Judica El 
  
Proof reconstruction Preliminary version

Keywords: Rewriting, theorem prover, natural deduction, inductionless induction, SPIKE, Coq R e ecriture, d emonstrateur, d eduction naturelle, r ecurrence implicite, SPIKE, Coq Proof reconstruction

In the eld of formal methods, rewriting techniques and provers by c o nsistency in particular appear as powerful tools for automating deduction. However, these provers su er limitations as they only give a (nonreadable) trace of their progress and a yes/no answer where the user would expect a detailed explicit proof. Therefore, we propose a general mechanism to build an explicit proof from the running of a generic class of inductionless induction provers. We then show h o w i t a p p l i e s to Bouhoula's SPIKE prover, and give examples of proofs built by t h i s method.

that builds an explicit proof. Then in section 3, we shall see how the previous work applies to the prover SPIKE 3].

1 Terminology and framework 1.1 Terminology and notations Let (S F C) be a many sorted signature where S is a nite set of sorts, F is a nite set of function symbols and C is the subset of F whose elements are constructor symbols. Let X be a family of sorted variables, and T (F X) be the set of well-sorted terms and T(F) the set of ground terms (i.e. without any v ariable).

De nition 1 (Clause, conditional equation) A clause is a formula which states that a conjunction of some (possibly zero) atomic equalities between terms implies a disjunction of some (possibly zero) atomic propositions i.e. which is of the form (A 1 ^: : : ^An ) ) (B 1 _ : : : _ B m ). I f m = 1 , this clause is said to be a conditional equation.

Let Clauses be the (in nite) set of all clauses.

De nition 2 (Speci cation) A speci cation is a nite set L of clauses: L is a speci cation () L Clauses. In the following, let us assume that L is a speci cation and that is a transitive irre exive relation on terms that is noetherian, monotonic (t t 0 implies w x t] w x t 0 ] provided x appears in w), and satis es the proper subterm property (whenever t 0 is a proper subterm of t, t t 0 ). Furthermore, let c be a wellfounded ordering on clauses which is an extension of , in the sense that if C is a clause such that x occurs in C, a n d t and t 0 are two terms such that t t 0 , then C x t] c C x t 0 ] (see for instance 2]) where x t] denotes the substitution associating t to x.

De nition 3 (Inductive theorem) A clause C is an inductive theorem of the speci cation L if it is true in the initial model of L. We shall denote this by L j= ind C.

De nition 4 (Constructor substitutions) A constructor substitution, is a substitution whose image are terms built upon variables and constructors only (i.e. terms belonging to T (C X )).

De nition 5 ( C o ver set) A c over set CV [START_REF] Reddy | T erm rewriting induction[END_REF][START_REF] Magnusson | The new implementation of alf[END_REF] for a speci cation L (more precisely : for a signature (S F C) is a set of terms containing constructors as only function symbols, such that for every term u in T(C X ), t h e r e e x i s t s t in CV and a substitution such that t u. A substitution whose image is a subset of CV is called a CV substitution, and if v is a term, v is called a CV instance o f v (notice that a CV substitution is necessarily a constructor substitution). In the following, let us assume that CV is a cover set for L.

In the following, in order to prove that some conjectures are inductive theorems of the speci cation L, w e shall consider an inference system D whose data structure is a pair (E H), where E and H are two nite clause sets, i.e. a relation `D between couples of nite clauses sets. The elements of E will be clauses to be proved and the elements of H will play the role of induction hypothesis. When a run starts, H is empty, and at each step, a conjecture of E is rewritten and is possibly added to H as a new induction hypothesis.

De nition 6 (Correction of an inference system) D is said correct if and only if for every speci cation L, every set of clauses E 0 , whenever we get the run (E 0 ) `D (E 1 H 1 ) : : : `D (E m;1 H m;1 ) `D ( H m ), w e h a v e L j= ind E 0 .

An important class of correct inference systems are I-systems, de ned by Bouhoula in his PhD thesis 2, section 4.3]. Informally, this notion relies on the idea that there are essentially three types of operations one can apply in an inference system: generate is the operation of taking one clause C in E, putting it in H, simplifying its CV instances using clauses in H and E, then putting these simpli ed instances in E simplify is the operation of replacing one clause C in E by simpler ones which a r e equivalent if smaller instances of other clauses in E H are veri ed delete consists of removing one clause from E provided it is a consequence of smaller instances of clauses in E or H.

