 1 )y 1 x d+1 = E(y 1 )*/ (P=x d+1 ) (Div2 xd+1 ) /*Simulate P on input y 1 */ while (x d+1 1=2? 1]) do x d+1 := 2x d+1 1] end while /*If it stops then undo all the divisions by 2 done on variable x d+1 during the simulation. At the end of the while loop we have x d+1 = E(y 1 ).*/ Dec d+1 /*Map x d+1 = E(y 1 ) to x 1 = y 1 .*/ x d+1 := 0 1] x 2 := 0 1] Accept /*And accept.*/ limit : Reject /*Else reject.*/ Let x 1 : : : x d x d+1 2 0 1] be xed. If (x 1 : : : x d ) is not accepted by P, then from lemma 3.3, (x 1 : : : x d x d+1 ) is rejected by this program, and all the registers are set to 0. Now, assume (x 1 : : : x d ) is accepted: by the proof of lemma 3.3, RCT program (P=x d+1 ) (Div2 xd+1 )

By lemma 3 4

 34 .6, S and S 0 are respectively semi-recognized by s o m e !-clocked programs P k;1 P 0 k;1 in dimension k + d 0 ; 2. Denote Pk;1 , P 0 k;1 the programs that one gets by applying lemma 3.5 on P k;1 and P 0 k;1 respectively. S is fully recognized by the following RCT program M k : Let S be a discrete language. Assume S 2 k , k 1. Then S is semi-recognized b y a n !-clocked R CT program of dimension 1 + k. Assume S 2 k , k 1. T h e n S is fully-recognized b y a R CT program of dimension 1 + k. Proof: Immediate from theorem 3.1, and from lemma 3.6 and lemma 3.7 respectively with B = . 2 3.4 RCT machines and the hyper-arithmetical hierarchy 3.4.1 Realizing any 2PDA program in time kx d+1

  */ while ((T o p 1 (")?)=x d+1 ) do (P o p 1 ("))=x d+1 /*Get back to x d+1 = 1 =n by undoing the Div2 d+1 instructions*/ Mu l 2 d+1 end while Program M 0 is executed in a time bounded above b y k M 1=2 n for some xed k M 2

  in a time bounded b y k 1 1=2 n for some k 1 : s e e lemma 3.3.*/GoUpOrDown/*Call some Mu l 2 d+1 =Div2 d+1 instructions to get x d+1 = 1 =2 m */ x d+2 := x d+2 + x d+1 x d+1 ] /* Add 1=2 m to x d+2 */ GoUpOrDown /*Call some Div2 d+1 =Mu l 2 d+1 instructions to get x d+1 = 1 =2 n *x 1 = J (# n m$w)=2 n , x 2 = I(w 0 )=2 n in time bounded b y k 2 1=2 n for some k 2 .

3 . 4 . 4

 344 w 00 the n th word of the enumeration given by M f */ 0 B B B B B B B B B B B B B B @ (w 00 $w L # n $w$w 0 $u n ) 7 ! (# n m$w L alreadyin$w$w 0 $u n+1 ) where w w 0 w 00 2 w L 2 ! n u n u n+1 2 N alreadyin 2 m = b 0 (number(w) + length(w$w 0 $) + 1) ;2( ; ) if w 00 2 D un then alreadyin = # , u n+1 = u n else alreadyin = $ , D un+1 = D un f w 00 g 1 C C C C C C C C C C C C C C A jx d+1 if ((T o p 2 ($))=x d+1 ) then /*If word w 00 has not been yet output*/ (P o p 2 ($))=x d+1 WriteDigit d+2 /*Then change the digit of real register x d+2 corresponding to w 00 from value to value . back the result in the good form*/ 2 Climbing up the hyper{arithmetical hierarchy

  back in x 1 the value of w H(z) */ 2 4

4 (

 4 replace in program M k all the other instructions of type 2

Lemma 4 .

 4 1 (Basic linear machine instructions) Let d 2 N. L et d 0 d + 1 . Let I = ( f c) 2 Assgnmt d be an admissible assignment (respectively Let I = ( R c) 2 Test d be a n admissible test) of dimension d. Assume that I is one of the \linear machine instructions" of de nition 3.5.

Figure 5 :

 5 Figure 5: PCD systems realizing y := y 1], y := y + 1],y := 1] and y > ? 1 ] .

Figure 6 :Figure 9 :

 69 Figure 6: PCD systems realizing y := x 1] and y := y + x 1].

Lemma 4 . 4 (

 44 Merging paths) Let d 2 N. L et d 0 d + 2 be some integer. Let I 1 : : : I k be some ddimensional boxes. Let Out be a d-dimensional box.

