
HAL Id: hal-02101789
https://hal-lara.archives-ouvertes.fr/hal-02101789

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a dynamic parallel database machine: data
balancing techniques and pipeline

Thibault Duboux, Afonso Ferreira

To cite this version:
Thibault Duboux, Afonso Ferreira. Towards a dynamic parallel database machine: data balancing
techniques and pipeline. [Research Report] LIP RR-1994-47, Laboratoire de l’informatique du paral-
lélisme. 1994, 2+18p. �hal-02101789�

https://hal-lara.archives-ouvertes.fr/hal-02101789
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Towards a dynamic parallel database

machine�

data balancing techniques and pipeline

Thibault Duboux

Afonso Ferreira
December ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Towards a dynamic parallel database machine�

data balancing techniques and pipeline

Thibault Duboux

Afonso Ferreira

December ����

Abstract

The fast development over the last years of high performance multicomputers makes

them attractive candidates as the base technology for scalable and performance oriented

database applications� In this paper� we address the problem of how to process util�

ity commands while the system remains operational and the data remain available for

concurrent access� In particular� we focus on the on�line reorganization of a dictionary�

a database reduced to its simplest instance� showing its implementation on a multi�

computer� As is the case with implementations of dynamic structures on distributed

memory architectures� a crucial load balancing problem has to be solved� We propose

an elegant solution and prove that it solves this problem� Experimental results are

shown and analyzed�

Keywords� Dictionary Machine� Parallel Data Structures� Parallel Databases� Load Balancing

R�esum�e

Le d�eveloppement des ordinateurs massivement parall�eles rendent ces machines int�eres�

santes pour des applications de bases de donn�ees qui soient extensibles et performantes�

Dans ce rapport� nous abordons le probl�eme de la mise �a jour de ces bases �insertions �

suppressions de donn�ees� tout en les laissant disponibles et op�erationnelles� En partic�

ulier� nous nous penchons sur la redistribution en temps r�eel d�un dictionnaire� la plus

simple des bases de donn�ees� sur une machine parall�ele� Comme pour toute implanta�

tion de structures dynamiques sur des architectures �a m�emoire distribu�ee� il est crucial

de r�esoudre le probl�eme de l��equilibrage de la charge� Nous proposons une solution

pour traiter ce probl�eme� nous prouvons son e�cacit�e et nous analysons les r�esultats

exp�erimentaux obtenus�

Mots�cl�es� Machine dictionnaire� Structures de donn�ees parall�eles� Bases de donn�ees parall�eles�
�Equilibrage de charge�

Towards a dynamic parallel database machine�

data balancing techniques and pipeline�

Thibault Duboux Afonso Ferreiray

Laboratoire de l�Informatique du Parall�elisme

URA ���� du CNRS

Ecole Normale Sup�erieure de Lyon

	��	� Lyon Cedex
�� FRANCE

e�mail� duboux�lip�ens�lyon�fr

Abstract

The fast development over the last years of high performance multicomputers makes them

attractive candidates as the base technology for scalable and performance oriented database

applications� In this paper� we address the problem of how to process utility commands while the

system remains operational and the data remain available for concurrent access� In particular�

we focus on the on�line reorganization of a dictionary� a database reduced to its simplest instance�

showing its implementation on a multicomputer� As is the case with implementations of dynamic

structures on distributed memory architectures� a crucial load balancing problem has to be

solved� We propose an elegant solution and prove that it solves this problem� Experimental

results are shown and analyzed�

Keywords� Dictionary Machine� Parallel Data Structures� Parallel Databases� Load Balancing�

� Introduction

The fast development over the last years of high performance multiprocessor machines makes them

attractive candidates as the base technology for scalable and performance oriented applications� In

order to handle the increasing amount of data and the query complexity� parallelism appears as

one of the most promising research axes for future database applications 	DG
���

A consensus architecture on parallel and distributed database systems has emerged� Such

architecture is based on a shared�nothing hardware design in which processors communicate with

one another only by sending messages via an interconnection network� The data is partitioned

across processors� Data partitioning is therefore the rst step in parallel query optimization� i�e��

�This work was partially supported by Stratag�eme project of the French CNRS and the DRET�
yCNRS�

�

the parallelization of an input query to be executed on parallel machines 	Val
��� Such architectures

were pioneered by Teradata in the late seventies� Di�erent approaches yielded the prototypes XPRS

by Stonebraker 	SPKO���� GAMMA by DeWitt 	DeW
��� and DBS� by Valduriez 	VCB
��� It

should be noted that none of these prototypes have implemented a dynamic data partitioning�

As explained in 	DG
��� loading or reorganizing a terabyte database takes over several days� In

the SQL world� typical utilities create indices� add or drop attributes� and physically reorganize the

data� changing its clustering� Clearly� parallelism is needed if such utilities are to complete within

a reasonable time� Even then� it will be essential that the data be available while the utilities are

operating�

One unexplored and di�cult problem is how to process database utility commands while the

system remains operational and the data remain available for concurrent reads and writes� The

fundamental properties of such algorithms is that they must be online �operate without making

data unavailable�� incremental �operate on parts of a large database�� and parallel�

In this paper� we focus on this on�line reorganization applied to a dictionary� a database reduced

to its simplest instance� The dictionary is an important data structure used in applications such

as sorting and searching� symbol�table and index�table implementations 	Knu���� It is a basic data

type which provides update and retrieval operations on a set of records� There is a unique search

key k from a totally ordered set associated with each record� The standard dictionary operations

are insert� delete and search� In addition� the extract�min priority queue operation may

also be provided 	AHU���� Note that some of these operations require a response to be produced�

The dictionary task can be loosely dened as the problem of maintaining a set of key�record

pairs �k�r�� For simplicity� the record whose associated key is k will be denoted record k� The

dictionaries we consider support at least the following set of operations on its entries�

� insert�k�r�� inserts key�record pair �k�r� in the dictionary�

� delete�k�� deletes record k from the dictionary�

� search�k�� retrieves record k if currently stored� does nothing otherwise�

� extract�min� returns the current minimum record and deletes it�

Insert and Delete can be redundant� An insertion is redundant when the key being inserted

already exists in the dictionary� a deletion is redundant when the key being deleted does not exist�

Because of its general and fundamental capabilities� one important problem consists in designing

special�purpose multiprocessor systems� called dictionary machines� implementing dictionaries of

more or less restricted types� In a dictionary machine� a sequence of instructions �i�e�� requests to

perform dictionary or priority queue operations� is received through an I�O port� The machine

executes the corresponding operations in a pipelined fashion� and reports the responses� if any� via

the I�O port� Thus� performance of such a machine can be measured in terms of the following

parameters�

�

Response time� The elapsed time between initiation and completion of an instruction�

Pipeline interval� The minimum elapsed time between the initiation of two distinct instructions�

Capacity� The maximum number of records that may be stored in the machine�

Several specially designed parallel architectures have been proposed in the literature for the

implementation of dictionary machines on VLSI chips 	Nar���� Almost all proposed designs are

based on the complete binary tree structure 	Lei�
� ORS��� AK��� SA��� LP
�� FC
��� while few

papers report on other topologies� like systolic meshes 	SS���� Cube Connected Cycles �CCC� 	SL���

or hypercubes 	DS�
�� The problem of scalability of these VLSI designs has been studied 	DFG
���

Since those parallel dictionary machines are primarily intended for implementation in VLSI�

one of their main characteristics is complete processor utilization� i�e�� there is one data item per

processor in the system� Only a few papers proposed dictionary machines where the number of

processors is several orders of magnitude smaller than the number of records 	Fis��� OB��� DG
���

Some of them have led to implementations in existing parallel systems as on the Maspar MP�� a

SIMD architecture� and on the Volvox i��� 	Gas
�� DFG
���

In this paper� we consider the implementation of a dictionary machine on a real parallel com�

puter� Our goals are to show that good performance can be achieved with general purpose parallel

machines� and to study the in�uence of the MIMD approach on the algorithms and the results� We

also develop a general technique to dynamically solve the load balancing problem arising in many

on�line applications on distributed memory machines�

We present the main features of our design in the following section� We propose an elegant

solution to the load balancing problem� and show interesting properties of the chosen strategy� The

corresponding implementation is then described and analyzed after a presentation of the target

architecture and its characteristics� necessary to understand the choices made during the imple�

mentation� Some results of our experiments are shown� and gures comparing di�erent executions

are analyzed� We end the paper with some concluding remarks�

� Design issues

In this section� we present all the points and ideas independent of the target architecture� The

ideas of partitions� partial and total sum calculation for balancing were rst introduced in 	DG
���

��� Partitioning the space of the keys

The idea to get a distributed data structure is to split S� the space of the keys� We sort and make a

partition of this space� Each node i will handle a working domain Di� with
S
Di � S and

T
Di � ��

such that if ki � Di and kj � Dj then ki � kj if and only if i � j� One can notice that assuming a

balanced structure� with the same amount of data on each node� means that the distribution law

of the keys is known� Indeed� with this law� it is easy to split S in domains that have the same