Logical framework

Unfortunately, the notion of I-system relies on purely semantical basis. So, as we want to build explicit proof of conjectures, we shall de ne a di erent class of correct inference systems expressing the same ideas as I-systems, but on a more syntactical basis.

For this purpose, we m ust rst describe the logical system within we shall give an explicit proof. The logical framework we w ant to use is a rst order natural deduction system extended with recursion schemes.

We shall consider judgements of type ; `rec F, where F is a rst-order formula, and ; is a list of rst-order formulas. Let F be the set of function symbols. In I-systems an order on clauses is needed to establish their correction. In our system we also require that for each ( C 1 C 2 ) 2 Clauses 2 , there exist two k-ary predicates @ C1 C2 and v C1 C2 , where k is the sum of the number of free variables in C 1 and the number of free variables in C 2 , and two binary predicates < s and s for each s 2 S representing well-founded orders on clauses. We let the set of predicates P be the set of these predicates plus the equality predicates.

We will denote @ C1 C2 xỹ, v C1 C2 xỹ, < s xy and s xy respectively by x @ C1 C2 ỹ, x v C1 C2 ỹ, x < s y, a n d x s y, where bold-font v ariables x and ỹ denote terms vectors, and the length of x and ỹ are respectively the numbers of free variables of C 1 and C 2 .

We assume the usual rules of rst-order natural deduction with equality, plus a set of rules Ax giving properties about the predicates @ C1 C2 , v C1 C2 , < s and s .

For instance, these rules can make these predicates represent a polynomial ordering (see Appendix A), or lexicographic path ordering: : : Indeed, in order to ensure that the chosen relations represent ordering relations, we only require the following rules to be admissible in our system:

; `rec x @ C1 C2 ỹ ; `rec x v C1 C2 ỹ ; `rec x v C C x ; `rec x @ C1 C2 ỹ ; `rec ỹ v C2 C3 z ; `rec x @ C1 C3 z ; `rec x v C1 C2 ỹ ; `rec ỹ @ C2 C3 z ; `rec x @ C1 C3 z ; `rec x v C1 C2 ỹ ; `rec ỹ v C2 C3 z ; `rec x v C1 C3 z generate: (E f Cg H ) `D (E f C 1 : : : C n g H f Cg) and f8x(x @ C 0 C ỹ ) C 0 (x)) j C 0 2 E H f C 1 : : : C n gg `rec C(ỹ) simplify: (E f Cg H ) `D (E f C 1 : : : C n g H ) and f8x(x v C 0 C ỹ ) C 0 (x)) j C 0 2 E H f C 1 : : : C n gg `rec C(ỹ) delete: (E f Cg H ) `D (E H) and f8x(x v C 0 C ỹ ) C 0 (x)) j C 0 2 E Hg rec C(ỹ)
where ỹ denotes new variables.

Figure 1: Conditions for D to be a K-system However, we w ant this relation on clauses to be well-founded. Therefore we also require the following rule to be admissible:

; ỹ v C C t 8z(z @ C C ỹ ) C(z)) `rec C(ỹ) ; `rec C( t)
C 2 Clauses and y not free in ;

We also add rules allowing to prove something about x by inspection of the several possible cases of its constructors in Ax:

`rec 8 s x(9 t1 x = C 1 ( t1 )) _ : : : _ (9 tk x = s C k ( tk )) (1) 
where C 1 : : : C k are the constructors of the sort s. Finally, a s w e w ant t o w ork on the given speci cation L, w e also add the axiom `rec 8x C (x) f o r e v ery C in the speci cation L, a n d w e require that every clause C such t h a t `rec C is provable is an inductive theorem of L.

K-systems 2.1 De nition

As we h a ve explained our logical framework, we c a n n o w express formally what class of inference system we shall consider.

We s a y that an inference system D is a K-system if and only if, whenever (E H) `D (E 0 H 0 ), we are in one of the three cases given in Figure 1. This notion is distinct of Bouhoula's notion of I-system, since our conditions are not semantical ones. Therefore, even if the two notions express similar ideas, they are di erent.

The point is to know whether every K-system is correct or not.