Figure 10 :

 10 Figure 10: Connecting several 1-dimensional ports I 1 I 2 I 3 to a same 1-dimensional port Out in dimension 3.

Figure 11 :

 11 Figure 11: The homogenization of a PCD system of dimension d = 2 : 2 ].

  the homogenization of I is the d + 1 -dimensional box de ned b y I = ( P B), w h e r e P is the homogenization of P 0 , B = ( 0 e 1 : : : e d 0 +1 ) where B 0 = (0 0 e 1 : : : e d 0 ), O has coordinates (0 : : : 0), e d 0 +1 is the vector of coordinates (o 1 o 2 : : : o d 0 1) where

Figure 13 :

 13 Figure 13: Some PCD systems realizing instruction x d := x d =2 x d ] and instruction x d := 2x d x d ].

Figure 14 :

 14 Figure 14: Some PCD system realizing instruction y := y + x x].

Figure 15 :

 15 Figure 15: Realizing entrances to input ports of separated (left) and at (right) states 3]. We claim: Proposition 4.1 All the theorems and lemmas proved u p t o k n o w c an be p r oved u s i n g R CT machines with property * Proof: W e s a y t h a t a R CT program M has the property ** if, in all the IDs of the computations of M, real register x 2 h a s a v alue in I. Check that all the programs obtained up to now h a ve the property **. It is easy to use the trick of claim 17 of 3], to transform any R CT program with the property * * i n to a RCT program with the property *: transfer all the data from the second real register to the rst one when a critical transition must be done: see 3]. 2 As a consequence, we get immediately from theorem 4.1 and from theorem 3.5: Theorem 4.2 Let k 0 0.

Figure 16 :

 16 Figure16: From left to right: x is of local dimension 1 + 2 + 3 in a PCD system of dimension 3.5.1 Geometrical considerations5.1.1 Local dimensionWe de ne: De nition 5.1 (Local dimension) Let H = ( X f) be a PCD system in dimension d. L et x be a p oint of X. L et be a p olyhedral subset X of maximal dimension d ; d 0 (1 d 0 d) s u c h t h a t t h e r e exists an open convex polyhedron V X, with x 2 \ V , V , and such that, for any region F of H, F \ V 6 = implies F (F is the topological closure o f F). If d 0 < d then x is said to be o f local dimension d 0 + . I f d 0 = d then x is said to be o f local dimension d 0 and we can always choose V small enough such that x is the only point of local dimension d 0 in V : s e e gure 1 6 .

Figure 18 :

 18 Figure18: If predicate Cycle(z 1 z 2 H Q x ) is true for some rational polyhedron Q and some rational point x 2 Q d , if the trajectory reaches z 1 and z 2 and does not leave Q between z 1 and z 2 , then the trajectory is

Figure 19 :

 19 Figure19: Proof of lemma 5.4: here d = d 0 = 3 . L is the set of the one dimensional regions that intersect p x (V x ). L is made of a nite number of segments. Every time the trajectory reaches a point o f l o c a l dimension 2 + , i t r e a c hes L. If the trajectory reaches two t i m e s L in a same segment in points z 1 z 2 then predicate Cycle(z 1 z 2 H V x x 0 ) is true for all rational point x 0 2 x .

) marked with all the instructions marked. Moreover, when P is marked, we consider that P=x d+1 is marked, where the marked instructions of P=x d+1 are the instructions corresponding to the marked instructions of P . In particular, if R is a program, and P is a marked program then (P=x d+1 ) R is the program that one gets by transforming all the instructions of P by transformation =x d+1 and by inserting a copy o f R at each instruction corresponding to a marked instruction of P.Let d 2 b e a n i n teger. We will use the following program:Algorithm 3 Program Div2 d+1 x 1 := x 1 =2 x d+1 ] x 2 := x 2 =2 x d+1 ] . . . x d;1 := x d;1 =2 x d+1 ] x d := x d =2 x d+1 ] x d+1 := x d+1 =2 x d+1 ]And the following program:Algorithm 4 Program Mu l 2 d+1x 1 := 2x 1 x d+1 ]x 2 := 2x 2 x d+1 ] . . . x d;1 := 2x d;1 x d+1 ] x d := 2x d x d+1 ]

That is to say B is an a ne basis of V , w h e r e V is the minimal a ne variety s u c h that P V .

We do not assume here that I is necessarily an admissible assignment.

The number of alternations is the number of pairs of adjacent but unlike quanti ers in the pre x of the prenex formula 16].

for all x 1 : : : x d 0 , f(x 1 : : : x d 0 ) = ( x 0 1 x 0 2 : : : x 0 d 0 ), x 0 k = 0 f o r a l l k 6 2 f i j d + 1 g and (x 0 j x 0 i x 0 d+1 ) = f 0 (x j x i x d+1 ).

To realize a linear machine instruction of cost instead of 1, multiply all the slopes in the PCD system by 1 = . For any a ne function c : 0 1] d ! R + , one can build a delay module of time c plus some constant i n dimension d 0 : for all a ne function c : 0 1] d ! R + , there exists some 2 R + , such that one can construct a PCD system of dimension d 0 that realizes assignment (Id d c + ).