�

probability concerning instructions� Saying that processor pi handles Di does not mean that pi can

store all the keys belonging to Di� as the space can be very large and the distribution of the keys

very sparse� Therefore� a bad or moving distribution of the keys may cause a memory over�ow on

a node� even though others are empty�

��� Broadcasting a query and getting the response

Let us consider an instruction to be performed on the �global� dictionary machine� It has to be

broadcast to the processors� to be executed by one of them� After this broadcast� the response

has to be collected on the host� It is important to note here that we take into account the time

necessary for input�output� which is not the case in many other suggested machines�

��� The local data structure� balanced trees

We have now to dene the local data�structure to be stored and maintained on each processor� In

the case of sequential algorithms� balanced trees are the most powerful� Several data structures yield

such balancing� but just a few can support exact balancing along with logarithmic time operations

needed for distributed load balancing� Split and Concat �see Section ����� We have chosen to

work with ����� trees because of these parameters� and used binary colored trees �BCT� where data

are stored in the leaves� to implement them �	Meh����� Refer to Figure � for an example of a �����

tree and its BCT counterpart�

A Search is implemented exactly as in a binary search tree� Insert� Delete� Extract�Min

instructions all have the same behavior� rst� locate the required leaf� then modify this leaf �remove

it or duplicate it� and perform rotations �when necessary� in the path from this leaf to the root�

Each of these instructions are executed in O�logN� time� N being the number of elements in the

tree�

Concat instruction is used to merge two trees� Let H be the height of the rst tree and h the

height of the second tree� We suppose� w�l�o�g�� that H � h� Concat can be described as follows�

�� Selection of the largest node N belonging to level H � h � � in the tree of height H �

�� Creation of a new node� whose left child is the right child of N and its right child is the root

of the other tree�

�� Insertion of this new node as right child of N �with the same rotations in the path as for a

standard insertion��

In the same way� Split instruction is used to split a given number of the largest elements from

a tree� To perform it in optimal time� we append to the content of each inner node the number of

elements in the subtree rooted at that node� This value is updated at each modication in the tree

but does not change the order of complexity� Split is described as follows�

�� Determine the set of vertices to be split�

�

�� Remove the inner nodes at the boundary of the two trees �with a depth�rst traversal��

�� Concat the disconnected branches to their respective trees�

Both of these instructions are executed in O�logN� time�

��� Load balancing the dictionary

So far we have assumed that the distributed data was balanced� i�e�� that the distribution law of

the keys was known beforehand� However� this is not the case in general� and this assumption does

not make sense if the law changes in time� In general� under conditions like real time constraints�

the law is not known� It means that no hypothesis can be made a priori about the key distribution

among the processors� Moreover� the load of a processor �in memory space as well as in work�

directly depends on the size of its data structure� In fact� the larger this structure� the larger the

time for executing one instruction�

To solve this problem� we propose a simple strategy� based on local data exchanges� The

balancing algorithm can be decomposed in two phases� During the rst one� each processor pi

computes TS� the size of the whole data structure� and PSi� the size of the dictionary handled by

processors with a number smaller than i �this for i � ����P � � where P is the total number of

processors�� Formally� with nj the size of the local data structure on processor j �

TS �
j�PX
j��

nj PSi �
j�iX
j��

nj

From this� each processor can compute where there is an imbalance and decide if data have to be

sent to its left� to its right� to both sides or none of them�

The second phase consists of exchanging data with neighbors� according to the previous calcu�

lation� It follows the updates of the dictionary� the size� and the bounds of the working domain on

each processor� After that� the distributed data structure is balanced�

Theoretically� this strategy was proven to be e�cient in 	DG
��� In this paper� we shall show

how to take into account the parameters of real machines in order to design a balancing strategy

that really works�

Let Split�Send�dicti�size�dest� be the function that splits the size smallest �or largest�

data from structure dicti �on the current processor i� and sends them to processor dest� Note that

reception is implicit� Let Concat�Update�dicti� restore a coherent data structure dicti� Let further

MIN and MAX be constants� and DRi and DLi be the amount of data to be sent to the right

and left respectively� If ni is the size of the local data structure dicti on processor pi� the algorithm

for balancing can be written as follows�

Balance Algorithm�

�� Sum Calculation ��

for all i do in parallel

�

TS �
Pj�P

j�� nj �

PSi �
Pj�i

j�� nj �

DLi �
�
TS

P
� i� PSi

�
�

DRi �
�
TS

P
� �P � i� ��� �TS � PSi � ni�

�
�

�� Data Balancing ��

for all i do in parallel

If DLi � MIN Then

Split�Send�dicti� Min�MAX�DLi�� pi����

If DRi � MIN Then

Split�Send�dicti� Min�MAX�DRi�� pi����

Concat�Update�dicti��

ni � ni � Size�Received�� Size�Sent��

Update�boundsi��

The constant MIN corresponds to the minimum number of elements in excess to justify bal�

ancing� MAX is the maximum number of elements sent during a balancing�

One can remark that data are exchanged only between neighbors in the ring� Furthermore� if

DRi � � �or DLi�� processor i only receives data�

Lemma � The following statements are always true�

�� DL� � �

�� DRP�� � �

�� �i � 	�� P � ��� DRi � �DLi��

Proof� Immediate for statements � and �� And� for statement �� we have�

DRi �

�
TS

P
� �P � i� ��� �TS � PSi � ni�

�

�

�
TS

P
� P � TS � �

TS

P
� �i� ��� �PSi � ni��

�

� �

�
�
TS

P
� �i� ��� PSi���

�

� �DLi��

�

Clearly� a good strategy to use Balance e�ciently depends upon the programming mode of

the target architecture� In the following section we shall show how we take it into account in our

implementation�

�

� Solution in the target architecture

Our target architecture� the Volvox machine� is a coarse grained� distributed memory parallel

computer� The implementation we describe below is based on a ring of Dictionary Machines

�DM�s�� as shown in Figure �� Instructions to be executed are pipelined in this ring� Each DM

processes the subset of the instructions belonging to its working domain� and forwards the other

instructions to the next DM� Input �respectively� output� is supposed to come from �respectively�

go to� users outside the machine� being supported by the host�

Instructions sent by the host are analyzed by the processors in the ring� Once a processor

has selected a particular instruction to treat� it will access the local data structure� Algorithms

corresponding to dictionary instructions are described in Section ���� Just recall that search�

insert� delete and extract�min algorithms are locally performed in O�logni� time� where ni

corresponds to the size of a local data structure�

��� The Volvox IS���� a distributed memory architecture

The test�bed for the implementation of our distributed dictionary machine was a Volvox IS��� from

Archipel� The Volvox Supercomputing server �see Figure ��a�� is a distributed memory architecture

implementing the CSP message passing model� It has �� available nodes� accessed via � independent

communication boards lying in a Sun workstation �the host�� Each communication board is a

Transputer T��� with �MB of memory� In order to allow the user to dene any variable topology�

each physical node �see Figure ��b�� is composed of a Transputer T��� with � recongurable

communication links� as a Communication Processor� and an Intel ��� as an Application Processor�

The total memory of a node is formed by �MBytes of Transputer�s private memory plus ��MBytes

RAM independently accessed by the two processors via a double port mechanism� The application

described in this paper takes into account the extensibility of the machine�

An application is described by a set of communicating tasks� Tasks are mapped onto proces�

sors as dened by the user without any limitations except that each i��� can support only one

task� Tasks communicate by primitives from Volvox library� Communication can be synchronous

�blocking� or asynchronous� Message routing is automatic and implicit�

Communication costs can be modeled by the well�known linear model� Thus� for a message of

length L� the time for a communication is� t � ��L� where � is the startup time and � the time for

a byte to be transmitted� Table � summarizes values of � and � for various cases of communication�

between two neighboring Transputers� two neighboring i��� and a T����i��� communication inside

a node� We verify experimentally that � increases with the number of user tasks in the application�

For our application� communications between a T��� and the i��� inside the same node with

system primitives is too slow to be used� Indeed� we need to communicate once for each instruction

processed� and communication takes at least �����s while an elementary instruction manipulating

trees on i��� takes at most ����s �for instance an insertion� see Section ����� To avoid this problem�

we must implement a low level technique via the double�port shared memory�

�

Figure �� A ����� tree and its binary colored implementation�

instructions

DM5 DM4

DM3DM2DM0 DM1

DM p

HOST

answers

Figure �� Architecture of the Dictionary Machine�

O
H

DEV0

DEV1

DEV2

DEV3

T800

T800

T800

T800 IS860

48 xS
T

Node

cache
RAM
16MB

I860T805

4MB
Node

Figure �� �a� The Volvox IS��� architecture� �b� a node of the machine�

�

Communication � �

T����T��� �neighbors� ����� ���

i����i��� �neighbors� ���� ����

T����i��� �same node� ���� ���

Table �� Costs of communications in �s�

QUEUE

RAM I860

selection

T805

processing

RING

sums

Node

Figure �� Organization of the processes�

It is also interesting to compare T����T��� communication costs �at least ����s�� with our

computing cost �at most ����s�� We will analyze the impact of such values in Section ����

��� The parallel dictionary machine

We describe here the global behavior of the proposed dictionary machine� As seen before� each

physical node is a dictionary machine by itself� and they are connected in a ring architecture� The

instructions circulate on the ring� starting at the host� Because of the internal organization of the

nodes of the Volvox parallel computer� we implemented a client�server protocol inside each node