Correction

Assume D is a K-system, and (E 0 ) `D : : :`D ( H m ). We shall prove i n t h i s section that for every clause C in E 0 we h a ve `rec C. Moreover, the proof of this fact is constructive: we propose an algorithm giving the skeleton of a proof of `rec C from the run (E 0 ) `D : : :`D ( H m ). We mean by \ s k eleton" of a proof of the judgement `rec P a tree such that the root of the tree is the judgement `rec P and such t h a t e a c h node is labelled by a judgement `rec Q which can be deduced in our framework from the proofs of the judgements J 1 : : : J k labelling its sons, i.e. the following rule is admissible in `rec : J 1 : : :J k `rec Q The idea behind this algorithm is the following: if a clause C is replaced by C 1 : : : C n in E, this means we can build a skeleton of proof of C by building skeletons for C 1 : : : C n , and then making these skeletons be the sons of a root labelled by `rec C. But this only works in very simple cases, since if C is (indirectly) used to prove itself then this algorithm loops forever. So, in this case, we h a ve t o apply an induction scheme, and make sure that the well-foundness properties of the inference system guarantee that we can use the induction hypothesis instead of looping. Therefore, we k eep the induction hypothesis in the judgements ; `rec C, plus those stating inequalities between terms, allowing us to conclude that the induction hypothesis can be used.

Let us now describe more precisely the algorithm:

Algorithm 1 (Proof reconstruction)

We assume we have as an input the run (E 0 ) `D : : : `D ( H m ) of D on (E 0 ). 

Output:

A t r ee labelled with judgements.

Method:

if C is in G, t h e n r eturn the tree w h o s e r oot is labelled with J and having only one son, labelled with ; `rec x v C C ỹ where x and ỹ are the variables such that D = C(x) and 8z(z @ C C ỹ ) C(z)) belongs to ;. else, if C disappears from E between i and i + 1 by the use of the generate rule (i.e. C 2 E i , but C = 2 E i+1 ), and D = C(x) then take some new variables ũ, ỹ and z, l e t ; 0 = ; ỹ v C C x 8z(z @ C C ỹ ) C(z)) and call recursively recurse clauses on (C 0 G f Cg (; 0 ũ @ C 0 C ỹ `rec C 0 (ũ))), f o r C 0 2 E i H i f Cg f C 1 : : : C n g, l e t T 1 : : : T k be the resulting trees. Then return the tree whose root is labelled b y ; `rec C(x) and has one only son labelled b y ; 0 `rec C(ỹ) itself having T 1 : : : T k as sons if not, then, with D = C(x), c all recursively recurse clauses on (C 0 G (; ỹ v C 0 C x `rec C 0 (ỹ))) for C 0 2 H i E 0 , w h e r e E 0 is E i f C 1 : : : C n g if C disappears with the simpli cation rule and E i otherwise, and ỹ i s a v e ctor of new variables.

Initialisation: As a consequence, every K-system is a correct system, and we can nd a proof in `rec of each conjecture justi ed by a K-system.

Example

Let us consider the speci cation given in Figure 2 which is part of the speci cation of an insertion sort working on integer lists. We w ant to study the conjecture length(insert(x y)) = s(length(y)).

Here is how a mathematician would prove this conjecture: By induction on x 2 , it is enough to prove length(insert(x 1 x 2 )) = s(length(x 2 )) under the hypothesis 8x 0 1 8x 0 2 x 0 2 < list x 2 ) length(insert(x 0 1 x 0 2 )) = s(length(x 0 2 )) where < list is the well-founded ordering on lists de ned by 8x y y < list Cons(x y) plus the transitivity r u l e .

Then, either x 2 = Ni lor x 2 = Cons(x 3 x 4 ): in the rst case, our conjecture is veri ed since length(insert

(x 1 N i l )) = length(Cons(x1 N i l )) = s(length(Ni l ))
in the second case, as we h a ve x<=y = T r u e_ x<=y = F a l s ein L, w e c a n consider the two f o l l o wing cases:

{ if x 1 <=x 3 = T r u ethen insert(x 1 Cons(x 3 x 4 )) = Cons(x 1 (Cons(x 3 x 4 )))

(by L) and length(insert(x 1 C o n s (x 3 x 4 ))) = s(length(Cons(x 3 x 4 )))

{ if x 1 <=x 3 = F a l s e , then insert(x 1 Cons(x 3 x 4 )) = Cons(x 3 insert(x 1 x 4 ))

(by L) and length(insert(x 1 Cons(x 3 x 4 ))) = s(length(insert(x 1 x 4 ))), and s(length(Cons(x 3 x 4 ))) = s(s(length(x 4 ))). But since x 4 < list x 2 , by induction hypothesis, length(insert(x 1 x 4 )) = s(length(x 4 )), and the conjecture is also true if x 1 <=x 3 = F a l s e . We shall compare later this \natural" proof to the one we shall compute with our algorithm from the run of a K-system.

