Thibault Duboux
email: duboux@lip.ens-lyon.fr

Afonso Ferreira

Towards a dynamic parallel database machine: data balancing techniques and pipeline

Keywords: Dictionary Machine, Parallel Data Structures, Parallel Databases, Load Balancing R esum e Machine dictionnaire, Structures de donn ees parall eles, Bases de donn ees parall eles, Equilibrage de charge Dictionary Machine, Parallel Data Structures, Parallel Databases, Load Balancing

The fast development o ver the last years of high performance multicomputers makes them attractive candidates as the base technology for scalable and performance oriented database applications. In this paper, we address the problem of how to process utility commands while the system remains operational and the data remain available for concurrent access. In particular, we focus on the on-line reorganization of a dictionary, a database reduced to its simplest instance, showing its implementation on a multicomputer. As is the case with implementations of dynamic structures on distributed memory architectures, a crucial load balancing problem has to be solved. We propose an elegant solution and prove that it solves this problem. Experimental results are shown and analyzed.

Introduction

The fast development o ver the last years of high performance multiprocessor machines makes them attractive candidates as the base technology for scalable and performance oriented applications. In order to handle the increasing amount of data and the query complexity, parallelism appears as one of the most promising research axes for future database applications DG92].

A consensus architecture on parallel and distributed database systems has emerged. Such architecture is based on a shared-nothing hardware design in which processors communicate with one another only by sending messages via an interconnection network. The data is partitioned across processors. Data partitioning is therefore the rst step in parallel query optimization, i.e., the parallelization of an input query to be executed on parallel machines Val93]. Such a r c hitectures were pioneered by T eradata in the late seventies. Di erent approaches yielded the prototypes XPRS by Stonebraker SPKO88], GAMMA by D e W i t t D e W 9 0], and DBS3 by V alduriez VCB91]. It should be noted that none of these prototypes have implemented a dynamic data partitioning.

As explained in DG92], loading or reorganizing a terabyte database takes over several days. In the SQL world, typical utilities create indices, add or drop attributes, and physically reorganize the data, changing its clustering. Clearly, parallelism is needed if such utilities are to complete within a reasonable time. Even then, it will be essential that the data be available while the utilities are operating.

One unexplored and di cult problem is how to process database utility commands while the system remains operational and the data remain available for concurrent reads and writes. The fundamental properties of such algorithms is that they must be online (operate without making data unavailable), incremental (operate on parts of a large database), and parallel.

In this paper, we focus on this on-line reorganization applied to a dictionary, a database reduced to its simplest instance. The dictionary is an important data structure used in applications such as sorting and searching, symbol-table and index-table implementations Knu72]. It is a basic data type which provides update and retrieval operations on a set of records. There is a unique search key k from a totally ordered set associated with each record. The standard dictionary operations are insert, delete and search. In addition, the extract-min priority queue operation may also be provided [START_REF] Aho | Data structure and algorithms[END_REF]. Note that some of these operations require a response to be produced.

The dictionary task can be loosely de ned as the problem of maintaining a set of key-record pairs (k,r). F or simplicity, the record whose associated key is k will be denoted record k. The dictionaries we consider support at least the following set of operations on its entries. insert(k,r): inserts key-record pair (k,r) in the dictionary delete(k): deletes record k from the dictionary search(k): retrieves record k if currently stored, does nothing otherwise extract-min: returns the current minimum record and deletes it.

Insert and Delete can be redundant. An insertion is redundant when the key being inserted already exists in the dictionary a deletion is redundant when the key being deleted does not exist.

Because of its general and fundamental capabilities, one important problem consists in designing special-purpose multiprocessor systems, called dictionary machines, implementing dictionaries of more or less restricted types. In a dictionary machine, a sequence of instructions (i.e., requests to perform dictionary or priority queue operations) is received through an I/O port. The machine executes the corresponding operations in a pipelined fashion, and reports the responses, if any, v i a the I/O port. Thus, performance of such a machine can be measured in terms of the following parameters.