�see Figure ��� The Transputer selects instructions within its working domain� It also forwards

output messages that arrive from its predecessor in the ring�

The binary colored tree storing the elements of the dictionary is located in the i��� memory�

which is used as the actual processing element of the application� The i��� executes the current

instruction� modifying the data structure� Eventual output messages are sent by the i��� directly

to the next node on the ring�

Communications between the two processors of a single node are performed via the shared

memory� It stores a circular queue containing the instructions selected by the selection task on the

Transputer and waiting to be processed by the i���� The head of the queue is controlled by the

processing task on the i���� i�e�� every time an instruction is to be executed� it is extracted from the

queue� Similarly� the selection task on the Transputer controls the tail of the same circular queue�

Every time an instruction is selected from the instruction �ow in the ring� it is inserted into the

queue�

The working domain of a node is given by a lower and an upper bound on the key values�

Any instruction containing a key in that interval should be treated by that node� As described

in Section ���� a dynamic updating of the working domains is essential to ensure load balancing�

For this reason� we add a task on each Transputer� called summation task� to compute total and

partial sums� These values are useful for our distributed load balancing technique� First� these sums

are globally computed� concurrently with instruction processing� and then� instruction processing is

suspended during data balancing� After that� the normal behavior is restored till the next balancing

phase�

��� Details on dynamic load balancing

During the instruction processing phase� summation tasks keep computing total sum and partial

sums� as described in Section ���� The algorithm for computing these sums uses a simple strategy

corresponding to a token circulating two rounds on the ring of nodes� Other strategies were tested

�e�g� on a hypercube structure as proposed in 	DG
��� but the simplest one is also the most powerful

for synchronization reasons on our machine�

When partial and total sums are available� each summation task can evaluate the di�erence

between the size of its local data structure and the average size of the other structures� It can

also evaluate which sides show a decit or an excess �through the values DLi and DRi�� If the

di�erence is large enough� we enter the data balancing phase�

For a node� this balancing phase consists of using split on a part of the local structure to be sent

to the side showing a decit or using concat on a set of elements received from the side showing an

excess� Split and concat are done in O�logni� by the corresponding sequential algorithms described

in Section ����

��� Correctness and Performance Analysis

In this section� we use the following notations�

� L denotes the size in bytes of an element �key� record�� and l the size of a key�

� ti denotes the maximal time for an instruction to be processed locally in a node �tree manip�

ulations��

� tc corresponds to the time for a neighbor�to�neighbor communication of a message containing

an instruction� We assume that tc � � � L� where � and � are machine�dependent values

�linear communication model��

� ts is the time of total and partial sum calculation �during processing phase��

� tb is the time of a balancing phase�

� Int is the minimum pipeline interval between two instructions sent by the host�

� MIN and MAX are machine dependent constants corresponding to numbers of elements�

��

Global consistency of this dictionary machine is ensured by its working mode� Here are some

details of its behavior during balancing phases� Each time two nodes are involved in a balancing

phase� they freeze the instruction �ow upstream on the ring� then they process instructions waiting

in their queues� Only after that they perform the data balancing between them� In this way� we

ensure that every instruction is processed by the node corresponding to the appropriate working

domain�

Furthermore� because the only synchronization mechanism used in the machine is this pairwise

synchronization� our application is deadlock free� This is true if the logical capacity of the nodes is

not exceeded�

De�nition � The logical capacity of a node is N

P
� MAX elements �N is the global physical

capacity of the machine	�

We will see that this logical limit is necessary during balancing phases� Now� we want to prove

that our machine maintains a balanced data structure�

De�nition � The data structure is said to be balanced if and only if DRi � MIN for all i �and

DLi �MIN for all i	�

Lemma � The execution of I instructions can increase the imbalance by at most I�

Proof� The proof is based on the fact that the execution of a single instruction increases the

imbalance by at most one�

As seen previously� the imbalance is dened by DLj � d
TS�j

P
�PSje �the case ofDRj is handled

analogously�� Let us consider DLj before a given instruction� Instr� and after the execution of this

instruction� Suppose that Instr is a delete� Clearly� TS decreases by one� and PSj stays constant

or decreases by one �depending on j�� Hence� DLj does not change or decreases by one� The case

of the instruction insert is symmetric� so an insertion increases DLj by � or ��

Using this result� we can say that I instructions can modify DLj by at most I� for all j� �

In the remainder of this section� we suppose that each node handles at least MAX elements

at the beginning of balancing phases� This restriction is not severe as it just means that the data

structure is not completely empty� However� even if this condition is not true� the balancing strategy

can be applied� It can be shown that the resulting structure is not balanced immediately after one

balancing phase� but becomes more and more balanced in time� This phenomenon is illustrated in

the experimental results by Figure
� A similar analysis for empty structures can be found in the

case of a SIMD implementation 	Gas
���

Proposition � If the instruction
ow is globally frozen during the balancing phase� then� for �xed

values of MIN and MAX� we have the following relation�

If��i � 	���P � ��� maxi�DRi� �MAXjust before balancing� then

maxi�DRi� �MIN� �i � 	���P � ��� just after the balancing phase�

��

Proof� During a data balancing phase� as described in subroutine balance�

�If DRi � MIN Then Split�Send�dicti� Min�MAX�DRi�� pi�����

� Thus� if DRi � MIN � each node can send up to MAX data� which is enough to balance every

DRi�

� If DRi �MIN � Send is not performed� DRi is unchanged� but the proposition still holds�

Since� according to lemma ��DLi � �DRi� we only need to study DRi� �

De�nition � The value MAX �MIN represents the capacity of balancing for a node� i�e�� the

maximum number of elements balanced during one balancing phase�

Lemma � At most ts
Int

instructions are processed between two successive balancing phases�

Proof� Our application alternates processing phases �with sum calculations� and balancing phases�

The partial and total sum calculations are done simultaneously with the processing phase� The

balancing phase starts at the end of this calculation� Therefore� between two successive balancing

phases� instructions arrive and are processed� with a pipeline interval Int� during time ts� �

Hence� there is an imbalance of at most ts
Int

between two successive balancing phases �by

Lemma ��� So� our data structure remains balanced whenever�

MAX �MIN �
ts

Int
�

Now� we want to relax the hypothesis of Proposition � so that dictionary instructions may be

processed on some nodes while other nodes are balancing� This is very important in order to use

the asynchronous capabilities of the host parallel computer at their best�

To ensure e�ciency of our balancing strategy� the capacity of balancing has to be greater than

the number of instructions potentially processed during a complete cycle �processing phase plus

balancing phase��

MAX �MIN �
tb � ts

Int
�

Lemma � The cost of one balancing phase is bounded by�

tb � �ti � � �MAX � �L� l� �����

Proof� During a balancing phase� each node may execute one split �cost� ti�� followed by a send of

size up to MAX elements� followed by one concat �cost� ti�� Since we need to maintain information

from the split tree to ensure a Concat in O�logn� time in the destination node� each element

�of size L� is encapsulated in a structure of size �L � l � ��� bytes� Thus� the cost of the send is

bounded by � �MAX � �L� l � ���� � �

��

Theorem � Our balancing strategy is correct if we respect the following constraint�

MAX �
�� � L���MIN � �ti � � � ts

� � �l� ����
�

Proof� As dictionary instructions are sent sequentially by the host� the pipeline interval for in�

struction processing is at least the time to send an instruction� Int � tc� So�

MAX �MIN �
tb � ts

Int

� MAX �MIN �
tb � ts

tc

	 MAX �MIN �
�ti � � �MAX � �L� l� ���� � ts

� � L�

	 MAX � �� � �l� ����� � �ti � � � ts �MIN � �� � L���

If � � �l� ���� � we obtain the desired constraint�

In a computer with a very small start up time for communication �� � �l� ������ our strategy

is not e�cient in the worst case but it can be used in an average case �when the imbalance does

not reach the capacity of balancing every time�� �

Our strategy for partial and total sum calculations needs �P � � communications to complete

�ts � ��P � ���� � s��� where s is the size of an integer�� As L � s� at most �P instructions are

processed during this time � ts
Int

� �P �� The constraint to be satised is now�

MAX �
�� � L��� �MIN � �P � � �ti � �

� � �l� ����
�

For instance� typical values for a variety of existing machines are� a ring of �� nodes �P � ����

communication rate � equals to ��s� the size of an element L � �� with a key of size l � �� the

time of one local processing of an instruction ti � ����s� and the constant MIN xed to ���

With a communication startup � equals to ����s �the actual value on the Volvox�� we obtain

MAX � ��� which is feasible� Even if � was small �� � ���s�� we would obtain MAX � �
�

which still corresponds to a realistic value�

When P becomes large� it is possible �and even necessary� to implement partial and total sum

calculations so that ts
Int

� O�logP �� see for example 	DG
���

Now� if available local memory is large enough to allow us a larger MAX � we can introduce a

delay between the end of a balancing phase and the beginning of the next sum calculation� Let