However, in order to have a K-system run on this example, we rst need to choose which rules we put in Ax. An acceptable choice is to take a polynomial ordering, as explained in Appendix A. Here is now the possible run of such a K-system: By delete, since the conjecture in E 4 is subsumed by the clause of H 4 : E 5 = H 5 = f length(insert(x1 x 2)) = s(length(x2)) g Then E 5 is empty, w h i c h means that the conjecture in E 0 is an inductive theorem of L.

E 0 = f length(insert(x1 x 2)) = s(length( x2 
; 3 `recv1<=v2=F a l s e =>length(insert(v1 v3))=s(length(v3)) ; 4 `recw1 w3@ C 1 C 1 y 1 y 2 ; 4 `reclength(insert(w1 w3))=s(length(w3))

; 2 `recu1<=u2=F alse=>s(length(insert(u1 u3)))=s(s(length(u3)))

; 2 `recu1<=u2=T r u e =>s(s(length(u3)))=s(s(length(u3)))

; 1 `recs(0)=s(0)

; 1 `reclength(insert(y1 y2))=s(length(y2)) We get the proof skeleton given in Figure 3, where ; 1 = y1 y 2 v C1 C1 x1 x 2 8z1 z 2(z1 z 2 @ C1 C1 y1 y 2 ) C 1 (z1 z 2)) ; 2 = ; 1 u 1 u 2 u 3 @ C2 C1 y1 y 2

; 3 = ; 2 v1 v 2 v 3 v C4 C3 u1 u 2 u 3 ; 4 = ; 3 w 1 w 3 v C1 C4 v1 v 2 v 3 and C 1 (x1 x 2) = length(insert(x1 x 2)) = s(length(x2)) C 2 (x1 x 2 x 3) = x1 <= x2 = T r u e=> s (s(length(x3))) = s(s(length(x3))) C 3 (x1 x 2 x 3) = x1 <= x2 = F a l s e=> s (length(insert(x1 x 3))) = s(s(length(x3))) C 4 (x1 x 2 x 3) = x1 <= x2 = F a l s e=> length(insert(x1 x 3)) = s(length(x3))
We can notice that the structure of the computed skeleton is very similar to the proof we g a ve a b o ve, though a little more complicated. This suggests that some optimizations could be added to our algorithm, in order to introduce new variables only when it is necessary.

3 Application to SPIKE Our notion of K-system is based on relations between rst-order formulas. But in usual inference systems, only clauses are manipulated, relations de ning the inference system only involve clauses and a meta-level ordering. Therefore, it seems interesting to de ne another class of inference system involving only such relations. So, we s a y that an inference system D is an M-system if and only if, whenever (E H) `D (E 0 H 0 ), we are in one of the three cases given in Figure 4, where denotes deduction in rst-order logic.

generate (E fCg H ) `D (E fC 1 : : : C n g H fCg) and there exists a partition fK j C V substitutiong, o f f1 : : : m g such that for every CV substitution f8xC 0 (x) j C 0 2 Lg ft j t 2 E H fCg constructor substitution and t c C g (C ) () (^k 2K C k ) and 8k 2 K C k c C simplify (E f Cg H ) `D (E f C 1 : : : C n g H ) a n d f8xC 0 (x) j C 0 2 Lg f t j t 2 E H constructor substitution and t c Cg C () (C 1 ^: : : ^Cn ) a n d 8k 2 f 1 : : : n g C k c C delete (E f Cg H ) `D (E H) and f8xC 0 (x) j C 0 2 Lg f t j t 2 E H constructor substitution and t c Cg C Figure 4: Conditions for D to be an M-system Theorem 3 Assume D is an M-system, and that for each pair of clauses (C 1 C 2 ) and for every constructor substitutions and , whenever C 1 c C 2 , we have `rec x @ C1 C2 ỹ and whenever C 1 c C 2 , we have `rec x v C1 C2 ỹ , w h e r e x and ỹ are the variables of C 1 and C 2 . Then, D is a K-system.