Response time: The elapsed time between initiation and completion of an instruction. Pipeline interval: The minimum elapsed time between the initiation of two distinct instructions. Capacity: The maximum number of records that may be stored in the machine.

Several specially designed parallel architectures have been proposed in the literature for the implementation of dictionary machines on VLSI chips Nar86]. Almost all proposed designs are based on the complete binary tree structure Lei79, ORS82, AK85, SA85, LP90, FC91], while few papers report on other topologies, like systolic meshes SS85], Cube Connected Cycles (CCC) SL87] or hypercubes DS89]. The problem of scalability of these VLSI designs has been studied DFG94].

Since those parallel dictionary machines are primarily intended for implementation in VLSI, one of their main characteristics is complete processor utilization, i.e., there is one data item per processor in the system. Only a few papers proposed dictionary machines where the number of processors is several orders of magnitude smaller than the number of records Fis84, OB87, DG90]. Some of them have led to implementations in existing parallel systems as on the Maspar MP1, a SIMD architecture, and on the Volvox i860 Gas93, D F G92].

In this paper, we consider the implementation of a dictionary machine on a real parallel computer. Our goals are to show that good performance can be achieved with general purpose parallel machines, and to study the in uence of the MIMD approach on the algorithms and the results. We also develop a general technique to dynamically solve the load balancing problem arising in many on-line applications on distributed memory machines.

We present the main features of our design in the following section. We propose an elegant solution to the load balancing problem, and show i n teresting properties of the chosen strategy. The corresponding implementation is then described and analyzed after a presentation of the target architecture and its characteristics, necessary to understand the choices made during the implementation. Some results of our experiments are shown, and gures comparing di erent executions are analyzed. We end the paper with some concluding remarks.

Design issues

In this section, we present all the points and ideas independent of the target architecture. The ideas of partitions, partial and total sum calculation for balancing we r e r s t i n troduced in DG90].

Partitioning the space of the keys

The idea to get a distributed data structure is to split S, the space of the keys. We sort and make a partition of this space. Each n o d e i will handle a working domain D i , with S D i = S and T D i = , such that if k i 2 D i and k j 2 D j then k i < k j if and only if i < j . One can notice that assuming a balanced structure, with the same amount o f d a t a o n e a c h node, means that the distribution law of the keys is known. Indeed, with this law, it is easy to split S in domains that have the same probability concerning instructions. Saying that processor p i handles D i does not mean that p i can store all the keys belonging to D i , as the space can be very large and the distribution of the keys very sparse. Therefore, a bad or moving distribution of the keys may cause a memory over ow o n a node, even though others are empty.

Broadcasting a query and getting the response

Let us consider an instruction to be performed on the (global) dictionary machine. It has to be broadcast to the processors, to be executed by one of them. After this broadcast, the response has to be collected on the host. It is important to note here that we take i n to account the time necessary for input/output, which is not the case in many other suggested machines.

The local data structure: balanced trees

We h a ve n o w to de ne the local data-structure to be stored and maintained on each processor. In the case of sequential algorithms, balanced trees are the most powerful. Several data structures yield such balancing, but just a few can support exact balancing along with logarithmic time operations needed for distributed load balancing, Split and Concat (see Section 2.4). We h a ve c hosen to work with 2-3-4 trees because of these parameters, and used binary colored trees (BCT) where data are stored in the leaves, to implement them [START_REF] Li | Optimal VLSI dictionary machines without compress instructions[END_REF]). Refer to Figure 1 for an example of a 2-3-4 tree and its BCT counterpart.

A Search is implemented exactly as in a binary search t r e e . Insert, Delete, Extract-Min instructions all have the same behavior: rst, locate the required leaf, then modify this leaf (remove it or duplicate it) and perform rotations (when necessary) in the path from this leaf to the root.

Each of these instructions are executed in O(log N) time, N being the number of elements in the tree.

Concat instruction is used to merge two t r e e s . L e t H be the height of the rst tree and h the height of the second tree. We suppose, w.l.o.g., that H h. Concat can be described as follows.

1. Selection of the largest node N belonging to level H ; h ; 1 in the tree of height H.

2. Creation of a new node, whose left child is the right c hild of N and its right c hild is the root of the other tree.

3. Insertion of this new node as right c hild of N (with the same rotations in the path as for a standard insertion).

In the same way, Split instruction is used to split a given number of the largest elements from a tree. To perform it in optimal time, we append to the content o f e a c h inner node the number of elements in the subtree rooted at that node. This value is updated at each modi cation in the tree but does not change the order of complexity. Split is described as follows.

1. Determine the set of vertices to be split.

2. Remove the inner nodes at the boundary of the two trees (with a depth-rst traversal).

3. Concat the disconnected branches to their respective trees.

Both of these instructions are executed in O(log N) time.

Load balancing the dictionary

So far we h a ve assumed that the distributed data was balanced, i.e., that the distribution law o f the keys was known beforehand. However, this is not the case in general, and this assumption does not make sense if the law c hanges in time. In general, under conditions like real time constraints, the law is not known. It means that no hypothesis can be made a priori about the key distribution among the processors. Moreover, the load of a processor (in memory space as well as in work) directly depends on the size of its data structure. In fact, the larger this structure, the larger the time for executing one instruction.

To solve this problem, we propose a simple strategy, based on local data exchanges. The balancing algorithm can be decomposed in two phases. During the rst one, each processor p i computes TS , the size of the whole data structure, and PS i , the size of the dictionary handled by processors with a number smaller than i (this for i = 0 :::P ; 1 where P is the total number of processors). Formally, w i t h n j the size of the local data structure on processor j :

TS= j<P X j=0 n j PS i = j<i X j=0 n j
From this, each processor can compute where there is an imbalance and decide if data have t o b e sent to its left, to its right, to both sides or none of them.

The second phase consists of exchanging data with neighbors, according to the previous calculation. It follows the updates of the dictionary, the size, and the bounds of the working domain on each processor. After that, the distributed data structure is balanced.

Theoretically, this strategy was proven to be e cient in DG90]. In this paper, we shall show how t o t a k e i n to account the parameters of real machines in order to design a balancing strategy that really works.

Let Split&Send(dict i ,size,dest) be the function that splits the size smallest (or largest) data from structure dict i (on the current processor i) and sends them to processor dest. Note that reception is implicit. Let Concat&Update(dict i) restore a coherent data structure dict i . Let further MINand MA Xbe constants, and DR i and DL i be the amount o f d a t a t o b e s e n t to the right and left respectively. I f n i is the size of the local data structure dict i on processor p i , the algorithm for balancing can be written as follows:

Balance Algorithm:

/* Sum Calculation */ for all i do in parallel TS= P j<P j=0 n j PS i = P j<i j=0 n j DL i = TS P i ; PS i DR i = TS P (P ; i ; 1) ; (T S; PS i ; n i) /* Data Balancing */ for all i do in parallel If DL i > M I N Then Split&Send(dict i Min(MAX DL i) p i;1)

If DR i > M I N Then Split&Send(dict i Min(MAX DR i) p i+1) Concat&Update(dict i) n i = n i + Size(Received) ; Size(Sent)
Update(bounds i)

The constant MINcorresponds to the minimum number of elements in excess to justify balancing. MA Xis the maximum number of elements sent during a balancing.

One can remark that data are exchanged only between neighbors in the ring. Furthermore, if DR i < 0 (or DL i), processor i only receives data.

Lemma 1 The following statements are always true:

1. DL 0 = 0 2. DR P;1 = 0 3. 8i 2 0 P; 2] D R i = ;DL i+1 Proof: Immediate for statements 1 and 2. And, for statement 3 , w e h a ve: DR i = TS P (P ; i ; 1) ; (T S; PS i ; n i) = TS P P ; TS; (TS P (i + 1) ; (P S i + n i)) = ; (TS

P (i + 1) ; PS i+1) = ;DL i+1
Clearly, a good strategy to use Balance e ciently depends upon the programming mode of the target architecture. In the following section we shall show h o w w e t a k e i t i n to account in our implementation.