Proof: T ake some big enough k k 0 2 R and construct a PCD system as in gure 7. 2 (0,1,0) (0,0,0)

(1,0,0) (x,y) (x,y) (0,0,k') (0,0,1/2) (0,0,1) hyperplane of equation z=c(x,y)+k Now, see that one can build some \paths" using the regions of a PCD system: for all 2 R, d e n o t e abusively by the constant function of 0 1] d whose value is : 8x 2 0 1] d (x) = . Lemma 4.3 (Paths) Let d 2 N. L et d 0 d + 1 be a n i n t e ger. Let Inand Out be t w o d-dimensional boxes of R d .

For all 2 R + , o n e c an build a path of time between Inand Out in dimension d 0 : for all 2 R + , o n e can build a PCD system of dimension d 0 that realizes the assignment (Id d ) via input port d-dimensional box Inand output port d-dimensional box Out. sends (x 1 x 2 : : : x d ) t o ( x 1 : : : x d 0 ). By hypothesis, in V the regions are organized as a `pencil of regions': therefore speed in point ( x 1 x 2 : : : x d 0 : : : x d ) 2 V does not depend on the coordinates x d 0 +1 x d 0 +2 : : : x d .

The reader can check that H 0 = ( X 0 = R d 0 f 0 ) where f 0 (x 1 x 2 : : : x d 0 ) = p(f(x 1 x 2 : : : x d 0 0 : : : 0)) is a solution. See gure 17. 2 For any point x , the corresponding open convex polyhedron V is denoted by V x . H 0 , are respectively denoted by H x and x . I f d 0 < d we denote by p x and q x the functions that map all point x 2 X onto its orthogonal projection on P and onto its orthogonal projection on respectively. I f d 0 = d, w e d e n e p x and q x as respectively the identity function and the null function.

A rational polyhedron is any polyhedron whose equation can be written using only rational numbers.

When H is a rational PCD system, see that for all point x 2 R d , one can always choose V x and x such that they are rational polyhedral, even if x has some non rational coordinates.

We assume the natural order 1 < 1 + < 2 < 2 + < : : : .

Fundamental properties of points of low or high local dimension

Next lemma is easy:

Lemma 5.1 For all d 2 N, a n y p o i n t o f l o cal dimension d of any rational PCD system is a point with rational coordinates.

Proof: See that if x is a point of local dimension d of some PCD system H (H must be of local dimension d), then the intersection of all the regions of H that intersect V x is reduced to singleton fxg. Since all the regions must be rational polyhedral, the unique point o f t h e i n tersection must have rational coordinates: see gure 16. 2 In 6], we p r o ved: Lemma 5.2 ( 6]) Let H = ( X f) be a PCD system of dimension d. L et be a t r ajectory of H of nite continuous time T c and discrete time T d ! converging to x = ( T c ). Assume that x is of local dimension d 0 3 + . T h e n n e cessarily the signature o f is ultimately cyclic.

Trajectories that make some cycles

We de ne the following relation Cycle: see lemmas 5.3 and lemma 5.4 for the motivation.

De nition 5.2 (Relation Cycle) Let d be a n i n t e ger. Let H be a PCD system of dimension d. L et z 1 z 2 be two points of R d . L et x 2 Q d \ X be a r ational point. Let Q be a r ational polyhedron.

We say that Cycle(z 1 z 2 H Q x ) is true i all the following conditions hold simultaneously (see gure

Q is a open convex polyhedron and z 1 z 2 2 Q. z 1 6 = z 2 , z 1 z 2 6 2 x and the line (z 1 z 2 ) de ned b y z 1 and z 2 intersects x in some point z . z 2 Q, w h e r e Q is the topological closure o f p olyhedron Q.

d(p x (z 2 ) p x (x )) < d (p x (z 1 ) p x (x )). Recall that d denotes the distance of the maximum. Note that we h a ve a l w ays p x (x ) = x . W e p r o ve rst that any positive instance of this problem implies that the trajectory is cycling: see gure 18.

Lemma 5.3 Let H be a PCD system of dimension d. L et be a t r ajectory of H. L et z 1 z 2 2 R d be t w o points reached b y at time t 1 t 2 2 R + respectively with t 1 < t 2 . L et x 2 Q d . L et Q be a r ational polyhedron.

Assume Cycle(z 1 z 2 H Q x ) is true and that the trajectory stays in Q between time t 1 and time t 2 : 8t 2 t 1 t 2 ] (t) 2 Q.

Then trajectory is cycling and reaches the point z of de nition 5.2 at time t = t 1 + P 1 j=0 j (t 2 ;t 1 ) = t 1 + ( t 2 ; t 1 )1=(1 ; ), w h e r e 2 (0 1) is such that d(p x (z 2 ) p x (x )) = d(p x (z 1 ) p x (x )).

Moreover the trajectory stays in Q between time t 1 and time t : for all t 2 t 1 t ), (t) 2 Q.