Proof 3 See Appendix B.

SPIKE is a theorem prover whose inference system D S is an I-system. We s h a l l not describe it here precisely: the interested reader may refer to 3, 2] for a complete survey.

Unfortunately, D S is not a K-system nor an M-system. But we m a y restrict the application of rules in order to get an M-system D 0 S : w e only have to restrict rules to apply only when they meet the requirements to be an M-system. The only thing we h a ve to do is to forbid this inference system to use non-constructor instances of clauses in order to apply its simplify, delete or generate rules. D 0 S is weaker than D S since every conjecture that can be proved by D 0 S can also be proved by D S , but practically, most of the time, D S and D 0 S behaves the same way, s o t h a t in order to get an explicit proof of a conjecture, you can make SPIKE run without even modifying it, then apply algorithm 1. On Figures 5,6 are some examples (from Bouhoula's thesis 2]) that SPIKE solves and that our algorithm translates whithout any di culty. Notice that the rst one uses mutually recursive functions, hence { according to Bouhoula { it is not automatically solvable by NQTHM. sorts: axioms: bool action state or(T r u e x ) = T r u e constructors:

or(x True) = T r u e T r u e:! bool or(F a l s e F a l s e ) = F a l s e F a l s e:! bool F 1 (do(a s)) = or(F 2 (s) F 3 (s)) No p:! action F 2 (do(a s)) = F 3 (s) S 0 :! state F 3 (do(a s)) = F 2 (s) do : action state ! state F 1 (S 0 ) = T r u e functions: F 3 (S 0 ) = T r u e or : bool bool ! F 2 (S 0 ) = F a l s e F 1 : state ! bool conjecture F 2 : state ! bool F 1 (x) = T r u e F 3 : state ! bool Properties required for inference systems to be I-systems are only semantical. We proposed a di erent class of inference systems, keeping the same ideas as I-systems, but expressing them in a rst-order logical framework. This allowed us to present a method for building an explicit proof of a theorem from a trace of the progress of a prover by consistency. As far as we k n o w, this approach is original. Since the inference systems of provers by consitency are generally only based on clauses, we de ned a better-suited class of inference systems (M-systems), which are in fact particular cases of K-systems (under a few restrictions). This approach i s p o werful enough to succeed on several examples with such a modern prover as SPIKE. We think it to be a promising way t o m a k e p r o vers by consistency safely cooperate with other provers, as even if bugs remain in the design or implementation of the interface between them or the prover by consistency, a wrong proof is rejected by the back-end prover.

A t o y implementation of this method (allowing only boolean speci cation about naturals) to interface SPIKE with Coq has been done 7], but it has to be completed in order to work with realistic examples (a good challenging one could be the Gilbreath's card trick). Part of this implementation could also be used to add to SPIKE interface the capability to explain the proofs it makes. However, further work could be necessary to extend enough the class of system this method handles. In this respect, the study of interaction between the order and positions where induction is done could be fruitful. sorts: nat list constructors: 0 : nat s : nat ! nat Ni l: list Cons : nat list ! list functions: + : nat nat ! nat : nat nat ! nat power : nat nat ! nat poinsum : list list ! list bin : nat ! nat seq : nat ! nat axioms x + 0 = x x + s(y) = s(x + y) 0 x = 0 s(x) y = ( x y) + y x (y + z) = ( x y) + ( x z) power(0 x ) = s(0) power(s(n) y ) = y power(n y) pointsum(Ni l z ) = z pointsum(z Nil) = z pointsum(cons(x 1 z 1 ) cons(x 2 z 2 )) = cons(x 1 + x 2 pointsum(z 1 z 2 )) bin(0) = cons(s(0) N i l ) bin(s(x)) = pointsum(cons(0 b i n (x)) b i n (x)) seq(x Nil) = 0 seq(x cons(y z)) = y + ( x seq(x z)) lemma seq(x 1 pointsum(x 2 x 3 )) = seq(x 1 x 2 ) + seq(x 1 x 3 ) conjecture power(x 1 s (x 2 )) = seq(x 2 bin(x 1 )) Figure 6: binomial coe cients A Simulating a polynomial ordering in our logical framework

We can simulate a polynomial ordering on clauses in the following way: we add to Ax the axioms of rst-order arithmetic then we de ne an interpretation in nat for each s o r t s other than nat, i.e. for each sort s other than nat, w e add a new function symbol s and the following axiom: ; `rec s (t) < nat s (t 0 ) () t < s t 0

for each clause C we c a n a d d a n-ary function C where n is the number of free variables in C a n d w e add the rule schema:

; `rec C1 ( t1 ) < nat C2 ( t2 ) () C 1 ( t1 ) @ C1 C2 C 2 ( t2 )

for each n-ary symbol function f of the speci cation, we c hoose a natural c f and n naturals d f 1 : : : d f n , and we add the rules:

`rec ^h i=1 ai=s i bi)_ k i=1 ci= s 0 i di ( t) = k X i=1 (c i )( t) + (d i )( t)
where is de ned on terms as follows:

(x) = s (x) where s is the sort of

x (f( t)) = c f + X k d f k ( tk )
where tk denotes the k-th element o f v ector t and 

= 1 c length = 2 d length 1 = 2 d insert 2 = 2 c insert = 2 d insert 1 = 2 d insert 2 = 2 c <= = 1 d <= 1 = 1 d <= 2 = 1 c Nil = 0 c Cons = 1 d Cons 1 = 1 d Cons 2 = 1
B Proofs of given theorems Proof 4 (of theorem 1) We prove this theorem by induction: the second and the third c ases are e asy. Indeed, for the third o n e , f r om ; ỹ v C 0 C x `rec C 0 (ỹ) (where the ỹ are not free i n ;) o n e c an deduce ; `rec 8ỹ ỹ v C 0 C x ) C 0 (ỹ)), a n d t h e application of the cut rule to these proofs and to the proof of f8ỹ ỹ v C 0 C x ) C 0 (ỹ)) j C 0 2 E 0 Hg rec C(x), which is a property of any I 0 system.

Let us now prove the rst case.

Notice rst that if recurse clauses called with parameters (C G ; `rec C(x)) calls itself recursively with parameters (C 0 G 0 ; 0 `rec D 0 ) then G G 0 , there e x i s t s such that ; 0 ; , t h e r e exists ỹ such that D 0 C 0 (ỹ), a n d ; 0 `rec ỹ v C 0 C x.

Moreover, if C disappears with the generate rule, then ; 0 `rec ỹ @ C 0 C x.

Then, we can deduce that the following proposition is veri ed during the computation: when recurse clauses is called with (C G ; `rec C(x)), then, for each C 0 2 G, we have ; `rec 8ỹ ỹ v C 0 C x ) C 0 ( t) i n d e ed this is true at initialisation time since G is empty, and this property is preserved during the computation.

As a particular case, when recurse clauses is called with (C G ; `rec C(x)), i f C is in G, t h e n ; `rec C(x).

Proof 5 (of theorem 2) By absurdity: otherwise, one branch would be in nite.

Since

S n i=0 E i is nite, this branch would de ne a cycle on clauses. Since a b r anch terminates on clauses C such that C 2 G, none of these clauses in the cycle disappears with the generate rule nor can belong to one of the H i . B u t i f recurse clauses called w i t h C recursively calls itself with C 0 where neither C nor C 0 belong to one of the H i , then this means that C 0 disappears at a step after C. T h e r efore, the existence of a cycle is absurd.

Proof 6 (of theorem 3) Let us rst inspect the case of generate.

For every CV substitution , every C 0 in E H C, and every constructor substitution such that C 0 c C , w e h a v e `rec z @ C 0 C x Moreover, for every k in K , we have `rec x @ Ck C x As we have f8xC 0 (x) j C 0 2 Lg f t j t 2 E H f Cg f C 1 : : : C n g constructor substitution and t c C g rec (C ) we have f8z(z @ C 0 C x ) C 0 (z) j C 0 2 E H f C 1 : : : C n gg `rec C(x )

We deduce then `rec f8z(z @ C 0 C x ) C 0 (z) j C 0 2 E H f C 1 : : : C n gg ) C(x ) Then, by multiple application of axiom 1, we have `rec f8z(z @ C 0 C x ) C 0 (z) j C 0 2 E H f C 1 : : : C n gg ) C(x) So we can conclude f8z(z @ C 0 C x ) C 0 (z) j C 0 2 E H f C 1 : : : C n gg `rec C(x) The case of simplify (resp. delete) is similar, though simpler. For every constructor substitution and every C 0 in E H f C 1 : : : C n g (resp. E H) such that C 0 c C, we have:

`rec z v C 0 C x And for k in f1 : : : n g, we have `r ecx @ Ck C x.

As f8xC 0 (x) j C 0 2 Lg f t j t 2 E H f Cg f C 1 : : : C n g constructor substitution and t c Cg rec C (resp. f8xC 0 (x) j C 0 2 Lg ft j t 2 E H fCg constructor substitution and t c Cg rec C) w e c onclude: f8z(z v C 0 C x ) C 0 (z) j C 0 2 E H f C 1 : : : C n gg `rec C(x) (resp. f8z(z v C 0 C x ) C 0 (z) j C 0 2 E H f C 1 : : : C n gg `rec C(x))

  Figure 2: A speci cation example Theorem 1 If this algorithm terminates, it gives a skeleton of a proof of `rec C. Proof 1 See Appendix B. Theorem 2 This algorithm always terminates. Proof 2 See Appendix B.

  )) g H 0 = By the generate rule (the following is correct since x1 <= x3 = F a l s e_ x1 <= x3 = T r u e2 L): put length(insert(x1 x 2)) = s(length(x2)) in H 1 put s(0) = s(0) in E 1 , w h i c h i s e q u i v alent t o length(insert(x1 x 2)) = s(length(x2)) x2 Ni l ] in the initial model of L put x1 <= x3 = T r u e=> s (s(length(x4))) = s(s(length(x4))) which i s equivalent t o length(insert(x1 x 2)) = s(length(x2)) x2 Cons(x3 x 4)] for every instance of x1, x3 s u c h t h a t x1 <= x3 = T r u ein E 1 put x1 <= x3 = F a l s e=> s (length(insert(x1 x 4))) = s(s(length(x4))) whose any instance such that x1 <= x3 = F a l s eis equivalent to the same instance of length(insert(x1 x 2)) = s(length(x2)) x2 Cons(x3 x 4)] in E f s(0) = s(0) x1 <= x3 = T r u e=> s (length(x4)) = s(length(x4)) x1 <= x3 = F a l s e=> s (length(insert(x1 x 4))) = s(s(length(x4))) g H 1 = f length(insert(x1 x 2)) = s(length(x2)) g By the delete rule, remove the rst conjecture, which is trivially true: f x1 <= x3 = T r u e=> s (length(x4)) = s(length(x4)) x1 <= x3 = F a l s e=> s (length(insert(x1 x 4))) = s(s(length(x4))) g H 2 = f length(insert(x1 x 2)) = s(length(x2)) g By the delete rule also remove the rst of the remaining conjectures: E 3 = f x1 <= x3 = F a l s e=> s (length(insert(x1 x 4))) = s(s(length(x4))) g H 3 = f length(insert(x1 x 2)) = s(length(x2)) g By simplify the remaining conjecture becomes: E 4 = f x1 <= x3 = F a l s e=> length(insert(x1 x 4)) = s(length(x4)) g H 4 = f length(insert(x1 x 2)) = s(length(x2)) g 7
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 3 Figure 3: Proof skeleton built by the algorithm It is clear that this run is not immediately human-readable since no proof structure arises. Let us now see what gives our algorithm: let us call recurse clauses on (length(insert(x1 x 2)) = s(length(x2)) `rec length(insert(x1 x 2)) = s(length(x2))).We get the proof skeleton given in Figure3, where
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 5 Figure 5: Situation invariant problem 4 Conclusion and future work

`

  rec s (C(x)) = c C + X k d C k ( tk ) where C is a constructor For our example, section 2.3, we c a n c hoose the following coe cients: c Tr u e = 1 c False

In these systems, proof objects are terms, and the program checking a proof is only a typechecker of course, to keep a proof object is also interesting in these frameworks with respect to the \proofs as programs" paradigm.
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