3 Solution in the target architecture Our target architecture, the Volvox m a c hine, is a coarse grained, distributed memory parallel computer. The implementation we describe below is based on a ring of Dictionary Machines (DM's), as shown in Figure 2. Instructions to be executed are pipelined in this ring. Each D M processes the subset of the instructions belonging to its working domain, and forwards the other instructions to the next DM. Input (respectively, output) is supposed to come from (respectively, go to) users outside the machine, being supported by the host.

Instructions sent b y the host are analyzed by the processors in the ring. Once a processor has selected a particular instruction to treat, it will access the local data structure. Algorithms corresponding to dictionary instructions are described in Section 2.3. Just recall that search, insert, delete and extract-min algorithms are locally performed in O(log n i) time, where n i corresponds to the size of a local data structure.

The Volvox IS860: a distributed memory architecture

The test-bed for the implementation of our distributed dictionary machine was a Volvox IS860 from Archipel. The Volvox Supercomputing server (see Figure 3(a)) is a distributed memory architecture implementing the CSP message passing model. It has 48 available nodes, accessed via 4 independent communication boards lying in a Sun workstation (the host). Each c o m m unication board is a Transputer T800 with 1MB of memory. In order to allow the user to de ne any v ariable topology, each p h ysical node (see Figure 3(b)) is composed of a Transputer T800 with 4 recon gurable communication links, as a Communication Processor, and an Intel 860 as an Application Processor. The total memory of a node is formed by 4MBytes of Transputer's private memory plus 16MBytes RAM independently accessed by the two processors via a double port mechanism. The application described in this paper takes into account the extensibility of the machine.

An application is described by a set of communicating tasks. Tasks are mapped onto processors as de ned by the user without any limitations except that each i860 can support only one task. Tasks communicate by primitives from Volvox library. Communication can be synchronous (blocking) or asynchronous. Message routing is automatic and implicit.

Communication costs can be modeled by the well-known linear model. Thus, for a message of length L, the time for a communication is: t = +L where is the startup time and the time for a b yte to be transmitted. Table 1 summarizes values of and for various cases of communication: between two neighboring Transputers, two n e i g h boring i860 and a T800-i860 communication inside a node. We v erify experimentally that increases with the number of user tasks in the application. For our application, communications between a T800 and the i860 inside the same node with system primitives is too slow to be used. Indeed, we n e e d t o c o m m unicate once for each instruction processed, and communication takes at least 1040 s while an elementary instruction manipulating trees on i860 takes at most 130 s (for instance an insertion, see Section 2.3). To a void this problem, we m ust implement a l o w level technique via the double-port shared memory. It is also interesting to compare T800-T800 communication costs (at least 766 s), with our computing cost (at most 130 s). We will analyze the impact of such v alues in Section 3.5.

The parallel dictionary machine

We describe here the global behavior of the proposed dictionary machine. As seen before, each physical node is a dictionary machine by itself, and they are connected in a ring architecture. The instructions circulate on the ring, starting at the host. Because of the internal organization of the nodes of the Volvox parallel computer, we implemented a client/server protocol inside each n o d e (see Figure 4). The Transputer selects instructions within its working domain. It also forwards output messages that arrive from its predecessor in the ring.

The binary colored tree storing the elements of the dictionary is located in the i860 memory, which is used as the actual processing element of the application. The i860 executes the current instruction, modifying the data structure. Eventual output messages are sent b y the i860 directly to the next node on the ring.

Communications between the two processors of a single node are performed via the shared memory. It stores a circular queue containing the instructions selected by t h e selection task on the Transputer and waiting to be processed by the i860. The head of the queue is controlled by the processing task on the i860, i.e., every time an instruction is to be executed, it is extracted from the queue. Similarly, t h e selection task on the Transputer controls the tail of the same circular queue. Every time an instruction is selected from the instruction ow in the ring, it is inserted into the queue.

The working domain of a node is given by a l o wer and an upper bound on the key values. Any instruction containing a key in that interval should be treated by that node. As described in Section 2.4, a dynamic updating of the working domains is essential to ensure load balancing. For this reason, we add a task on each T ransputer, called summation task, to compute total and partial sums. These values are useful for our distributed load balancing technique. First, these sums are globally computed, concurrently with instruction processing, and then, instruction processing is suspended during data balancing. After that, the normal behavior is restored till the next balancing phase.

Details on dynamic load balancing

During the instruction processing phase, summation tasks keep computing total sum and partial sums, as described in Section 2.4. The algorithm for computing these sums uses a simple strategy corresponding to a token circulating two rounds on the ring of nodes. Other strategies were tested (e.g. on a hypercube structure as proposed in DG90]) but the simplest one is also the most powerful for synchronization reasons on our machine.

When partial and total sums are available, each summation task can evaluate the di erence between the size of its local data structure and the average size of the other structures. It can also evaluate which sides show a de cit or an excess (through the values DL i and DR i). If the di erence is large enough, we e n ter the data balancing phase.

For a node, this balancing phase consists of using split on a part of the local structure to be sent to the side showing a de cit or using concat on a set of elements received from the side showing an excess. Split and concat are done in O(log n i) b y the corresponding sequential algorithms described in Section 2.3.

Correctness and Performance Analysis

In this section, we use the following notations: L denotes the size in bytes of an element (k ey, record), and l the size of a key. t i denotes the maximal time for an instruction to be processed locally in a node (tree manipulations). t c corresponds to the time for a neighbor-to-neighbor communication of a message containing an instruction. We assume that t c = + L where and are machine-dependent v alues (linear communication model).

t s is the time of total and partial sum calculation (during processing phase). t b is the time of a balancing phase.

Intis the minimum pipeline interval between two instructions sent b y the host.

MINand MA Xare machine dependent constants corresponding to numbers of elements.

Global consistency of this dictionary machine is ensured by its working mode. Here are some details of its behavior during balancing phases. Each time two nodes are involved in a balancing phase, they freeze the instruction ow upstream on the ring, then they process instructions waiting in their queues. Only after that they perform the data balancing between them. In this way, w e ensure that every instruction is processed by the node corresponding to the appropriate working domain.

Furthermore, because the only synchronization mechanism used in the machine is this pairwise synchronization, our application is deadlock free. This is true if the logical capacity of the nodes is not exceeded.

De nition 1 The logical capacity of a node is N P ; MA Xelements (N is the global physical capacity of the machine).

We will see that this logical limit is necessary during balancing phases. Now, we w ant t o p r o ve that our machine maintains a balanced data structure.

De nition 2

The data structure i s s a i d t o b e balanced if and only if DR i MINfor all i (and DL i MINfor all i).

Lemma 2 The execution of I instructions can increase the imbalance b y a t m o s t I. Proof: The proof is based on the fact that the execution of a single instruction increases the imbalance by at most one.

As seen previously, the imbalance is de ned by DL j = d TS j P ;P S j e (the case of DR j is handled analogously). Let us consider DL j before a given instruction, Instr, and after the execution of this instruction. Suppose that Instr is a delete. Clearly, TSdecreases by one, and PS j stays constant or decreases by one (depending on j). Hence, DL j does not change or decreases by one. The case of the instruction insert is symmetric, so an insertion increases DL j by 0 or 1.

Using this result, we can say that I instructions can modify DL j by at most I, f o r a l l j.

In the remainder of this section, we suppose that each node handles at least MA Xelements at the beginning of balancing phases. This restriction is not severe as it just means that the data structure is not completely empty. H o wever, even if this condition is not true, the balancing strategy can be applied. It can be shown that the resulting structure is not balanced immediately after one balancing phase, but becomes more and more balanced in time. This phenomenon is illustrated in the experimental results by Figure 9. A similar analysis for empty structures can be found in the case of a SIMD implementation Gas93].

Proposition 1 If the instruction ow is globally frozen during the balancing phase, then, for xed values of MINand MA X, we have the following relation:

If, 8i 2 0::P ; 1] m a x i (DR i) MA Xjust before b alancing, then max i (DR i) MIN 8i 2 0::P ; 1], just after the balancing phase.

Theorem 1 Our balancing strategy is correct if we respect the following constraint:

MA X (+ L) MIN+ 2 t i + + t s ; (l + 10) :

Proof: As dictionary instructions are sent sequentially by the host, the pipeline interval for instruction processing is at least the time to send an instruction: Int t c . So, MA X; MIN t b + t s Int (MA X; MIN t b + t s t c , MA X; MIN 2t i + + MA X (L + l + 1 0) + t s + L , MA X (; (l + 1 0)) 2t i + + t s + MIN (+ L): If > (l + 10) , w e obtain the desired constraint.

In a computer with a very small start up time for communication ((l + 1 0)), our strategy is not e cient in the worst case but it can be used in an average case (when the imbalance does not reach the capacity of balancing every time).

Our strategy for partial and total sum calculations needs 2P ; 1 c o m m unications to complete (t s = (2 P ; 1)(+ s), where s is the size of an integer). As L s, a t m o s t 2 P instructions are processed during this time (ts Int 2P). The constraint to be satis ed is now:

MA X (+ L) (MIN+ 2 P) + 2 t i + ; (l + 10) :

For instance, typical values for a variety of existing machines are: a ring of 32 nodes (P = 3 2) , communication rate equals to 1 s, the size of an element L = 40 with a key of size l = 4 , t h e time of one local processing of an instruction t i = 1 3 0 s, and the constant MIN xed to 10. With a communication startup equals to 767 s (the actual value on the Volvox), we obtain MA X>80, which is feasible. Even if was small (= 5 0 s), we w ould obtain MA X>193 which still corresponds to a realistic value.

When P becomes large, it is possible (and even necessary) to implement partial and total sum calculations so that ts In our machine, with a reasonable value of MA X= 1000, we can process 920 instructions during this delay (0.7 seconds). Clearly, w e can increase this delay b y increasing MA X.

We remark that a ner analysis of the behavior of the queues storing instructions between the two processors inside each node is not necessary. In fact, with an appropriate value of Int, these queues are always empty with the exception of the duration of the balancing phases. Queues are made empty at the beginning of the next processing phase. In our target machine, we x t h e v alue of Intto t c since t c > t i . With a better computation/communication ratio, Inth a s t o b e g r e a t e r than max(t c ti P). Further, we can easily calculate a lower bound for the response time of the dictionary machine:

(P + 1) t c + t i . This value is close to the average response time experimentally measured.

Experimental results

Our balancing mechanism has a small cost. To ensure an imbalance of up to 1% (MA X= 3600 for a local capacity of 360000), our machine spends 3% of its time in balancing operations.

The following experimental results were obtained with the values: MIN= 0 , MA X= 5000, L = 4 , P = 8, and waiting time WA I T Int= 3 :9s. As the memory of a node is 16 MBytes, the capacity of our dictionary is 360000 elements per node.

We can see in Figure 5 the time to \ ll up" the machine. It corresponds to the time spent for the machine to insert a given amount o f e l e m e n ts. It is drawn by a line, up to the capacity of the dictionary (2.88 million elements in this con guration).

In Figure 6, obviously, the minimum possible pipeline interval is constant whatever the current population is in the dictionary. The throughput is independent of the amount of data already inside the machine. This is explained by t c being much greater than t i in this machine, thus Int= t c that is a constant.

Figure 7 shows that the communication corresponds to the model proposed: the minimum possible value for the pipeline interval increases linearly with the size of the processed elements.

In Figure 8, we can see that the pipeline interval increases slightly with the number of processors involved in the dictionary. We could hope that the number of processors would not change the pipeline interval since, indeed, processors are along the pipeline. But this phenomenon is justi ed by the machine-dependent remark that increases abnormally with the number of user tasks running on the Volvox. Figures 9 and 10 represent the behavior of the machine quanti ed by t h e e v olution of the current amount of elements in each node during series of insertions processed.

The rst one (Figure 9) corresponds to series of insertions of elements with keys that increase continuously. W e c a n v erify that, even in that extreme case, after a rst period where not enough data were inserted (as explained in the analysis), our dictionary machine becomes and remains balanced.

Finally, the other situation visualized in Figure 10 corresponds to series of insertions performed in a random order for a while (only a small part of these insertions are visualized in the plot), and suddenly changed to an increasing order like in the previous gure. We can see that even when the distribution of the keys inserted changes, the structure stays balanced.

Conclusion

Multicomputers represent the cutting edge technology for database applications. Unfortunately, implementing dynamic data partitioning seems to be a very challenging problem. In this paper we gave a rst step towards its solution, by presenting an implementation of a dictionary machine { a database reduced to its simplest instance {, on a distributed memory architecture. Our goal was to achieve good performance, which required a dynamic balancing scheme. Using this scheme and exploiting the capacities of the target architecture, we h a ve p r o ved that choosing an adapted local data structure, good performance can be attainable for information maintenance and retrieval on a general purpose parallel architecture.

More generally, w e h a ve p r o p o s e d a p o werful balancing strategy, and we h a ve proved that it solves the load balancing problem. This strategy induces a very reasonable overhead and can be used with success in many other situations, where a bad dynamic data distribution would lead to weak performance.

A possible extension to our load balancing technique should be to adapt the number of processors (P) to the current population of the dictionary machine. By this way, the e ciency of the machine would be increased while currently storing only a small number of elements.

In the near future, we hope to implement the techniques shown in this paper into a parallel database application. Interesting applications are evolutionary ones, where the insertions and deletions of data are signi cant compared to the amount of information retrievals (queries).

Figure 1 :Figure 2 :Figure 3 :Figure 4 :

 1234 Figure1: A 2-3-4 tree and its binary colored implementation.

Figure 6 :

 6 Figure 5: Filling time on 8 nodes.

Figure 9 :

 9 Figure 7: Intvs L.

Figure 10 :

 10 Figure 10: Behavior for random then key-increasing insertions.

This work was partially supported by Stratag eme project of the French CNRS and the DRET. y CNRS.

Acknowledgments

The authors would like to thank Nashib Qadri whose comments have greatly improved the quality of presentation of the manuscript.

Proof: During a data balancing phase, as described in subroutine balance: \If DR i > M I N Then Split&Send(dict i Min(M A X DR i) p i+1) " Thus, if DR i > M I N , e a c h node can send up to MAX data, which is enough to balance every DR i .

If DR i MIN, Send is not performed, DR i is unchanged, but the proposition still holds.

Since, according to lemma 1,DL i = ;DR i , w e only need to study DR i .

De nition 3 The value MA X; MINrepresents the capacity of balancing for a node, i.e., the maximum number of elements balanced during one balancing phase.

Lemma 3 At most ts

Int instructions are p r ocessed b etween two successive balancing phases.

Proof: Our application alternates processing phases (with sum calculations) and balancing phases.

The partial and total sum calculations are done simultaneously with the processing phase. The balancing phase starts at the end of this calculation. Therefore, between two successive balancing phases, instructions arrive and are processed, with a pipeline interval Int, during time t s .

Hence, there is an imbalance of at most ts Int between two successive balancing phases (by Lemma 2). So, our data structure remains balanced whenever: MA X; MIN t s Int :

Now, we w ant t o r e l a x t h e h ypothesis of Proposition 1 so that dictionary instructions may b e processed on some nodes while other nodes are balancing. This is very important in order to use the asynchronous capabilities of the host parallel computer at their best.

To ensure e ciency of our balancing strategy, t h e capacity of balancing has to be greater than the number of instructions potentially processed during a complete cycle (processing phase plus balancing phase): MA X; MIN t b + t s Int :

Lemma 4 The cost of one balancing phase is bounded b y : t b = 2 t i + + MA X (L + l + 10) :

Proof: During a balancing phase, each n o d e m a y execute one split (cost: t i), followed by a send of size up to MAX elements, followed by one concat (cost: t i). Since we n e e d t o m a i n tain information from the split tree to ensure a Concat in O(log n) time in the destination node, each element (of size L) is encapsulated in a structure of size (L + l + 1 0) b ytes. Thus, the cost of the send is bounded by + MA X (L + l + 1 0) .