Proof: There exists a recursive f, such that for all n 2 N, A B , i f A m B via n , t h e n A 0 m B 0 via f(n) 16]. Denote by n 0 any i n teger such t h a t n0 is the identity function.

Let z x2 N be given, de ne by

f( z (y)) if y = 2 p for some p 2 N n 0 if x = 3 :5 q q2 N, w h e r e n 0 is the number of the Turing machine such that n 0 (< u

for all u 2 v2 O. 0 otherwise is partial recursive and an index for can be obtained uniformly from x and z. T h a t i s t o s a y, there is a recursive l such that = l(z x) . Applying the xed point theorem 16], we obtain a recursive function n such that n(x) = l(n(x) x) . T ake g as xy: n(x) (y). g is such that for all x y 2 O, H H X (x) (y) m H X (x + 0 y) via g(x y) .

Assume m 2 N is some H X (x)-recursively enumerable index of set S , a n d n 2 N is some H S (y)recursively enumerable index of some S 0 . By proposition 2.1, we h a ve S m H X (2 x ) = ( H X (x)) 0 via some l . As a consequence, H S (y) m H H X (2 x ) (y) via some l 0 : s e e 1 6 ] and H S (y) m H X (2 x + 0 y). For all x y 2 x + 0 y o 2 x+0y . H e n c e , H S (y) m H(2 x+0y ) via some l 00 and by proposition 2.1, S 0 is recursively enumerable in H X (x + 0 y) with an index n 0 . N o w, see that l l 0 l l 0 n 0 can be computed e ectively from m and n, y and x: see 16]. Hence, n 0 can be given as a recursive function h of m n x y. Now, if S 0 is recursively enumerable in H X (x + o y), it is recursive i n H X (x + 0 y + o 2) with a recursive index computable from any H X (x + o y + o 2) recursively enumerable index of S 0 : t h i s p r o ves the existence of recursive h 0 . 2

Languages rst order de nable

We will not distinguish the relations on from the languages over : a relation R or arity k over is considered as the language f< n 1 n 2 : : : n k > jR(n 1 : : : n k )g . De nition 5.5 (First order de nition 16]) Let F a 1 : : : a n a rst{order logic expression with free variables a 1 : : : a n : that is to say F a 1 : : : a n is built up from quanti ers 9 8, =, sentential connectives ^ _ ) :

and relation symbols R 1 R 2 . . . ,R k Let the relation symbols R 1 R 2 : : : R k be interpreted a s c ertain xed r elations T 1 : : : T k .

Then the relation R = f< x 1 : : : x n > jFa 1 : : : a n is true over domain when a 1 : : : a n are i n t e r p r eted as x 1 : : : x n 2 respectively and R 1 R 2 : : : R k are interpreted a s T 1 : : : T k respectively g is said to be de nable by rst order formula F from relations T 1 : : : T k .

In a rst{order logic expression, the quanti cations over functions are not allowed. All the quanti cations are on variables. Here, the variables are interpreted as words of . As an example, if T is some binary relation, then fn 2 j9t 2 T (n t) is trueg is rst order de nable by f o r m ula 9t R (n t) from relation T . Proposition 5.2 (Tarski-Kuratowski algorithm 16])

Let F be a rst order formula. F can always be t r ansformed into a rst order formula in prenex form logically equivalent to F beginning with a quanti er 9. Assume F is a rst order formula in prenex form beginning with a quanti er 9. L et n 2 N be the number of quanti er alternations 3 in formula F. { Let R be a language de ned by formula F from some recursive relations T 1 : : : T k (respectively: de ned by formula F from some A-recursive relations T 1 : : : T k ).

Then R is in the arithmetical hierarchy (resp. in the A-arithmetical hierarchy): R 2 n+1 (resp. R 2 A n+1 ).

{ The dependence o f R on relations T 1 : : : T k is uniform: assume rst order formula F is xed.

There e x i s t s a r ecursive g F , such that, for all n 1 : : : n k 2 N (resp. for all n 1 : : : n k 2 N, f o r all A ), if n 1 : : : n k are r ecursive (respectively: A-recursive) indexes of relations T 1 : : : T k respectively, then g F (n 1 : : : n k ) is an H(y)-recursively enumerable index (resp. is an H A (y)recursively enumerable index) of language R de ned by formula F from relations T 1 : : : T k .

5.3 Sampling a PCD system up to local dimension 3 + 5.3.1 Linear machines and a ne maps De nition 5.6 (Linear machines 13]) A rational linear machine M of dimension d is a nite dimensional linear machine of 13] whose constants are i n Q: s e e 13] for a formal de nition.

A c omputation of M on discrete input w 2 and on continuous input x = ( x 1 : : :

i s a c omputation of M starting from (I(w) x 1 : : : x d 0 0 : : : 0).