WAIT be the number of instructions processed during this delay� We have to maintain the new

capacity of balancing�

MAX �MIN � WAIT �
tb � ts

Int
�

which leads to the following constraint�

WAIT �MAX �MIN �
tb � ts

Int
�

��

0

1000

2000

3000

4000

5000

6000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
i
m
e

(
s
)

Inserted Elements

Figure �� Filling time on � nodes�

0

0.5

1

1.5

2

2.5

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
i
m
e

(
m
s
)

Global Size

Figure �� Int versus current population�

In our machine� with a reasonable value of MAX � ����� we can process
�� instructions during

this delay ���� seconds�� Clearly� we can increase this delay by increasing MAX �

We remark that a ner analysis of the behavior of the queues storing instructions between the

two processors inside each node is not necessary� In fact� with an appropriate value of Int� these

queues are always empty with the exception of the duration of the balancing phases� Queues are

made empty at the beginning of the next processing phase� In our target machine� we x the value

of Int to tc since tc � ti� With a better computation�communication ratio� Int has to be greater

than max�tc�
ti
P
��

Further� we can easily calculate a lower bound for the response time of the dictionary machine�

�P � ��tc � ti� This value is close to the average response time experimentally measured�

��	 Experimental results

Our balancing mechanism has a small cost� To ensure an imbalance of up to � �MAX � ����

for a local capacity of �������� our machine spends � of its time in balancing operations�

The following experimental results were obtained with the values� MIN � �� MAX � �����

L � �� P � �� and waiting time WAIT � Int � ��
s� As the memory of a node is �� MBytes� the

capacity of our dictionary is ������ elements per node�

We can see in Figure � the time to �ll up� the machine� It corresponds to the time spent for

the machine to insert a given amount of elements� It is drawn by a line� up to the capacity of the

dictionary ����� million elements in this conguration��

In Figure �� obviously� the minimum possible pipeline interval is constant whatever the current

population is in the dictionary� The throughput is independent of the amount of data already inside

the machine� This is explained by tc being much greater than ti in this machine� thus Int � tc that

is a constant�

Figure � shows that the communication corresponds to the model proposed� the minimum

possible value for the pipeline interval increases linearly with the size of the processed elements�

In Figure �� we can see that the pipeline interval increases slightly with the number of processors

involved in the dictionary� We could hope that the number of processors would not change the

pipeline interval since� indeed� processors are along the pipeline� But this phenomenon is justied by

��

0

2

4

6

8

10

0 200 400 600 800 1000

T
i
m
e

(
m
s
)

Size of one element

Figure �� Int vs L�

0

0.5

1

1.5

2

2.5

3

4 6 8 10 12 14

T
i
m
e

(
m
s
)

Compute nodes

Figure �� Int vs P �

0 1 2 3 4 5 6 7 0
10

20
30

40

0

5000

10000

Node
Time

Local Size

Figure
� Behavior for key�increasing insertions�

the machine�dependent remark that � increases abnormally with the number of user tasks running

on the Volvox�

Figures
 and �� represent the behavior of the machine quantied by the evolution of the current

amount of elements in each node during series of insertions processed�

The rst one �Figure
� corresponds to series of insertions of elements with keys that increase

continuously� We can verify that� even in that extreme case� after a rst period where not enough

data were inserted �as explained in the analysis�� our dictionary machine becomes and remains

balanced�

Finally� the other situation visualized in Figure �� corresponds to series of insertions performed

in a random order for a while �only a small part of these insertions are visualized in the plot�� and

suddenly changed to an increasing order like in the previous gure� We can see that even when the

distribution of the keys inserted changes� the structure stays balanced�

� Conclusion

Multicomputers represent the cutting edge technology for database applications� Unfortunately�

implementing dynamic data partitioning seems to be a very challenging problem� In this paper we

gave a rst step towards its solution� by presenting an implementation of a dictionary machine ! a

��

0 1 2 3 4 5 6 7 0 1020
3040

5060
7080

0
5000

10000
15000
20000
25000
30000

Node
Time

Local Size

Figure ��� Behavior for random then key�increasing insertions�

database reduced to its simplest instance !� on a distributed memory architecture� Our goal was

to achieve good performance� which required a dynamic balancing scheme� Using this scheme and

exploiting the capacities of the target architecture� we have proved that choosing an adapted local

data structure� good performance can be attainable for information maintenance and retrieval on

a general purpose parallel architecture�

More generally� we have proposed a powerful balancing strategy� and we have proved that it

solves the load balancing problem� This strategy induces a very reasonable overhead and can be

used with success in many other situations� where a bad dynamic data distribution would lead to

weak performance�

A possible extension to our load balancing technique should be to adapt the number of processors

�P � to the current population of the dictionary machine� By this way� the e�ciency of the machine

would be increased while currently storing only a small number of elements�

In the near future� we hope to implement the techniques shown in this paper into a parallel

database application� Interesting applications are evolutionary ones� where the insertions and

deletions of data are signicant compared to the amount of information retrievals �queries��

Acknowledgments

The authors would like to thank Nashib Qadri whose comments have greatly improved the quality

of presentation of the manuscript�

References

	AHU��� A�V� Aho� J�E� Hopcroft� and J�D� Ullman� Data structure and algorithms� Addison�

Wesley� �
���

	AK��� M�J� Atallah and S�R� Kosaraju� A generalized dictionary machine for VLSI� IEEE Trans�

on Computers� ������!���� �
���

��

	DeW
�� D�J� DeWitt et al� The GAMMA database machine project� IEEE Transactions on

Knowledge and Data Engineering� ����� June �

��

	DFG
�� T� Duboux� A� Ferreira� and M� Gastaldo� MIMD dictionary machines � from theory to

practice� In Bouge et al�� editor� Parallel Processing� CONPAR � � VAPP V� number

��� in LNCS� pages ���!���� Springer�Verlag� �

��

	DFG
�� T� Duboux� A� Ferreira� and M� Gastaldo� A scalable design for dictionary machines�

In �rd International Workshop on Algorithms and Parallel VLSI Architectures� Leuven�

Belgium� August �

��

	DG
�� F� Dehne and M� Gastaldo� A note on the load balancing problem for coarse grained

hypercube dictionary machines� Parallel Computing� �����!�
� �

��

	DG
�� D�J� DeWitt and J� Gray� Parallel database systems � the future of high performance

database systems� Communications of the ACM� ������ June �

��

	DS�
� F� Dehne and N� Santoro� An optimal VLSI dictionary machine for hypercube architec�

tures� In M� Cosnard� editor� Parallel and Distributed Algorithms� pages ���!���� North

Holland� �
�
�

	FC
�� Z� Fan and K��H� Cheng� A generalized simultaneous access dictionary machine� IEEE

Trans� on Parallel and Distributed Systems� �������
!���� �

��

	Fis��� A� Fisher� Dictionary machines with small number of processors� In Int� Symp� on

Computer Architecture� pages ���!���� June �
���

	Gas
�� M� Gastaldo� Dictionary Machine on SIMD Architectures� Technical Report RR
���
�

LIP ENS�Lyon� July �

�� Submitted to Publication�

	Knu��� D� E� Knuth� Sorting and Searching� volume � of The Art of Computer Programming�

Addison�Wesley Publishing Co�� �
���

	Lei�
� C� E� Leiserson� Systolic priority queues� Rep� CMU�CS��
����� Dept� Comp� Sci��

Carnegie�Mellon University� �
�
� also in Proc� Caltech VLSI Conf�� Jan� �
�
�

	LP
�� H�F� Li and D�K� Probst� Optimal VLSI dictionary machines without compress instruc�

tions� IEEE Trans� on Computers� �
����!���� �

��

	Meh��� K� Mehlhorn� Data structure and Algorithms I � Sorting and searching� Springer Verlag�

�
���

	Nar��� T�S� Narayanan� A survey of dictionary machines� Technical Report CSD������ Concordia

University� �
���

��

	OB��� A�R� Omondi and J� D� Brock� Implementing a dictionary on hypercube machines� In

Int� Conf� on Parallel Processing� pages ���!��
� �
���

	ORS��� T� Ottmann� A� Rosenberg� and L� Stockmeyer� A dictionary machine �for VLSI�� IEEE

Trans� on Computers� c����
���
�!�
�� sep �
���

	SA��� A� Somani and V� Agarwal� An e�cient unsorted VLSI dictionary machine� IEEE Trans�

on Computers� C����
�����!���� September �
���

	SL��� A�M� Schwartz and M�C� Loui� Dictionary machines on cube�class networks� IEEE Trans�

on Computers� ������!���� �
���

	SPKO��� M� Stonebraker� D� Patterson� R� Katz� and J� Ousterhout� The design of XPRS� In

International Conference of Very Large Databases� Los Angeles� California� August �
���

	SS��� H� Schmeck and H� Schroder� Dictionnary machine for di�erent models of VLSI� IEEE

Trans� on Computers� C����������!���� May �
���

	Val
�� Patrick Valduriez� Parallel database systems � Open problems and New issues� Distributed

and Parallel Databases� ����� April �

�� Kluwer Academic Publishers�

	VCB
�� P� Valduriez� M� Couprie� and B�Bergstein� Prototyping DBS�� shared�memory parallel

database system� In International Conference on Parallel and Distributed Information

System� Miami Beach� Florida� �

��

��

