
HAL Id: hal-02101787
https://hal-lara.archives-ouvertes.fr/hal-02101787

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proof reconstruction (preliminary version).
Judicael Courant

To cite this version:
Judicael Courant. Proof reconstruction (preliminary version).. [Research Report] LIP 1996-26, Lab-
oratoire de l’informatique du parallélisme. 1996, 2+14p. �hal-02101787�

https://hal-lara.archives-ouvertes.fr/hal-02101787
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Proof reconstruction
Preliminary version

Judica�el Courant September ��

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Proof reconstruction
Preliminary version

Judica�el Courant

September ��

Abstract

In the �eld of formal methods� rewriting techniques and provers by con�
sistency in particular appear as powerful tools for automating deduc�
tion� However� these provers su�er limitations as they only give a �non�
readable� trace of their progress and a yes�no answer where the user
would expect a detailed explicit proof� Therefore� we propose a gen�
eral mechanism to build an explicit proof from the running of a generic
class of inductionless induction provers� We then show how it applies
to Bouhoula�s SPIKE prover� and give examples of proofs built by this
method�

Keywords� Rewriting� theorem prover� natural deduction� inductionless induc�
tion� SPIKE� Coq

R�esum�e

Dans le domaine des m	ethodes formelles� les techniques de r	e	ecriture
et les prouveurs par r	ecurrence implicite sont des outils puissants pour
automatiser le processus de preuve� Cependant� ces prouveurs donnent
une trace du d	eroulement de la preuve peu compr	ehensible� alors que
l�utilisateur lambda aimerait avoir une preuve explicite d	etaill	ee� Nous
proposons un m	ecanisme g	en	eral permettant de construire une preuve
explicite
a partir de la trace du d	eroulement d�une preuve pour une classe
g	en	erique de d	emonstrateurs par r	ecurrence implicite� Nous montrons
comment ce proc	ed	e s�applique au prouveur SPIKE de Bouhoula� et
donnons des exemples de preuves construites par cette m	ethode�

Mots�cl�es� R	e	ecriture� d	emonstrateur� d	eduction naturelle� r	ecurrence implicite�
SPIKE� Coq

Proof reconstruction
�

Preliminary version

Judica�el Courant

September ��

The growing need for formal methods in industry stresses the necessity for e��
cient tools for specifying and veri�ying software� Beyond the choice of the logical
framework� designing such a tool raises �at least� the two following issues�

� how can one be sure that the answer of a proof assistant is indeed correct

� how can one have one�s proofs made in an automatic way

To address the �rst one� some systems such as Alf ����� Coq ��� ��� or Lego ����
require the proof of a proposition to be a formal object� built by the user and whose
manual or mechanical check�up is quite simple�� But these systems su�er from the
lack of proof automatisms� partly due to the complexity of their underlying logical
framework �higher�order��
In order to address the second issue� some others systems like NQTHM ����

RRL ����� SPIKE ��� deliberately choose simpler frameworks� arguing that in many
cases� equational or conditional equational reasoning plus induction is enough for
solving usual problems� They use the power of rewriting techniques to achieve
some complex proofs with few interaction with the user ��� ��� ���� A signi�cant
step for automatising induction� the inductionless induction technique� was taken in
the early eighties ���� its principle is to simulate induction by term rewriting� The
scope of this technique has considerably widened since then ���� �� �� ��� ��� ��� ���
Unfortunately� this way to solve the second issue is quite far from addressing

the �rst one� as with inductionless induction technique� the correction of the proof
relies on the whole correction of the prover� As no proof structure clearly arises� no
further veri�cation is possible� On the contrary� in a prover requiring proof objects�
an automatic tactic builds a proof that is later veri�ed by the prover� even if the
tactic code is buggy� no false conjecture can be proved provided that the small
amount of code verifying a proof object is correct�
Our aim is to show a way to reconcile the two approaches� we want to have

an inductionless induction prover run� and once it stops� then get the trace of
its progress to be automatically transformed into an explicit proof in a �rst�order
natural deduction formalism with recursion schemes� To achieve this goal� we shall
�rst recall some useful de�nitions� and informally what is Bouhoula�s notion of
generic inference procedure ��� and give the �rst�order logic extension with recursion
schemes we want to work with in section �� Then� in section � we shall introduce
our notion ofK�system� which is a particular class of inference system for automatic
proving� We shall prove that a conjecture justi�ed by a run of this system is provable
in our logical framework in a constructive manner� i�e� we shall give an algorithm

�This research was partially supported by the ESPRIT Basic Research Action Types and by
the GDR Programmation co�nanced by MRE�PRC and CNRS

�In these systems� proof objects are terms� and the program checking a proof is only a type�
checker � of course� to keep a proof object is also interesting in these frameworks with respect to
the �proofs as programs� paradigm�

�

that builds an explicit proof� Then in section �� we shall see how the previous work
applies to the prover SPIKE ����

� Terminology and framework

��� Terminology and notations

Let �S� F� C� be a many sorted signature where S is a �nite set of sorts� F is a �nite
set of function symbols and C is the subset of F whose elements are constructor
symbols� Let X be a family of sorted variables� and T �F�X� be the set of well�sorted
terms and T �F � the set of ground terms �i�e� without any variable��

De�nition � �Clause� conditional equation� A clause is a formula which states
that a conjunction of some �possibly zero� atomic equalities between terms implies
a disjunction of some �possibly zero� atomic propositions i�e� which is of the form
�A� � � � ��An�� �B� � � � ��Bm�� If m � �� this clause is said to be a conditional
equation�

Let Clauses be the �in�nite� set of all clauses�

De�nition � �Speci�cation� A speci�cation is a �nite set L of clauses� L is a
speci�cation �� L � Clauses�

In the following� let us assume that L is a speci�cation and that � is a transitive
irre�exive relation on terms that is noetherian� monotonic �t � t� implies w�x �
t� � w�x� t�� provided x appears in w�� and satis�es the proper subterm property
�whenever t� is a proper subterm of t� t � t��� Furthermore� let �c be a well�
founded ordering on clauses which is an extension of �� in the sense that if C is a
clause such that x occurs in C� and t and t� are two terms such that t � t�� then
C�x� t� �c C�x� t�� �see for instance ���� where �x� t� denotes the substitution
associating t to x�

De�nition 	 �Inductive theorem� A clause C is an inductive theorem of the
speci�cation L if it is true in the initial model of L� We shall denote this by L j�ind
C�

De�nition
 �Constructor substitutions� A constructor substitution� is a sub�
stitution whose image are terms built upon variables and constructors only �i�e�
terms belonging to T �C� X���

De�nition � �Cover set� A cover set CV ��	� �
� for a speci�cation L �more
precisely � for a signature �S� F� C� is a set of terms containing constructors as only
function symbols� such that for every term u in T �C� X�� there exists t in CV and a
substitution � such that t� 	 u� A substitution � whose image is a subset of CV is
called a CV substitution� and if v is a term� v� is called a CV instance of v �notice
that a CV substitution is necessarily a constructor substitution��

In the following� let us assume that CV is a cover set for L�
In the following� in order to prove that some conjectures are inductive theorems

of the speci�cation L� we shall consider an inference system D whose data structure
is a pair �E�H�� where E andH are two �nite clause sets� i�e� a relation
D between
couples of �nite clauses sets� The elements of E will be clauses to be proved and
the elements of H will play the role of induction hypothesis� When a run starts� H
is empty� and at each step� a conjecture of E is rewritten and is possibly added to
H as a new induction hypothesis�

�

De�nition � �Correction of an inference system� D is said correct if and only
if for every speci�cation L� every set of clauses E�� whenever we get the run
�E�� ��
D �E��H�� � � �
D �Em���Hm���
D ���Hm�� we have L j�ind E��

An important class of correct inference systems are I�systems� de�ned by Bouhoula
in his PhD thesis ��� section ����� Informally� this notion relies on the idea that there
are essentially three types of operations one can apply in an inference system�

generate is the operation of taking one clause C in E� putting it in H� simplifying
its CV instances using clauses in H and E� then putting these simpli�ed
instances in E�

simplify is the operation of replacing one clause C in E by simpler ones which are
equivalent if smaller instances of other clauses in E �H are veri�ed�

delete consists of removing one clause from E provided it is a consequence of
smaller instances of clauses in E or H�

��� Logical framework

Unfortunately� the notion of I�system relies on purely semantical basis� So� as we
want to build explicit proof of conjectures� we shall de�ne a di�erent class of correct
inference systems expressing the same ideas as I�systems� but on a more syntactical
basis�
For this purpose� we must �rst describe the logical system within we shall give

an explicit proof� The logical framework we want to use is a �rst order natural
deduction system extended with recursion schemes�
We shall consider judgements of type �
rec F � where F is a �rst�order formula�

and � is a list of �rst�order formulas� Let F be the set of function symbols� In
I�systems an order on clauses is needed to establish their correction� In our system
we also require that for each �C�� C��
 Clauses�� there exist two k�ary predicates
�C��C�

and vC��C�
� where k is the sum of the number of free variables in C� and

the number of free variables in C�� and two binary predicates �s and �s for each
s
 S representing well�founded orders on clauses� We let the set of predicates P
be the set of these predicates plus the equality predicates�
We will denote �C��C�

�x�y� vC��C�
�x�y� �s xy and �s xy respectively by �x �C��C�

�y� �x vC��C�
�y� x �s y� and x �s y� where bold�font variables �x and �y denote terms

vectors� and the length of �x and �y are respectively the numbers of free variables of
C� and C��
We assume the usual rules of �rst�order natural deduction with equality� plus a

set of rules Ax giving properties about the predicates �C��C�
� vC��C�

� �s and �s�
For instance� these rules can make these predicates represent a polynomial ordering
�see Appendix A�� or lexicographic path ordering� � � Indeed� in order to ensure that
the chosen relations represent ordering relations� we only require the following rules
to be admissible in our system�

�
rec �x �C��C�
�y

�
rec �x vC��C�
�y
�
rec �x vC�C �x

�
rec �x �C��C�
�y �
rec �y vC��C�

�z

�
rec �x �C��C�
�z

�
rec �x vC��C�
�y �
rec �y �C��C�

�z

�
rec �x �C��C�
�z

�
rec �x vC��C�
�y �
rec �y vC��C�

�z

�
rec �x vC��C�
�z

�

generate� �E � fCg�H�
D �E � fC�� � � � � Cng�H � fCg� and

f��x��x �C� �C �y � C���x�� j C�
 E �H � fC�� � � � � Cngg
rec C��y�

simplify� �E � fCg�H�
D �E � fC�� � � � � Cng�H� and

f��x��x vC� �C �y � C���x�� j C�
 E �H � fC�� � � � � Cngg
rec C��y�

delete� �E � fCg�H�
D �E�H� and

f��x��x vC��C �y � C���x�� j C�
 E �Hg
rec C��y�

where �y denotes new variables�

Figure �� Conditions for D to be a K�system

However� we want this relation on clauses to be well�founded� Therefore we also
require the following rule to be admissible�

�� �y vC�C �t� ��z��z �C�C �y � C��z��
rec C��y�

�
rec C��t�
C
 Clauses and y not free in �

We also add rules allowing to prove something about x by inspection of the
several possible cases of its constructors in Ax�

rec �sx���t� x � C���t��� � � � �� ���tk x �s Ck��tk�� ���

where C�� � � � � Ck are the constructors of the sort s�
Finally� as we want to work on the given speci�cation L� we also add the axiom

rec ��x C��x� for every C in the speci�cation L� and we require that every clause C
such that
rec C is provable is an inductive theorem of L�

� K�systems

��� De�nition

As we have explained our logical framework� we can now express formally what
class of inference system we shall consider�
We say that an inference system D is a K�system if and only if� whenever

�E�H�
D �E��H��� we are in one of the three cases given in Figure �� This notion
is distinct of Bouhoula�s notion of I�system� since our conditions are not semantical
ones� Therefore� even if the two notions express similar ideas� they are di�erent�
The point is to know whether every K�system is correct or not�

��� Correction

Assume D is a K�system� and �E�� ��
D � � �
D ���Hm�� We shall prove in this
section that for every clause C in E� we have
rec C� Moreover� the proof of this
fact is constructive� we propose an algorithm giving the skeleton of a proof of
rec C
from the run �E�� ��
D � � �
D ���Hm�� We mean by �skeleton� of a proof of the
judgement
rec P a tree such that the root of the tree is the judgement
rec P
and such that each node is labelled by a judgement !
rec Q which can be deduced

�

in our framework from the proofs of the judgements J�� � � � � Jk labelling its sons�
i�e� the following rule is admissible in
rec�

J� � � � Jk
!
rec Q

The idea behind this algorithm is the following� if a clause C is replaced by
C�� � � � � Cn in E� this means we can build a skeleton of proof of C by building
skeletons for C�� � � � � Cn� and then making these skeletons be the sons of a root
labelled by
rec C� But this only works in very simple cases� since ifC is �indirectly�
used to prove itself then this algorithm loops forever� So� in this case� we have to
apply an induction scheme� and make sure that the well�foundness properties of
the inference system guarantee that we can use the induction hypothesis instead of
looping� Therefore� we keep the induction hypothesis in the judgements �
rec C�
plus those stating inequalities between terms� allowing us to conclude that the
induction hypothesis can be used�
Let us now describe more precisely the algorithm�

Algorithm � �Proof reconstruction�
We assume we have as an input the run �E�� ��
D � � �
D ���Hm� of D on �E�� ���
Notice we have

Sn

i��Hi �
Sn

i��Ei� Proof reconstruction is done by calling the
function recurse clauses� de�ned as follows�

Function recurse clauses

Input�

� C� a clause belonging to
Sn

i��Ei �

� G� a ��nite� set of clauses �corresponding to induction hypothesis� G �Sn

i��Hi� �

� J � a judgement �
rec D �which is what we want to prove � D is a renaming
of C��

Output�

A tree labelled with judgements�
Method�

� if C is in G� then return the tree whose root is labelled with J and having only
one son� labelled with �
rec �x vC�C �y where �x and �y are the variables such
that D � C��x� and ��z��z �C�C �y � C��z�� belongs to ��

� else� if C disappears from E between i and i " � by the use of the generate
rule �i�e� C
 Ei� but C �
 Ei���� and D � C��x� then take some new
variables �u� �y and �z� let �� � �� �y vC�C �x� ��z��z �C�C �y � C��z�� and call
recursively recurse clauses on �C�� G � fCg� ���� �u �C��C �y
rec C���u���� for
C�
 Ei �Hi � fCg � fC�� � � �Cng� let T�� � � �Tk be the resulting trees� Then
return the tree whose root is labelled by �
rec C��x� and has one only son
labelled by ��
rec C��y� itself having T�� � � � � Tk as sons �

� if not� then� withD � C��x�� call recursively recurse clauses on �C�� G� ��� �y vC��C

�x
rec C ���y��� for C�
 Hi � E�� where E� is Ei � fC�� � � � � Cng if C disap�
pears with the simpli�cation rule and Ei otherwise� and �y is a vector of new
variables�

Initialisation�

call recurse clauses on �C� ��
rec C��x���

�

sorts �
nat� list� bool
constructors �
� � nat
s � nat� nat
Nil � list
Cons � nat� list � list
T rue � bool
False � bool
functions

length � list � nat
insert � nat� list� list
��� nat � nat� bool
axioms

� �� x � True
s�x� �� � � False
s�x� �� s�y� � x �� y
length�Nil� � �
length�Cons�x� y�� � s�length�y��
insert�x�Nil� � Cons�x�Nil�
x �� y � True �� insert�x�Cons�y� z�� � Cons�x�Cons�y� z��
x �� y � False �� insert�x�Cons�y� z�� � Cons�y� insert�x� z��
x �� x � True
x �� y � True � x �� y � False
x �� y � True � y �� x � True
x �� y � False � y �� z � False � x �� z � True

Figure �� A speci�cation example

Theorem � If this algorithm terminates� it gives a skeleton of a proof of
rec C�

Proof � See Appendix B�

Theorem � This algorithm always terminates�

Proof � See Appendix B�

As a consequence� every K�system is a correct system� and we can �nd a proof
in
rec of each conjecture justi�ed by a K�system�

��� Example

Let us consider the speci�cation given in Figure � which is part of the speci�cation
of an insertion sort working on integer lists� We want to study the conjecture
length�insert�x� y�� � s�length�y���
Here is how a mathematician would prove this conjecture�
By induction on x�� it is enough to prove length�insert�x� � x��� � s�length�x���

under the hypothesis �x���x
�
� x

�
� �list x� � length�insert�x��� x���� � s�length�x����

where �list is the well�founded ordering on lists de�ned by �x� y y �list Cons�x� y�
plus the transitivity rule�
Then� either x� � Nil or x� � Cons�x�� x���

� in the �rst case� our conjecture is veri�ed since length�insert�x�� Nil�� �
length�Cons�x�� Nil�� � s�length�Nil�� �

�

� in the second case� as we have x��y � True � x��y � False in L� we can
consider the two following cases�

 if x���x� � True then insert�x�� Cons�x�� x��� � Cons�x�� �Cons�x�� x����
�by L� and length�insert�x�� Cons�x�� x���� � s�length�Cons�x�� x����

 if x���x� � False� then insert�x�� Cons�x�� x��� � Cons�x�� insert�x�� x���
�by L� and length�insert�x�� Cons�x�� x���� � s�length�insert�x� � x�����
and s�length�Cons�x�� x���� � s�s�length�x����� But since x� �list x��
by induction hypothesis� length�insert�x� � x��� � s�length�x���� and the
conjecture is also true if x���x� � False��

We shall compare later this �natural� proof to the one we shall compute with
our algorithm from the run of a K�system�
However� in order to have a K�system run on this example� we �rst need to

choose which rules we put in Ax� An acceptable choice is to take a polynomial
ordering� as explained in Appendix A� Here is now the possible run of such a
K�system�

�
E� � f length�insert�x�� x��� � s�length�x��� g
H� � �

By the generate rule �the following is correct since x� �� x� � False � x� ��
x� � True
 L��

� put length�insert�x�� x��� � s�length�x��� in H��

� put s��� � s��� inE�� which is equivalent to length�insert�x�� x��� � s�length�x����x��
Nil� in the initial model of L�

� put x� �� x� � True �� s�s�length�x���� � s�s�length�x���� which is
equivalent to length�insert�x�� x��� � s�length�x����x� � Cons�x�� x��� for
every instance of x�� x� such that x� �� x� � True in E��

� put x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x����
whose any instance such that x� �� x� � False is equivalent to the same
instance of length�insert�x�� x��� � s�length�x����x�� Cons�x�� x��� in E������

���

E� � f s��� � s����
x� �� x� � True �� s�length�x��� � s�length�x����
x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x���� g

H� � f length�insert�x�� x��� � s�length�x��� g

By the delete rule� remove the �rst conjecture� which is trivially true�

��
�

E� � f x� �� x� � True �� s�length�x��� � s�length�x����
x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x���� g

H� � f length�insert�x�� x��� � s�length�x��� g

By the delete rule also remove the �rst of the remaining conjectures�

�
E� � f x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x���� g
H� � f length�insert�x�� x��� � s�length�x��� g

By simplify the remaining conjecture becomes�

�
E� � f x� �� x� � False �� length�insert�x�� x��� � s�length�x��� g
H� � f length�insert�x�� x��� � s�length�x��� g

�

By delete� since the conjecture in E� is subsumed by the clause of H���
E� � �
H� � f length�insert�x�� x��� � s�length�x��� g

Then E� is empty� which means that the conjecture in E� is an inductive theorem
of L� �

���recv��	v
	False	�length�insert�v��v�

	s�length�v�

���recw��w��C��C�
y��y�

���reclength�insert�w��w�

	s�length�w�

���recu��	u
	False	�s�length�insert�u��u�

	s�s�length�u�

���recu��	u
	True	�s�s�length�u�

	s�s�length�u�

���recs��
	s��

���reclength�insert�y��y

	s�length�y

�reclength�insert�x��x

	s�length�x

Figure �� Proof skeleton built by the algorithm

It is clear that this run is not immediately human�readable since no proof struc�
ture arises� Let us now see what gives our algorithm� let us call recurse clauses on
�length�insert�x�� x��� � s�length�x���� ��
rec length�insert�x�� x��� � s�length�x�����
We get the proof skeleton given in Figure �� where

�� � y�� y� vC��C�
x�� x�� �z�� z��z�� z� �C� �C�

y�� y�� C��z�� z���

�� � ��� u�� u�� u��C��C�
y�� y�

�� � �� v�� v�� v� vC��C�
u�� u�� u�

�� � ��� w�� w� vC��C�
v�� v�� v�

and

C��x�� x�� � length�insert�x�� x��� � s�length�x���

C��x�� x�� x�� � x� �� x� � True �� s�s�length�x���� � s�s�length�x����

C��x�� x�� x�� � x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x����

C��x�� x�� x�� � x� �� x� � False �� length�insert�x�� x��� � s�length�x���

�

We can notice that the structure of the computed skeleton is very similar to the
proof we gave above� though a little more complicated� This suggests that some
optimizations could be added to our algorithm� in order to introduce new variables
only when it is necessary�

� Application to SPIKE

Our notion of K�system is based on relations between �rst�order formulas� But
in usual inference systems� only clauses are manipulated� relations de�ning the
inference system only involve clauses and a meta�level ordering� Therefore� it seems
interesting to de�ne another class of inference system involving only such relations�
So� we say that an inference system D is an M �system if and only if� whenever
�E�H�
D �E��H��� we are in one of the three cases given in Figure �� where

denotes deduction in �rst�order logic�

generate �E�fCg�H�
D �E�fC�� � � � � Cng�H�fCg� and there exists a partition
fK� j � CV substitutiong� of f�� � � �mg such that for every CV substitution �
f��xC���x� j C�
 Lg�ft� j t
 E�H�fCg � constructor substitution and t� �c

C�g
 �C�� �� ��k�K�
Ck� and �k
 K� Ck �c C��

simplify �E�fCg�H�
D �E�fC�� � � � � Cng�H� and f��xC���x� j C�
 Lg�ft� j t

E �H � constructor substitution and t� �c Cg
 C �� �C�� � � ��Cn� and
�k
 f�� � � � � ng Ck �c C

delete �E � fCg�H�
D �E�H� and f��xC���x� j C�
 Lg � ft� j t
 E �
H � constructor substitution and t� �c Cg
 C

Figure �� Conditions for D to be an M �system

Theorem 	 Assume D is an M �system� and that for each pair of clauses �C�� C��
and for every constructor substitutions � and �� whenever C�� �c C��� we have

rec �x� �C��C�

�y� and whenever C�� �c C��� we have
rec �x� vC��C�
�y�� where �x

and �y are the variables of C� and C�� Then� D is a K�system�

Proof 	 See Appendix B�

SPIKE is a theorem prover whose inference system DS is an I�system� We shall
not describe it here precisely� the interested reader may refer to ��� �� for a complete
survey�
Unfortunately� DS is not a K�system nor anM �system� But we may restrict the

application of rules in order to get an M �system D�
S � we only have to restrict rules

to apply only when they meet the requirements to be anM �system� The only thing
we have to do is to forbid this inference system to use non�constructor instances of
clauses in order to apply its simplify� delete or generate rules� D�

S is weaker
than DS since every conjecture that can be proved by D�

S can also be proved by
DS � but practically� most of the time� DS and D

�
S behaves the same way� so that

in order to get an explicit proof of a conjecture� you can make SPIKE run without
even modifying it� then apply algorithm �� On Figures �� � are some examples
�from Bouhoula�s thesis ���� that SPIKE solves and that our algorithm translates
whithout any di�culty� Notice that the �rst one uses mutually recursive functions�
hence # according to Bouhoula # it is not automatically solvable by NQTHM�

�

sorts� axioms�

bool� action� state or�True� x� � True
constructors� or�x� True� � True
True �� bool or�False� False� � False
False �� bool F��do�a� s�� � or�F��s�� F��s��
Nop �� action F��do�a� s�� � F��s�
S� �� state F��do�a� s�� � F��s�
do � action � state� state F��S�� � True
functions� F��S�� � True
or � bool � bool � F��S�� � False
F� � state� bool conjecture

F� � state� bool F��x� � True
F� � state� bool

Figure �� Situation invariant problem

� Conclusion and future work

Properties required for inference systems to be I�systems are only semantical� We
proposed a di�erent class of inference systems� keeping the same ideas as I�systems�
but expressing them in a �rst�order logical framework� This allowed us to present
a method for building an explicit proof of a theorem from a trace of the progress
of a prover by consistency� As far as we know� this approach is original� Since the
inference systems of provers by consitency are generally only based on clauses� we
de�ned a better�suited class of inference systems �M �systems�� which are in fact
particular cases of K�systems �under a few restrictions�� This approach is powerful
enough to succeed on several examples with such a modern prover as SPIKE� We
think it to be a promising way to make provers by consistency safely cooperate
with other provers� as even if bugs remain in the design or implementation of the
interface between them or the prover by consistency� a wrong proof is rejected by
the back�end prover�
A toy implementation of this method �allowing only boolean speci�cation about

naturals� to interface SPIKE with Coq has been done ���� but it has to be com�
pleted in order to work with realistic examples �a good challenging one could be
the Gilbreath�s card trick�� Part of this implementation could also be used to add
to SPIKE interface the capability to explain the proofs it makes� However� further
work could be necessary to extend enough the class of system this method handles�
In this respect� the study of interaction between the order and positions where
induction is done could be fruitful�

References

��� L� Bachmair� Proof by consistency in equational theories� In Proceedings of the
third IEEE Symposium on Logic in Computer Science� pages ���#���� �����

��� A� Bouhoula� Preuves automatiques par r
ecurrence dans les th
eories condition�
nelles� Th
ese� Universit	e de Nancy I� march �����

��� A� Bouhoula� E� Kounalis� and M� Rusinowitch� Spike� an automatic theorem
prover� Technical Report ����� INRIA� �����

��

sorts�

nat� list
constructors�

� � nat
s � nat� nat
Nil � list
Cons � nat� list � list
functions�

" � nat� nat� nat
� nat� nat� nat
power � nat� nat� nat
poinsum � list � list � list
bin � nat� nat
seq � nat� nat
axioms

x" � � x
x" s�y� � s�x " y�
� � x � �
s�x� � y � �x � y� " y
x � �y " z� � �x � y� " �x � z�
power��� x� � s���
power�s�n�� y� � y � power�n� y�
pointsum�Nil� z� � z
pointsum�z�Nil� � z
pointsum�cons�x�� z��� cons�x�� z��� � cons�x� " x�� pointsum�z�� z���
bin��� � cons�s���� Nil�
bin�s�x�� � pointsum�cons��� bin�x��� bin�x��
seq�x�Nil� � �
seq�x� cons�y� z�� � y " �x � seq�x� z��
lemma

seq�x�� pointsum�x�� x��� � seq�x�� x�� " seq�x�� x��
conjecture

power�x�� s�x��� � seq�x�� bin�x���

Figure �� binomial coe�cients

��

��� R� S� Boyer and J� S� Moore� A computational Logic Handbook� Academic
Press� �����

��� Bishcop C� Brock and Warren A� Hunt� Report on the formal speci�cation and
partial speci�cation on the viper� Technical Report ��� Computational Logic�
January �����

��� C� Cornes� J� Courant� J��C� Filli$atre� G� Huet� P� Manoury� C� Mu%noz�
C� Murthy� C� Parent� C� Paulin�Mohring� A� Sa&'bi� and B� Werner� The
Coq Proof Assistant Reference Manual Version ����� Technical Report �����
INRIA� July �����

��� J� Courant� Explicitation de preuves par r	ecurrence implicite� M	emoire de
DEA �Unpublished�� June �����

��� L� Fribourg� A strong restriction of the inductive completion procedure� In
Proceedings ��th International Colloquium on Automata� Languages and Pro�
gramming� volume ��� of LNCS� pages ���#���� Springer�Verlag� �����

��� G� Huet and J��M� Hullot� Proofs by induction in equational theories with con�
structors� Journal of Computer and System Sciences� ���������#���� October
�����

���� G� Huet� G� Kahn� and C� Paulin�Mohring� The Coq Proof Assistant� A Tu�
torial� Technical Report ����� INRIA� July �����

���� Warren A� Hunt� System veri�cation� Journal of automated reasoning� �����
December �����

���� J��P� Jouannaud and E� Kounalis� Proof by induction in equational theories
without constructors� In Proceedings of the �rst IEEE Symposium on Logic in
Computer Science� pages ���#���� Cambridge �Mass�� USA�� �����

���� Matt Kaufmann� An extension of the boyer�moore theorem prover to sup�
port �rst�order quanti�cation� Journal of Automated Reasoning� �����#����
December �����

���� E� Kounalis and M� Rusinowitch� A mechanization of conditional reasoning�
In First International Symposium on Arti�cial Intelligence and Mathematics�
Fort Lauderdale� Florida� January �����

���� E� Kounalis and M� Rusinowitch� Mechanizing inductive reasoning� In Proceed�
ings of the American Association for Arti�cial Intelligence Conference� pages
���#���� Boston� July ����� AAAI Press and MIT Press�

���� Zhaohui Luo and Randy Pollack� Lego proof development system� User�s
manual� Technical Report ECS�LFCS�������� LFCS� �����

���� Lena Magnusson� The new implementation of alf� In B� Nordstr&om� K� Peters�
son� and G� Plotkin� editors� Proceedings of the �		� Workshop on Types for
Proofs and Programs� �����

���� U� S� Reddy� Term rewriting induction� In M� E� Stickel� editor� Proceedings
��th International Conference on Automated Deduction� volume ��� of LNCS�
pages ���#���� Kaiserlautern �Germany�� ����� Springer�Verlag�

���� H� Zhang� D� Kapur� and M� S� Krishnamoorthy� A mechanizable induction
principle for equational speci�cations� In E� Lusk and R� Overbeek� editors�
Proceedings 	th International Conference on Automated Deduction� volume ���
of Lecture Notes in Computer Science� pages ���#���� Argonne �Ill�� USA��
����� Springer�Verlag�

��

A Simulating a polynomial ordering in our logical

framework

We can simulate a polynomial ordering on clauses in the following way�

� we add to Ax the axioms of �rst�order arithmetic�

� then we de�ne an interpretation in nat for each sort s other than nat� i�e� for
each sort s other than nat� we add a new function symbol 	s and the following
axiom�

�
rec 	s�t� �nat 	s�t
�� �� t �s t

�

� for each clause C we can add a n�ary function 	C where n is the number of
free variables in C � and we add the rule schema�

�
rec 	C�
��t�� �nat 	C�

��t�� �� C���t�� �C��C�
C���t��

� for each n�ary symbol function f of the speci�cation� we choose a natural cf
and n naturals df��� � � � � df�n� and we add the rules�

rec 	�h
i��

ai�si
bi��

k

i��
ci�s�

i

di
��t� �

kX
i��

�ci���t� "
�di���t�

where
 is de�ned on terms as follows�

�x� � 	s�x� where s is the sort of x

�f��t�� � cf "
X
k

df�k
��tk�

where �tk denotes the k�th element of vector �t and

rec 	s�C�x�� � cC "
X
k

dC�k	��tk� where C is a constructor

For our example� section ���� we can choose the following coe�cients�

cTrue � �
cFalse � �
clength � � dlength�� � � dinsert�� � �
cinsert � � dinsert�� � � dinsert�� � �
c�� � � d���� � � d���� � �
cNil � �

cCons � � dCons�� � � dCons�� � �

B Proofs of given theorems

Proof
 �of theorem �� We prove this theorem by induction� the second and the
third cases are easy� Indeed� for the third one� from �� �y vC��C �x
rec C���y� �where
the �y are not free in �� one can deduce �
rec ��y �y vC��C �x � C���y��� and the
application of the cut rule to these proofs and to the proof of f��y �y vC��C �x �
C���y�� j C�
 E� �Hg
rec C��x�� which is a property of any I� system�

Let us now prove the �rst case�
Notice �rst that if recurse clauses called with parameters �C�G��
rec C��x�� calls

itself recursively with parameters �C�� G����
rec D
�� then G � G�� there exists

��

such that �� 	 � � there exists �y such that D� 	 C���y�� and ��
rec �y vC��C �x�
Moreover� if C disappears with the generate rule� then ��
rec �y �C��C �x�

Then� we can deduce that the following proposition is veri�ed during the com�
putation� when recurse clauses is called with �C�G��
rec C��x��� then� for each
C�
 G� we have �
rec ��y �y vC��C �x� C���t� � indeed this is true at initialisation
time since G is empty� and this property is preserved during the computation�

As a particular case� when recurse clauses is called with �C�G��
rec C��x��� if
C is in G� then �
rec C��x��

Proof � �of theorem �� By absurdity� otherwise� one branch would be in�nite�
Since

Sn

i��Ei is �nite� this branch would de�ne a cycle on clauses� Since a branch
terminates on clauses C such that C
 G� none of these clauses in the cycle disap�
pears with the generate rule nor can belong to one of the Hi� But if recurse clauses

called with C recursively calls itself with C� where neither C nor C� belong to one
of the Hi� then this means that C� disappears at a step after C� Therefore� the
existence of a cycle is absurd�

Proof � �of theorem 	� Let us �rst inspect the case of generate�
For every CV substitution �� every C� in E �H � C� and every � constructor

substitution such that C�� �c C�� we have

rec �z� �C��C �x�

Moreover� for every k in K� � we have

rec �x �Ck�C �x�

As we have f��xC���x� j C�
 Lg�ft� j t
 E�H�fCg�fC�� � � �Cng � constructor
substitution and t� �c C�g
rec �C�� we have

f��z��z �C��C �x� � C ���z� j C�
 E �H � fC�� � � � � Cngg
rec C��x��

We deduce then

rec f��z��z �C��C �x� � C���z� j C�
 E �H � fC�� � � � � Cngg � C��x��

Then� by multiple application of axiom �� we have

rec f��z��z �C��C �x� C���z� j C�
 E �H � fC�� � � � � Cngg � C��x�

So we can conclude

f��z��z �C��C �x� C ���z� j C�
 E �H � fC�� � � � � Cngg
rec C��x�

The case of simplify �resp� delete� is similar� though simpler� For every
constructor substitution � and every C� in E�H�fC�� � � � � Cng �resp� E�H� such
that C�� �c C� we have�

rec z� vC��C x�

And for k in f�� � � �ng� we have
r ecx �Ck�C x�
As f��xC���x� j C�
 Lg � ft� j t
 E � H � fCg � fC�� � � �Cng � constructor

substitution and t� �c Cg
rec C �resp� f��xC���x� j C�
 Lg�ft� j t
 E�H�fCg �
constructor substitution and t� �c Cg
rec C� we conclude�

f��z��z vC��C �x� C ���z� j C�
 E �H � fC�� � � � � Cngg
rec C��x�

�resp� f��z��z vC��C �x� C���z� j C�
 E �H � fC�� � � � � Cngg
rec C��x��

��

