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Abstract

The fast development over the last years of high performance multicomputers makes

them attractive candidates as the base technology for scalable and performance oriented

database applications� In this paper� we address the problem of how to process util�

ity commands while the system remains operational and the data remain available for

concurrent access� In particular� we focus on the on�line reorganization of a dictionary�

a database reduced to its simplest instance� showing its implementation on a multi�

computer� As is the case with implementations of dynamic structures on distributed

memory architectures� a crucial load balancing problem has to be solved� We propose

an elegant solution and prove that it solves this problem� Experimental results are

shown and analyzed�

Keywords� Dictionary Machine� Parallel Data Structures� Parallel Databases� Load Balancing

R�esum�e

Le d�eveloppement des ordinateurs massivement parall�eles rendent ces machines int�eres�

santes pour des applications de bases de donn�ees qui soient extensibles et performantes�

Dans ce rapport� nous abordons le probl�eme de la mise �a jour de ces bases �insertions �

suppressions de donn�ees� tout en les laissant disponibles et op�erationnelles� En partic�

ulier� nous nous penchons sur la redistribution en temps r�eel d�un dictionnaire� la plus

simple des bases de donn�ees� sur une machine parall�ele� Comme pour toute implanta�

tion de structures dynamiques sur des architectures �a m�emoire distribu�ee� il est crucial

de r�esoudre le probl�eme de l��equilibrage de la charge� Nous proposons une solution

pour traiter ce probl�eme� nous prouvons son e�cacit�e et nous analysons les r�esultats

exp�erimentaux obtenus�

Mots�cl�es� Machine dictionnaire� Structures de donn�ees parall�eles� Bases de donn�ees parall�eles�
�Equilibrage de charge�
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� Introduction

The fast development over the last years of high performance multiprocessor machines makes them

attractive candidates as the base technology for scalable and performance oriented applications� In

order to handle the increasing amount of data and the query complexity� parallelism appears as

one of the most promising research axes for future database applications 	DG
���

A consensus architecture on parallel and distributed database systems has emerged� Such

architecture is based on a shared�nothing hardware design in which processors communicate with

one another only by sending messages via an interconnection network� The data is partitioned

across processors� Data partitioning is therefore the rst step in parallel query optimization� i�e��

�This work was partially supported by Stratag�eme project of the French CNRS and the DRET�
yCNRS�
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the parallelization of an input query to be executed on parallel machines 	Val
��� Such architectures

were pioneered by Teradata in the late seventies� Di�erent approaches yielded the prototypes XPRS

by Stonebraker 	SPKO���� GAMMA by DeWitt 	DeW
��� and DBS� by Valduriez 	VCB
��� It

should be noted that none of these prototypes have implemented a dynamic data partitioning�

As explained in 	DG
��� loading or reorganizing a terabyte database takes over several days� In

the SQL world� typical utilities create indices� add or drop attributes� and physically reorganize the

data� changing its clustering� Clearly� parallelism is needed if such utilities are to complete within

a reasonable time� Even then� it will be essential that the data be available while the utilities are

operating�

One unexplored and di�cult problem is how to process database utility commands while the

system remains operational and the data remain available for concurrent reads and writes� The

fundamental properties of such algorithms is that they must be online �operate without making

data unavailable�� incremental �operate on parts of a large database�� and parallel�

In this paper� we focus on this on�line reorganization applied to a dictionary� a database reduced

to its simplest instance� The dictionary is an important data structure used in applications such

as sorting and searching� symbol�table and index�table implementations 	Knu���� It is a basic data

type which provides update and retrieval operations on a set of records� There is a unique search

key k from a totally ordered set associated with each record� The standard dictionary operations

are insert� delete and search� In addition� the extract�min priority queue operation may

also be provided 	AHU���� Note that some of these operations require a response to be produced�

The dictionary task can be loosely dened as the problem of maintaining a set of key�record

pairs �k�r�� For simplicity� the record whose associated key is k will be denoted record k� The

dictionaries we consider support at least the following set of operations on its entries�

� insert�k�r�� inserts key�record pair �k�r� in the dictionary�

� delete�k�� deletes record k from the dictionary�

� search�k�� retrieves record k if currently stored� does nothing otherwise�

� extract�min� returns the current minimum record and deletes it�

Insert and Delete can be redundant� An insertion is redundant when the key being inserted

already exists in the dictionary� a deletion is redundant when the key being deleted does not exist�

Because of its general and fundamental capabilities� one important problem consists in designing

special�purpose multiprocessor systems� called dictionary machines� implementing dictionaries of

more or less restricted types� In a dictionary machine� a sequence of instructions �i�e�� requests to

perform dictionary or priority queue operations� is received through an I�O port� The machine

executes the corresponding operations in a pipelined fashion� and reports the responses� if any� via

the I�O port� Thus� performance of such a machine can be measured in terms of the following

parameters�
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Response time� The elapsed time between initiation and completion of an instruction�

Pipeline interval� The minimum elapsed time between the initiation of two distinct instructions�

Capacity� The maximum number of records that may be stored in the machine�

Several specially designed parallel architectures have been proposed in the literature for the

implementation of dictionary machines on VLSI chips 	Nar���� Almost all proposed designs are

based on the complete binary tree structure 	Lei�
� ORS��� AK��� SA��� LP
�� FC
��� while few

papers report on other topologies� like systolic meshes 	SS���� Cube Connected Cycles �CCC� 	SL���

or hypercubes 	DS�
�� The problem of scalability of these VLSI designs has been studied 	DFG
���

Since those parallel dictionary machines are primarily intended for implementation in VLSI�

one of their main characteristics is complete processor utilization� i�e�� there is one data item per

processor in the system� Only a few papers proposed dictionary machines where the number of

processors is several orders of magnitude smaller than the number of records 	Fis��� OB��� DG
���

Some of them have led to implementations in existing parallel systems as on the Maspar MP�� a

SIMD architecture� and on the Volvox i��� 	Gas
�� DFG
���

In this paper� we consider the implementation of a dictionary machine on a real parallel com�

puter� Our goals are to show that good performance can be achieved with general purpose parallel

machines� and to study the in�uence of the MIMD approach on the algorithms and the results� We

also develop a general technique to dynamically solve the load balancing problem arising in many

on�line applications on distributed memory machines�

We present the main features of our design in the following section� We propose an elegant

solution to the load balancing problem� and show interesting properties of the chosen strategy� The

corresponding implementation is then described and analyzed after a presentation of the target

architecture and its characteristics� necessary to understand the choices made during the imple�

mentation� Some results of our experiments are shown� and gures comparing di�erent executions

are analyzed� We end the paper with some concluding remarks�

� Design issues

In this section� we present all the points and ideas independent of the target architecture� The

ideas of partitions� partial and total sum calculation for balancing were rst introduced in 	DG
���

��� Partitioning the space of the keys

The idea to get a distributed data structure is to split S� the space of the keys� We sort and make a

partition of this space� Each node i will handle a working domain Di� with
S
Di � S and

T
Di � ��

such that if ki � Di and kj � Dj then ki � kj if and only if i � j� One can notice that assuming a

balanced structure� with the same amount of data on each node� means that the distribution law

of the keys is known� Indeed� with this law� it is easy to split S in domains that have the same

�



probability concerning instructions� Saying that processor pi handles Di does not mean that pi can

store all the keys belonging to Di� as the space can be very large and the distribution of the keys

very sparse� Therefore� a bad or moving distribution of the keys may cause a memory over�ow on

a node� even though others are empty�

��� Broadcasting a query and getting the response

Let us consider an instruction to be performed on the �global� dictionary machine� It has to be

broadcast to the processors� to be executed by one of them� After this broadcast� the response

has to be collected on the host� It is important to note here that we take into account the time

necessary for input�output� which is not the case in many other suggested machines�

��� The local data structure� balanced trees

We have now to dene the local data�structure to be stored and maintained on each processor� In

the case of sequential algorithms� balanced trees are the most powerful� Several data structures yield

such balancing� but just a few can support exact balancing along with logarithmic time operations

needed for distributed load balancing� Split and Concat �see Section ����� We have chosen to

work with ����� trees because of these parameters� and used binary colored trees �BCT� where data

are stored in the leaves� to implement them �	Meh����� Refer to Figure � for an example of a �����

tree and its BCT counterpart�

A Search is implemented exactly as in a binary search tree� Insert� Delete� Extract�Min

instructions all have the same behavior� rst� locate the required leaf� then modify this leaf �remove

it or duplicate it� and perform rotations �when necessary� in the path from this leaf to the root�

Each of these instructions are executed in O�logN� time� N being the number of elements in the

tree�

Concat instruction is used to merge two trees� Let H be the height of the rst tree and h the

height of the second tree� We suppose� w�l�o�g�� that H � h� Concat can be described as follows�

�� Selection of the largest node N belonging to level H � h � � in the tree of height H �

�� Creation of a new node� whose left child is the right child of N and its right child is the root

of the other tree�

�� Insertion of this new node as right child of N �with the same rotations in the path as for a

standard insertion��

In the same way� Split instruction is used to split a given number of the largest elements from

a tree� To perform it in optimal time� we append to the content of each inner node the number of

elements in the subtree rooted at that node� This value is updated at each modication in the tree

but does not change the order of complexity� Split is described as follows�

�� Determine the set of vertices to be split�
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�� Remove the inner nodes at the boundary of the two trees �with a depth�rst traversal��

�� Concat the disconnected branches to their respective trees�

Both of these instructions are executed in O�logN� time�

��� Load balancing the dictionary

So far we have assumed that the distributed data was balanced� i�e�� that the distribution law of

the keys was known beforehand� However� this is not the case in general� and this assumption does

not make sense if the law changes in time� In general� under conditions like real time constraints�

the law is not known� It means that no hypothesis can be made a priori about the key distribution

among the processors� Moreover� the load of a processor �in memory space as well as in work�

directly depends on the size of its data structure� In fact� the larger this structure� the larger the

time for executing one instruction�

To solve this problem� we propose a simple strategy� based on local data exchanges� The

balancing algorithm can be decomposed in two phases� During the rst one� each processor pi

computes TS� the size of the whole data structure� and PSi� the size of the dictionary handled by

processors with a number smaller than i �this for i � ����P � � where P is the total number of

processors�� Formally� with nj the size of the local data structure on processor j �

TS �
j�PX
j��

nj PSi �
j�iX
j��

nj

From this� each processor can compute where there is an imbalance and decide if data have to be

sent to its left� to its right� to both sides or none of them�

The second phase consists of exchanging data with neighbors� according to the previous calcu�

lation� It follows the updates of the dictionary� the size� and the bounds of the working domain on

each processor� After that� the distributed data structure is balanced�

Theoretically� this strategy was proven to be e�cient in 	DG
��� In this paper� we shall show

how to take into account the parameters of real machines in order to design a balancing strategy

that really works�

Let Split�Send�dicti�size�dest� be the function that splits the size smallest �or largest�

data from structure dicti �on the current processor i� and sends them to processor dest� Note that

reception is implicit� Let Concat�Update�dicti� restore a coherent data structure dicti� Let further

MIN and MAX be constants� and DRi and DLi be the amount of data to be sent to the right

and left respectively� If ni is the size of the local data structure dicti on processor pi� the algorithm

for balancing can be written as follows�

Balance Algorithm�

�� Sum Calculation ��

for all i do in parallel
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TS �
Pj�P

j�� nj �

PSi �
Pj�i

j�� nj �

DLi �
�
TS

P
� i� PSi

�
�

DRi �
�
TS

P
� �P � i� ��� �TS � PSi � ni�

�
�

�� Data Balancing ��

for all i do in parallel

If DLi � MIN Then

Split�Send�dicti� Min�MAX�DLi�� pi����

If DRi � MIN Then

Split�Send�dicti� Min�MAX�DRi�� pi����

Concat�Update�dicti��

ni � ni � Size�Received�� Size�Sent��

Update�boundsi��

The constant MIN corresponds to the minimum number of elements in excess to justify bal�

ancing� MAX is the maximum number of elements sent during a balancing�

One can remark that data are exchanged only between neighbors in the ring� Furthermore� if

DRi � � �or DLi�� processor i only receives data�

Lemma � The following statements are always true�

�� DL� � �

�� DRP�� � �

�� �i � 	�� P � ��� DRi � �DLi��

Proof� Immediate for statements � and �� And� for statement �� we have�

DRi �

�
TS

P
� �P � i� ��� �TS � PSi � ni�

�

�

�
TS

P
� P � TS � �

TS

P
� �i� ��� �PSi � ni��

�

� �

�
�
TS

P
� �i� ��� PSi���

�

� �DLi��

�

Clearly� a good strategy to use Balance e�ciently depends upon the programming mode of

the target architecture� In the following section we shall show how we take it into account in our

implementation�
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� Solution in the target architecture

Our target architecture� the Volvox machine� is a coarse grained� distributed memory parallel

computer� The implementation we describe below is based on a ring of Dictionary Machines

�DM�s�� as shown in Figure �� Instructions to be executed are pipelined in this ring� Each DM

processes the subset of the instructions belonging to its working domain� and forwards the other

instructions to the next DM� Input �respectively� output� is supposed to come from �respectively�

go to� users outside the machine� being supported by the host�

Instructions sent by the host are analyzed by the processors in the ring� Once a processor

has selected a particular instruction to treat� it will access the local data structure� Algorithms

corresponding to dictionary instructions are described in Section ���� Just recall that search�

insert� delete and extract�min algorithms are locally performed in O�logni� time� where ni

corresponds to the size of a local data structure�

��� The Volvox IS���� a distributed memory architecture

The test�bed for the implementation of our distributed dictionary machine was a Volvox IS��� from

Archipel� The Volvox Supercomputing server �see Figure ��a�� is a distributed memory architecture

implementing the CSP message passing model� It has �� available nodes� accessed via � independent

communication boards lying in a Sun workstation �the host�� Each communication board is a

Transputer T��� with �MB of memory� In order to allow the user to dene any variable topology�

each physical node �see Figure ��b�� is composed of a Transputer T��� with � recongurable

communication links� as a Communication Processor� and an Intel ��� as an Application Processor�

The total memory of a node is formed by �MBytes of Transputer�s private memory plus ��MBytes

RAM independently accessed by the two processors via a double port mechanism� The application

described in this paper takes into account the extensibility of the machine�

An application is described by a set of communicating tasks� Tasks are mapped onto proces�

sors as dened by the user without any limitations except that each i��� can support only one

task� Tasks communicate by primitives from Volvox library� Communication can be synchronous

�blocking� or asynchronous� Message routing is automatic and implicit�

Communication costs can be modeled by the well�known linear model� Thus� for a message of

length L� the time for a communication is� t � ��L� where � is the startup time and � the time for

a byte to be transmitted� Table � summarizes values of � and � for various cases of communication�

between two neighboring Transputers� two neighboring i��� and a T����i��� communication inside

a node� We verify experimentally that � increases with the number of user tasks in the application�

For our application� communications between a T��� and the i��� inside the same node with

system primitives is too slow to be used� Indeed� we need to communicate once for each instruction

processed� and communication takes at least �����s while an elementary instruction manipulating

trees on i��� takes at most ����s �for instance an insertion� see Section ����� To avoid this problem�

we must implement a low level technique via the double�port shared memory�
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Figure �� A ����� tree and its binary colored implementation�

instructions

DM5 DM4

DM3DM2DM0 DM1

DM p

HOST
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Figure �� Architecture of the Dictionary Machine�
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Figure �� �a� The Volvox IS��� architecture� �b� a node of the machine�
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Communication � �

T����T��� �neighbors� ����� ���

i����i��� �neighbors� ���� ����

T����i��� �same node� ���� ���

Table �� Costs of communications in �s�

QUEUE

RAM I860

selection

T805

processing

RING

sums

Node

Figure �� Organization of the processes�

It is also interesting to compare T����T��� communication costs �at least ����s�� with our

computing cost �at most ����s�� We will analyze the impact of such values in Section ����

��� The parallel dictionary machine

We describe here the global behavior of the proposed dictionary machine� As seen before� each

physical node is a dictionary machine by itself� and they are connected in a ring architecture� The

instructions circulate on the ring� starting at the host� Because of the internal organization of the

nodes of the Volvox parallel computer� we implemented a client�server protocol inside each node

�see Figure ��� The Transputer selects instructions within its working domain� It also forwards

output messages that arrive from its predecessor in the ring�

The binary colored tree storing the elements of the dictionary is located in the i��� memory�

which is used as the actual processing element of the application� The i��� executes the current

instruction� modifying the data structure� Eventual output messages are sent by the i��� directly

to the next node on the ring�

Communications between the two processors of a single node are performed via the shared

memory� It stores a circular queue containing the instructions selected by the selection task on the

Transputer and waiting to be processed by the i���� The head of the queue is controlled by the

processing task on the i���� i�e�� every time an instruction is to be executed� it is extracted from the

queue� Similarly� the selection task on the Transputer controls the tail of the same circular queue�

Every time an instruction is selected from the instruction �ow in the ring� it is inserted into the

queue�

The working domain of a node is given by a lower and an upper bound on the key values�

Any instruction containing a key in that interval should be treated by that node� As described






in Section ���� a dynamic updating of the working domains is essential to ensure load balancing�

For this reason� we add a task on each Transputer� called summation task� to compute total and

partial sums� These values are useful for our distributed load balancing technique� First� these sums

are globally computed� concurrently with instruction processing� and then� instruction processing is

suspended during data balancing� After that� the normal behavior is restored till the next balancing

phase�

��� Details on dynamic load balancing

During the instruction processing phase� summation tasks keep computing total sum and partial

sums� as described in Section ���� The algorithm for computing these sums uses a simple strategy

corresponding to a token circulating two rounds on the ring of nodes� Other strategies were tested

�e�g� on a hypercube structure as proposed in 	DG
��� but the simplest one is also the most powerful

for synchronization reasons on our machine�

When partial and total sums are available� each summation task can evaluate the di�erence

between the size of its local data structure and the average size of the other structures� It can

also evaluate which sides show a decit or an excess �through the values DLi and DRi�� If the

di�erence is large enough� we enter the data balancing phase�

For a node� this balancing phase consists of using split on a part of the local structure to be sent

to the side showing a decit or using concat on a set of elements received from the side showing an

excess� Split and concat are done in O�logni� by the corresponding sequential algorithms described

in Section ����

��� Correctness and Performance Analysis

In this section� we use the following notations�

� L denotes the size in bytes of an element �key� record�� and l the size of a key�

� ti denotes the maximal time for an instruction to be processed locally in a node �tree manip�

ulations��

� tc corresponds to the time for a neighbor�to�neighbor communication of a message containing

an instruction� We assume that tc � � � L� where � and � are machine�dependent values

�linear communication model��

� ts is the time of total and partial sum calculation �during processing phase��

� tb is the time of a balancing phase�

� Int is the minimum pipeline interval between two instructions sent by the host�

� MIN and MAX are machine dependent constants corresponding to numbers of elements�

��



Global consistency of this dictionary machine is ensured by its working mode� Here are some

details of its behavior during balancing phases� Each time two nodes are involved in a balancing

phase� they freeze the instruction �ow upstream on the ring� then they process instructions waiting

in their queues� Only after that they perform the data balancing between them� In this way� we

ensure that every instruction is processed by the node corresponding to the appropriate working

domain�

Furthermore� because the only synchronization mechanism used in the machine is this pairwise

synchronization� our application is deadlock free� This is true if the logical capacity of the nodes is

not exceeded�

De�nition � The logical capacity of a node is N

P
� MAX elements �N is the global physical

capacity of the machine	�

We will see that this logical limit is necessary during balancing phases� Now� we want to prove

that our machine maintains a balanced data structure�

De�nition � The data structure is said to be balanced if and only if DRi � MIN for all i �and

DLi �MIN for all i	�

Lemma � The execution of I instructions can increase the imbalance by at most I�

Proof� The proof is based on the fact that the execution of a single instruction increases the

imbalance by at most one�

As seen previously� the imbalance is dened by DLj � d
TS�j

P
�PSje �the case ofDRj is handled

analogously�� Let us consider DLj before a given instruction� Instr� and after the execution of this

instruction� Suppose that Instr is a delete� Clearly� TS decreases by one� and PSj stays constant

or decreases by one �depending on j�� Hence� DLj does not change or decreases by one� The case

of the instruction insert is symmetric� so an insertion increases DLj by � or ��

Using this result� we can say that I instructions can modify DLj by at most I� for all j� �

In the remainder of this section� we suppose that each node handles at least MAX elements

at the beginning of balancing phases� This restriction is not severe as it just means that the data

structure is not completely empty� However� even if this condition is not true� the balancing strategy

can be applied� It can be shown that the resulting structure is not balanced immediately after one

balancing phase� but becomes more and more balanced in time� This phenomenon is illustrated in

the experimental results by Figure 
� A similar analysis for empty structures can be found in the

case of a SIMD implementation 	Gas
���

Proposition � If the instruction 
ow is globally frozen during the balancing phase� then� for �xed

values of MIN and MAX� we have the following relation�

If��i � 	���P � ��� maxi�DRi� �MAXjust before balancing� then

maxi�DRi� �MIN� �i � 	���P � ��� just after the balancing phase�

��



Proof� During a data balancing phase� as described in subroutine balance�

�If DRi � MIN Then Split�Send�dicti� Min�MAX�DRi�� pi�����

� Thus� if DRi � MIN � each node can send up to MAX data� which is enough to balance every

DRi�

� If DRi �MIN � Send is not performed� DRi is unchanged� but the proposition still holds�

Since� according to lemma ��DLi � �DRi� we only need to study DRi� �

De�nition � The value MAX �MIN represents the capacity of balancing for a node� i�e�� the

maximum number of elements balanced during one balancing phase�

Lemma � At most ts
Int

instructions are processed between two successive balancing phases�

Proof� Our application alternates processing phases �with sum calculations� and balancing phases�

The partial and total sum calculations are done simultaneously with the processing phase� The

balancing phase starts at the end of this calculation� Therefore� between two successive balancing

phases� instructions arrive and are processed� with a pipeline interval Int� during time ts� �

Hence� there is an imbalance of at most ts
Int

between two successive balancing phases �by

Lemma ��� So� our data structure remains balanced whenever�

MAX �MIN �
ts

Int
�

Now� we want to relax the hypothesis of Proposition � so that dictionary instructions may be

processed on some nodes while other nodes are balancing� This is very important in order to use

the asynchronous capabilities of the host parallel computer at their best�

To ensure e�ciency of our balancing strategy� the capacity of balancing has to be greater than

the number of instructions potentially processed during a complete cycle �processing phase plus

balancing phase��

MAX �MIN �
tb � ts

Int
�

Lemma � The cost of one balancing phase is bounded by�

tb � �ti � � �MAX � �L� l� �����

Proof� During a balancing phase� each node may execute one split �cost� ti�� followed by a send of

size up to MAX elements� followed by one concat �cost� ti�� Since we need to maintain information

from the split tree to ensure a Concat in O�logn� time in the destination node� each element

�of size L� is encapsulated in a structure of size �L � l � ��� bytes� Thus� the cost of the send is

bounded by � �MAX � �L� l � ���� � �

��



Theorem � Our balancing strategy is correct if we respect the following constraint�

MAX �
�� � L���MIN � �ti � � � ts

� � �l� ����
�

Proof� As dictionary instructions are sent sequentially by the host� the pipeline interval for in�

struction processing is at least the time to send an instruction� Int � tc� So�

MAX �MIN �
tb � ts

Int

� MAX �MIN �
tb � ts

tc

	 MAX �MIN �
�ti � � �MAX � �L� l� ���� � ts

� � L�

	 MAX � �� � �l� ����� � �ti � � � ts �MIN � �� � L���

If � � �l� ���� � we obtain the desired constraint�

In a computer with a very small start up time for communication �� � �l� ������ our strategy

is not e�cient in the worst case but it can be used in an average case �when the imbalance does

not reach the capacity of balancing every time�� �

Our strategy for partial and total sum calculations needs �P � � communications to complete

�ts � ��P � ���� � s��� where s is the size of an integer�� As L � s� at most �P instructions are

processed during this time � ts
Int

� �P �� The constraint to be satised is now�

MAX �
�� � L��� �MIN � �P � � �ti � �

� � �l� ����
�

For instance� typical values for a variety of existing machines are� a ring of �� nodes �P � ����

communication rate � equals to ��s� the size of an element L � �� with a key of size l � �� the

time of one local processing of an instruction ti � ����s� and the constant MIN xed to ���

With a communication startup � equals to ����s �the actual value on the Volvox�� we obtain

MAX � ��� which is feasible� Even if � was small �� � ���s�� we would obtain MAX � �
�

which still corresponds to a realistic value�

When P becomes large� it is possible �and even necessary� to implement partial and total sum

calculations so that ts
Int

� O�logP �� see for example 	DG
���

Now� if available local memory is large enough to allow us a larger MAX � we can introduce a

delay between the end of a balancing phase and the beginning of the next sum calculation� Let

WAIT be the number of instructions processed during this delay� We have to maintain the new

capacity of balancing�

MAX �MIN � WAIT �
tb � ts

Int
�

which leads to the following constraint�

WAIT �MAX �MIN �
tb � ts

Int
�

��
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In our machine� with a reasonable value of MAX � ����� we can process 
�� instructions during

this delay ���� seconds�� Clearly� we can increase this delay by increasing MAX �

We remark that a ner analysis of the behavior of the queues storing instructions between the

two processors inside each node is not necessary� In fact� with an appropriate value of Int� these

queues are always empty with the exception of the duration of the balancing phases� Queues are

made empty at the beginning of the next processing phase� In our target machine� we x the value

of Int to tc since tc � ti� With a better computation�communication ratio� Int has to be greater

than max�tc�
ti
P
��

Further� we can easily calculate a lower bound for the response time of the dictionary machine�

�P � ��tc � ti� This value is close to the average response time experimentally measured�

��	 Experimental results

Our balancing mechanism has a small cost� To ensure an imbalance of up to � �MAX � ����

for a local capacity of �������� our machine spends � of its time in balancing operations�

The following experimental results were obtained with the values� MIN � �� MAX � �����

L � �� P � �� and waiting time WAIT � Int � ��
s� As the memory of a node is �� MBytes� the

capacity of our dictionary is ������ elements per node�

We can see in Figure � the time to �ll up� the machine� It corresponds to the time spent for

the machine to insert a given amount of elements� It is drawn by a line� up to the capacity of the

dictionary ����� million elements in this conguration��

In Figure �� obviously� the minimum possible pipeline interval is constant whatever the current

population is in the dictionary� The throughput is independent of the amount of data already inside

the machine� This is explained by tc being much greater than ti in this machine� thus Int � tc that

is a constant�

Figure � shows that the communication corresponds to the model proposed� the minimum

possible value for the pipeline interval increases linearly with the size of the processed elements�

In Figure �� we can see that the pipeline interval increases slightly with the number of processors

involved in the dictionary� We could hope that the number of processors would not change the

pipeline interval since� indeed� processors are along the pipeline� But this phenomenon is justied by

��
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the machine�dependent remark that � increases abnormally with the number of user tasks running

on the Volvox�

Figures 
 and �� represent the behavior of the machine quantied by the evolution of the current

amount of elements in each node during series of insertions processed�

The rst one �Figure 
� corresponds to series of insertions of elements with keys that increase

continuously� We can verify that� even in that extreme case� after a rst period where not enough

data were inserted �as explained in the analysis�� our dictionary machine becomes and remains

balanced�

Finally� the other situation visualized in Figure �� corresponds to series of insertions performed

in a random order for a while �only a small part of these insertions are visualized in the plot�� and

suddenly changed to an increasing order like in the previous gure� We can see that even when the

distribution of the keys inserted changes� the structure stays balanced�

� Conclusion

Multicomputers represent the cutting edge technology for database applications� Unfortunately�

implementing dynamic data partitioning seems to be a very challenging problem� In this paper we

gave a rst step towards its solution� by presenting an implementation of a dictionary machine ! a

��
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database reduced to its simplest instance !� on a distributed memory architecture� Our goal was

to achieve good performance� which required a dynamic balancing scheme� Using this scheme and

exploiting the capacities of the target architecture� we have proved that choosing an adapted local

data structure� good performance can be attainable for information maintenance and retrieval on

a general purpose parallel architecture�

More generally� we have proposed a powerful balancing strategy� and we have proved that it

solves the load balancing problem� This strategy induces a very reasonable overhead and can be

used with success in many other situations� where a bad dynamic data distribution would lead to

weak performance�

A possible extension to our load balancing technique should be to adapt the number of processors

�P � to the current population of the dictionary machine� By this way� the e�ciency of the machine

would be increased while currently storing only a small number of elements�

In the near future� we hope to implement the techniques shown in this paper into a parallel

database application� Interesting applications are evolutionary ones� where the insertions and

deletions of data are signicant compared to the amount of information retrievals �queries��
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