Here is an informal de nition: a rational linear machine is a RCT machine of dimension d whose program is made only of the \linear machine instructions" (see de nition 3.5) and whose real registers are not restricted to have a v alue in 0 1] but can have a n y v alue of R. T h us, in a rational linear machine the real registers x i can have a n y v alue of R, all the instructions have cost 1, and all the instructions are of type x i := x i + x k , x i := x j , x i := x i ,x i := , x i := x i + , x i # , where # 2 f > < = 6 =g and 2 Q.

A rational a ne map is any a ne map h : R d ! R d of type h(x) = Ax + b for some rational matrices A B. W e p r o ve:

Lemma 5.7 Let h : R d ! R d be a r ational a ne map: h(x) = Ax + B for some rational matrices A and B.

There exists some n h 2 N such that for all x 2 R d , dh(x)e m dxe via nh .

Proof: W e h a ve h(x) 2 P , for some polyhedron P, i x 2 h ;1 (P ). For all rational polyhedron P , h ;1 (P ) is a computable rational polyhedron. Hence dh(x)e m dxe via the recursive function nh of number n h that maps any encoding of a polyhedron P of R d to an encoding of polyhedron h ;1 (P) o f R d . 2

Rational and Purely rational PCD systems

In 6] the following lemma is proved:

Lemma 5.8 One can build a rational linear machine M such that: if M is given as discrete input a rational PCD system H = ( X f) of dimension d, a nite sequence of distinct regions (F 0 F 1 : : : F j ) of H and as continuous input a point x 2 R d , then M answers the following question:

\Does the trajectory starting from x have a periodic signature o f t y p e (F 0 F 1 : : : F j ) ! and then rea c h a p oint x 2 X of local dimension 3 + at a nite continuous time t ?" whenever the answer is positive, M outputs x and t .

Proof: See that the proof given in 6] can be transformed easily into a linear machine algorithm, using lemma 3.1 and the technics of 10] t o s i m ulate any arbitrary division or multiplication of some real register by some computable rational number. This is clear for most of the instructions of the algorithm given in 6] except, may be, for the instructions of type x i = x 0 i + 1 j=0 Off i (x j 1 x j d 0 0 ): see the notations of 6].

But, check that for any linear map A from R 2 to R 2 (resp. R to R) with a rational matrix, the linear map 1 j=0 A j , when it exists, is always a linear map A from R 2 to R 2 (resp. R to R) with a rational matrix whose coe cients are computable from the coe cients of A. As a consequence, the instruction x i = x 0 i + 1 j=0 Off i (x j 1 x j d 0 0 ) can be simulated by computing the rational matrix of A and by replacing this instruction by x i = x 0 i + Off i ( A(x 0 1 x 0 2 )): see the proof in 6]. 2

Theorem 5.1 Any rational PCD system H of dimension d 4 is purely rational.

There e x i s t s a r ational PCD system of dimension 5 that is not purely rational.

Proof: Let be a trajectory of a PCD system of dimension d 4 starting from a rational point. Assume e n ters a region in a point x = ( t), where x has some non-rational coordinates, and x is the rst point reached by with this property. By lemma 5.1, x must be of local dimension (d 0 ) + for some d 0 . W e m ust have d 0 3. By lemma 5.2, from some time t 0 < t up to time t, the signature of the restriction of to t 0 t ) must be cyclic of type (F 0 F 1 : : : F j ) ! . Let t 0 2 (t 0 t ) with (t 0 ) 2 F 0 . By lemma 5.8, a rational linear machine M with discrete input H (F 0 F 1 : : : F j ) and continuous input x 0 outputs x: it is clear that if a rational linear machine is started with all its continuous inputs in Q, then any v alue output by the machine is in Q. Hence, x cannot have some non rational coordinates. Now, the second assertion is immediate from theorem 4.2 that proves that one can recognize some nonarithmetical sets in dimension 5 and from 6] that proves that any set recognized by a purely rational PCD system is arithmetical. 2 5.3.3 Sampling a PCD system up to local dimension 3 + using linear machines Denote by P the set of the rational polyhedron of R d . W e de ne the sampling of a trajectory: see lemma 5.9 for the motivation.

De nition 5.7 (Sampling of a PCD system) Assume a rational PCD system H = ( X f) of dimension d is xed.

A sampling of H is a mapping g from N P R R d ! R R d with the following properties: assume Q 2 P , t 2 R, x 2 R d are x e d. Denote by the trajectory of H starting from x at time t. { For all k 2 N, g

{ t k+1 t k for all k 2 N. { Only one of two following cases hold: there i s s o m e k 0 2 N with x k0 2 Q NoEvolution(H), and for all k k 0 , x k = x k0 t k = t k0 . t k < t k+1 for all k 2 N and does not reach Q NoEvolution(H) at any time t < sup k2N t k . If there exists a rational number t sup 2 Q such that t k t sup t k < t k+1 for all k 2 N, then sampling g is said to be Zeno for Q t and x. By lemma 5.4, when g is Zeno for Q t and x, the sequence (x k ) k2N is converging to some x = ( t ), where t = sup k2N t k . Sampling g is said to be a sampling up to local dimension l, w h e r e l = d 0 or l = ( d 0 ) + f o r s o m e i n t e ger d 0 d, if for all Q 2 P t2 R x2 R d , w h e n g is Zeno for Q t x, then the point reached a t t i m e t = sup k2N t k has a local dimension > l .

Note that a sampling is a real sequence. See that there exists a xed rst order formula F such that, for all t 2 R x2 R d , the language fQjg is Zeno for Q t xg is rst order de nable by f o r m ula F from relation R g (t x): this formula F is 9t sup 2 Q 8k 2 N t k t sup 8 kx k 6 2 Q NoEvolution(H).

Here is a restatement of a lemma of 6]: Lemma 5.9 Let H be a r ational PCD system.

One can build a rational linear machine M that computes a sampling of H up to local dimension 3 + : there exists a sampling g : N P R R d ! R R d of H and a rational linear machine M that on discrete input < k Q > , k 2 N Q 2 P and on real inputs t 2 R x 2 R d outputs g(k Q t x).

Proof: On discrete input < k Q > k 2 N Q2 P a n d o n c o n tinuous inputs t 2 R x2 R d M starts by subdividing the regions of H if necessary, s o t h a t Q (respectively: NoEvolution(H)) is a nite union of regions of H: denote by m the number of regions of the resulting PCD system. Then M evolves according to the following algorithm:

Algorithm 17 Program M t 0 = t x 0 = x Stop 0 = F a l s e for i = 0 to k ; 1 do if Stop i is true then Set t i+1 := t i x i+1 := x i S t o p i+1 := T r u e .

else Determine the rst m + 1 regions F 0 F 2 : : : F m of the signature of the trajectory starting from x i . Take j, if it exists, as the least integer such t h a t F 0 = F j .

if j exists and all the regions F 0 : : : F j;1 are not in Q NoEvolution(H) then

Using the Turing linear machine of lemma 5.8, test if the trajectory starting from x i has a periodic signature of type (F 0 F 1 : : : F j;1 ) ! and then reach some point x of local dimension 3 + at some nite continuous time t .

if it is so then This algorithm is clearly a rational linear machine algorithm. Denote by the trajectory starting from x at time t. All the t k x k output are such that (t k ) = x k . If there is some k 0 2 N with x k0 2 Q NoEvolution(H), then x k = x k0 for all k k 0 . If for all k 2 N x k 6 2 Q NoEvolution(H), then it clear then t k < t k+1 for all k 2 N and it is easy to see that does not reach Q NoEvolution(H) a t a n y time t < t = sup k2N t k . Assume now, that g is Zeno for Q t x: denote x = ( t ). Assume x is of local dimension 3 + : b y lemma 5.2 there must exist some t k t such that the trajectory starting from x k has a periodic signature of type (F 0 F 1 : : : F j;1 ) ! . By this algorithm, we m ust have t k+1 = t x k+1 = x . This is in contradiction with the de nition of t as t = sup k2N t k , since it implies that t k+2 > t k+1 = t . 2

Sampling a PCD system up to local dimension 3 + using Turing machines

We show that any rational linear machine can be simulated by a T uring machine with oracle:

Lemma 5.10 Let M be a r ational linear machine of dimension k, k 2 N.

Assume M computes some function f M : R d ! R d : for all w 2 , f o r a l l x 2 R d , M started with discrete input w and continuous input x outputs f M (w x) 2 R d .

There exists a recursive h M : ! N such that for all w 2 , f o r a l l x 2 R d , W dxe hM (w) = df M (w x)e. Proof: Assume w 2 and x 2 R d are momentarily xed. We build a Turing machine M 0 with oracle dxe that, on input w 0 2 , simulates M on discrete input w 2 and real input x 2 R d until M accepts and then accepts i w 0 2 d f M (w x)e. For all t 2 N, denote by ( q t x t 1 : : : x t k t ) the ID of M at time t 2 N on discrete input w and real input x. Denote x t = ( x t 1 : : : x t k ) 2 R k . M 0 simulates M as follows: at time t, M 0 has q t t n t 2 N on its tape where dx t e m dxe via nt .

Check that simulating a test of M at time t is equivalent t o a n s w er the question \is (x t 1 x 2 : : : x t k ) i n P ?" for some rational polyhedron P of R k . As a consequence, it can be simulated by M 0 by the query \ nt (P) 2 d xe?" to oracle dxe. M 0 sets n t+1 = n t and sets q t+1 according to the answer of the query.

Check that simulating an assignment o f M at time t is equivalent t o d o i n g ( x t+1 1 : : : x t+1 k ) = h(x t 1 , . . . ,

x t k ) for some rational a ne map h : R k ! R k . As a consequence, it can be simulated by M 0 by setting q t+1

to the state corresponding to the next instruction of M and by setting n t+1 to the number of the Turing machine such t h a t nt+1 = nt ( nh ), where n h is the number given by lemma 5.7 applied on mapping h.

Hence, M 0 simulates all the instructions of M until M accepts at some time t 2 N. T h e n M 0 determines if w 0 2 d f M (w x)e by making the query \ nt (w 0 ) 2 d xe?".

This gives a Turing machine M 0 with oracle dxe that recognizes df M (w x)e. One can easily compute the number of this machine M 0 : t h i s n umber is independent o f x and can be given as a recursive function h M of w 2 . 2 We get: Corollary 5.2 Let H be a r ational PCD system.

There exists a sampling g : N P R R d ! R R d of H up to local dimension 3 + and n 2 N, s u c h that, for all t 2 R, for all x 2 R d , W d(t x)e n = R g (t x), where R g is the relation associated t o g corresponding to (t x).

Proof: By lemma 5.9, there exists a sampling g : N P R R d ! R R d of H up to local dimension 3 + and a rational linear machine M that on input < k Q > , k 2 N Q 2 P and on real inputs t 2 R x2 R d outputs g(k Q t x). By lemma 5.10, one can nd a recursive h M , s u c h that for all k 2 N Q2 P for all t 2 R x2 R d , W d(x t)e hM(<k Q>) = dg(k Q t x)e. T ake n as the number of the Turing machine with oracle that on input <k Q P>simulates the machine with oracle of number h M (< k Q > ) on input P. 2

Sampling a PCD system up to local dimension d

We x in this subsection a PCD system H of dimension d.

HyperJump operation

De nition 5.8 (HyperJump operation) Assume we have a sampling g of H. We de ne HyperJump g] :

where g(k 0 Q t k;1 x k;1 ) = ( t 0 k0 x 0 k0 ), then set HyperJump g](k Q t x) as the limit of the sequence (g(k 0 Q t k;1 x k;1 )) k 0 2N { Otherwise, set HyperJump g](k Q t x) = g(k Q t k;1 x k;1 ) Lemma 5.11 Assume we have a sampling g of H up to local dimension (d 0 ) + for some integer d 0 .

Then:

HyperJump g] is a sampling of H up to local dimension (d 0 + 1 ) + . Assume HyperJump g] is Zeno for some Q 2 P t2 R x2 R d . Then for all k 2 N, x k is of local dimension (d 0 + 1 ) , w h e r e HyperJump g] ( k Q t x) = ( t k x k ), t k 2 R x k 2 R d . For all t 2 R, for all x 2 R d , denote by R g (t x) the relation associated t o r eal sequence g corresponding to (t x).

There exists a xed rst order formula F such that for all k 2 N Q2 P t2 R x2 R d , dHyperJump g](k + 1 Q t x )e is de nable by formula F from relation R g (HyperJump g](k Q t x)) and from some recursive relations.

Proof: By the remark page 42, there exists a xed rst order formula over relation R g (t x) that tells if g is Zeno for Q t x. There exists clearly a xed rst order formula G such that for all real sequence (g 0 (k 0 Q x )) k 0 2N converging to some g 0 (Q x) 2 R d , dg 0 (Q x)e is de nable by f o r m ula G from relation R g 0 (x), where R g 0 denotes the relation associated to g 0 corresponding to x. As a consequence, the last assertion is clear, since de nition 5.8 can be translated directly into a xed rst order formula F that, for all k Q t x, de nes dHyperJump g](k + 1 Q t x )e from some recursive relations and from relation R g (HyperJump g](k Q t x)).

We prove n o w that HyperJump g] is a sampling of H up to local dimension (d 0 + 1 ) + . Assume Q 2 P t 2 R x 2 R d are xed. Denote HyperJump g](k Q t x) = ( t k x k ), t k 2 R x k 2 R d , f o r all k 2 N. Let be the trajectory of H starting from x at time t.

From the fact that g is a sampling it is easy to show b y induction over k that for all k 2 N (t k ) = x k . N o w, if there is some k 0 with x k0 2 Q NoEvolution(H), since g is a sampling, it is clear than x k = x k0 t k = t k0 for all k k 0 . If for all k x k 6 2 Q NoEvolution(H), it is easy to see that t k+1 > t k for all k 2 N. Hence HyperJump g] is a sampling. Assume that HyperJump g] i s Z e n o f o r s o m e Q t x. F or all k 2 N, g must be Zeno for Q t k;1 x k;1 : hence, (t k x k ) is the limit of g(k 0 Q t k;1 x k;1 ) k 0 2 N. Since g is a sampling up to local dimension (d 0 ) + , the local dimension of x k must be > (d 0 ) + for all k 2 N. This proves the second assertion. Denote t = sup k2N t k and x = ( t ). By lemma 5.4, the local dimension of x is > (d 0 + 1 ) + . T h i s proves the rst assertion. 2 5.4.2 CycleFree operation De nition 5.9 (Cycle Free operation) Assume we have a sampling g of H. We de ne CycleFree g] : N

Lemma 5.12 Assume g is a sampling of H up to local dimension (d 0 ) + for some d 0 2 N. Then:

CycleFree g] is a sampling of H up to local dimension (d 0 + 2 ) + . For all k 2 N, t 2 R x2 R d , denote by R <k HyperJump g] (t x) the relation associated t o r eal sequence HyperJump g] corresponding to (t x) up to rank k.

There exists a xed rst order formula F such that for all k 2 N Q2 P t2 R x2 R d , dCycleFree g](k + 1 Q t x )e is de nable by formula F from some recursive relations and from relation R <k

HyperJump g] (CycleFree g](k Q t x)).

Proof: It is easy to see that there exists a xed rst order formula G such that, for all z 1 z 2 2 R d , f< Q x > jQ 2 P x 2 Q d Cycle(z 1 z 2 H Q x ) is true g is de nable by formula G from relations dz 1 e dz 2 e and from some recursive relations. Now, see that there also exists a xed rst order formula H such that dCycle ((t 1 z 1 ) (t 2 z 2 ) H Q x )e is de ned by f o r m ula H from relations d(t 1 z 1 )e, d(t 2 z 2 )e and from some recursive relations. As a consequence, de nition 5.4 can be translated directly into a xed rst order formula F such that, for all k 2 N Q2 P t2 R x2 R d , dCycleFree g](k + 1 Q t x )e is de nable by formula F from relation R <k HyperJump g] (CycleFree g](k Q t x)) and from some recursive relations. This proves the second assertion.

We prove n o w that CycleF ree g] is a sampling of H up to local dimension (

for all k 2 N. L e t b e t h e trajectory of H starting from x at time t.

Using lemma 5.11 and lemma 5.3, it is easy to show b y induction over k that for all k, ( t k ) = x k .

If there is some k 0 with x k0 2 Q NoEvolution(H), since HyperJump g] is a sampling, it is clear than x k = x k0 t k = t k0 for all k k 0 . If for all k 2 N, x k 6 2 Q NoEvolution(H), it is easy to see that t k+1 > t k for all k 2 N. Hence CycleFree g] is a sampling.

Assume that CycleFree g] is Zeno for some Q t x. Denote t = sup k2N t k and x = ( t ). If x is of local dimension > (d 0 + 2 ) + the lemma is proved. Assume now that the the local dimension of x is (d 0 + 2 ) + . For all k 2 N, HyperJump g] m ust be Zeno for Q t k;1 x k;1 . As a consequence, by lemma 5.11 and by lemma 5.4, all the x k k2 N must be of local dimension (d 0 + 1). By corollary 5.1, only a nite number of the x k k2 N must be of local dimension (d 0 + 2), and only a a nite numb e r o f t h e x k k2 N must be of local dimension (d 0 + 1). Hence, there must exists some k 0 2 N such that for all k k 0 x k is of local dimension (d 0 + 1 ) + .

Apply lemma 5.4 on the subsequence (x k ) k k0 : There musts exists k 0 i 1 < i 2 2 N x 2 Q d an a rational polyhedron F such that Cycle(x i1 x i2 H Q x ) is true and such that the trajectory does not leave F between time t i1 t i2 . T ake i 1 and i 2 as the least integers such that the previous property h o l d a n d s u c h that i 2 ; i 1 < i 1 . By de nition 5.4 we h a ve ( t i2+1 x i2+1 ) = Cycle ((t i1 x i1 ) (t i2 x i2 ) H F x ). This is impossible since by lemma 5.4 this would imply that the local dimension of x i2+1 is (d 0 + 2 ) . 2 5.4.3 Outputting recursive sampling Lemma 5.13 For all k 0, one can construct a sampling g k : N P R R d ! R R d up to local dimension ( 3 + 2 k) + . For all t 2 R x 2 R d , denote by R gk (t x) the relation associated t o g k corresponding to (t x).

There exists some n k 2 N, z k 2 O jz k j = ! k if k 1, jz k j = 0 if k = 0 , such that, for all t 2 R x2 R d , W H d(t x)e (zk) nk = R gk (t x)

Proof: W e p r o ve the assertion by induction over k 2 N.

The case k = 0 is corollary 5.2. Assume k 1. Consider g k = CycleF ree g k;1 ]. By lemma 5.12 and by induction hypothesis g k is a sampling up to local dimension (3 + 2k) + . By induction hypothesis, n 0 k;1 is a H d(t x)e (z k;1 )-recursively enumerable index of R gk;1 (t x) for all t x.

Let n 2 N Q 2 P t2 R x2 R d be xed. Assume we h a ve H(y) d(t x)e -recursively enumerable index m of HyperJump g k;1 ](n Q t x), where m 2 N y 2 O. By lemma 5.6, there exists a recursive r that maps m to