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Abstract

In the �eld of formal methods� rewriting techniques and provers by con�
sistency in particular appear as powerful tools for automating deduc�
tion� However� these provers su�er limitations as they only give a �non�
readable� trace of their progress and a yes�no answer where the user
would expect a detailed explicit proof� Therefore� we propose a gen�
eral mechanism to build an explicit proof from the running of a generic
class of inductionless induction provers� We then show how it applies
to Bouhoula�s SPIKE prover� and give examples of proofs built by this
method�

Keywords� Rewriting� theorem prover� natural deduction� inductionless induc�
tion� SPIKE� Coq

R�esum�e

Dans le domaine des m	ethodes formelles� les techniques de r	e	ecriture
et les prouveurs par r	ecurrence implicite sont des outils puissants pour
automatiser le processus de preuve� Cependant� ces prouveurs donnent
une trace du d	eroulement de la preuve peu compr	ehensible� alors que
l�utilisateur lambda aimerait avoir une preuve explicite d	etaill	ee� Nous
proposons un m	ecanisme g	en	eral permettant de construire une preuve
explicite 
a partir de la trace du d	eroulement d�une preuve pour une classe
g	en	erique de d	emonstrateurs par r	ecurrence implicite� Nous montrons
comment ce proc	ed	e s�applique au prouveur SPIKE de Bouhoula� et
donnons des exemples de preuves construites par cette m	ethode�

Mots�cl�es� R	e	ecriture� d	emonstrateur� d	eduction naturelle� r	ecurrence implicite�
SPIKE� Coq
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The growing need for formal methods in industry stresses the necessity for e��
cient tools for specifying and veri�ying software� Beyond the choice of the logical
framework� designing such a tool raises �at least� the two following issues�

� how can one be sure that the answer of a proof assistant is indeed correct


� how can one have one�s proofs made in an automatic way


To address the �rst one� some systems such as Alf ����� Coq ��� ��� or Lego ����
require the proof of a proposition to be a formal object� built by the user and whose
manual or mechanical check�up is quite simple�� But these systems su�er from the
lack of proof automatisms� partly due to the complexity of their underlying logical
framework �higher�order��
In order to address the second issue� some others systems like NQTHM ����

RRL ����� SPIKE ��� deliberately choose simpler frameworks� arguing that in many
cases� equational or conditional equational reasoning plus induction is enough for
solving usual problems� They use the power of rewriting techniques to achieve
some complex proofs with few interaction with the user ��� ��� ���� A signi�cant
step for automatising induction� the inductionless induction technique� was taken in
the early eighties ���� its principle is to simulate induction by term rewriting� The
scope of this technique has considerably widened since then ���� �� �� ��� ��� ��� ���
Unfortunately� this way to solve the second issue is quite far from addressing

the �rst one� as with inductionless induction technique� the correction of the proof
relies on the whole correction of the prover� As no proof structure clearly arises� no
further veri�cation is possible� On the contrary� in a prover requiring proof objects�
an automatic tactic builds a proof that is later veri�ed by the prover� even if the
tactic code is buggy� no false conjecture can be proved provided that the small
amount of code verifying a proof object is correct�
Our aim is to show a way to reconcile the two approaches� we want to have

an inductionless induction prover run� and once it stops� then get the trace of
its progress to be automatically transformed into an explicit proof in a �rst�order
natural deduction formalism with recursion schemes� To achieve this goal� we shall
�rst recall some useful de�nitions� and informally what is Bouhoula�s notion of
generic inference procedure ��� and give the �rst�order logic extension with recursion
schemes we want to work with in section �� Then� in section � we shall introduce
our notion ofK�system� which is a particular class of inference system for automatic
proving� We shall prove that a conjecture justi�ed by a run of this system is provable
in our logical framework in a constructive manner� i�e� we shall give an algorithm

�This research was partially supported by the ESPRIT Basic Research Action Types and by
the GDR Programmation co�nanced by MRE�PRC and CNRS

�In these systems� proof objects are terms� and the program checking a proof is only a type�
checker � of course� to keep a proof object is also interesting in these frameworks with respect to
the �proofs as programs� paradigm�
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that builds an explicit proof� Then in section �� we shall see how the previous work
applies to the prover SPIKE ����

� Terminology and framework

��� Terminology and notations

Let �S� F� C� be a many sorted signature where S is a �nite set of sorts� F is a �nite
set of function symbols and C is the subset of F whose elements are constructor
symbols� Let X be a family of sorted variables� and T �F�X� be the set of well�sorted
terms and T �F � the set of ground terms �i�e� without any variable��

De�nition � �Clause� conditional equation� A clause is a formula which states
that a conjunction of some �possibly zero� atomic equalities between terms implies
a disjunction of some �possibly zero� atomic propositions i�e� which is of the form
�A� � � � ��An�� �B� � � � ��Bm�� If m � �� this clause is said to be a conditional
equation�

Let Clauses be the �in�nite� set of all clauses�

De�nition � �Speci�cation� A speci�cation is a �nite set L of clauses� L is a
speci�cation �� L � Clauses�

In the following� let us assume that L is a speci�cation and that � is a transitive
irre�exive relation on terms that is noetherian� monotonic �t � t� implies w�x �
t� � w�x� t�� provided x appears in w�� and satis�es the proper subterm property
�whenever t� is a proper subterm of t� t � t��� Furthermore� let �c be a well�
founded ordering on clauses which is an extension of �� in the sense that if C is a
clause such that x occurs in C� and t and t� are two terms such that t � t�� then
C�x� t� �c C�x� t�� �see for instance ���� where �x� t� denotes the substitution
associating t to x�

De�nition 	 �Inductive theorem� A clause C is an inductive theorem of the
speci�cation L if it is true in the initial model of L� We shall denote this by L j�ind
C�

De�nition 
 �Constructor substitutions� A constructor substitution� is a sub�
stitution whose image are terms built upon variables and constructors only �i�e�
terms belonging to T �C� X���

De�nition � �Cover set� A cover set CV ��	� �
� for a speci�cation L �more
precisely � for a signature �S� F� C� is a set of terms containing constructors as only
function symbols� such that for every term u in T �C� X�� there exists t in CV and a
substitution � such that t� 	 u� A substitution � whose image is a subset of CV is
called a CV substitution� and if v is a term� v� is called a CV instance of v �notice
that a CV substitution is necessarily a constructor substitution��

In the following� let us assume that CV is a cover set for L�
In the following� in order to prove that some conjectures are inductive theorems

of the speci�cation L� we shall consider an inference system D whose data structure
is a pair �E�H�� where E andH are two �nite clause sets� i�e� a relation 
D between
couples of �nite clauses sets� The elements of E will be clauses to be proved and
the elements of H will play the role of induction hypothesis� When a run starts� H
is empty� and at each step� a conjecture of E is rewritten and is possibly added to
H as a new induction hypothesis�
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De�nition � �Correction of an inference system� D is said correct if and only
if for every speci�cation L� every set of clauses E�� whenever we get the run
�E�� �� 
D �E��H�� � � � 
D �Em���Hm��� 
D ���Hm�� we have L j�ind E��

An important class of correct inference systems are I�systems� de�ned by Bouhoula
in his PhD thesis ��� section ����� Informally� this notion relies on the idea that there
are essentially three types of operations one can apply in an inference system�

generate is the operation of taking one clause C in E� putting it in H� simplifying
its CV instances using clauses in H and E� then putting these simpli�ed
instances in E�

simplify is the operation of replacing one clause C in E by simpler ones which are
equivalent if smaller instances of other clauses in E �H are veri�ed�

delete consists of removing one clause from E provided it is a consequence of
smaller instances of clauses in E or H�

��� Logical framework

Unfortunately� the notion of I�system relies on purely semantical basis� So� as we
want to build explicit proof of conjectures� we shall de�ne a di�erent class of correct
inference systems expressing the same ideas as I�systems� but on a more syntactical
basis�
For this purpose� we must �rst describe the logical system within we shall give

an explicit proof� The logical framework we want to use is a �rst order natural
deduction system extended with recursion schemes�
We shall consider judgements of type � 
rec F � where F is a �rst�order formula�

and � is a list of �rst�order formulas� Let F be the set of function symbols� In
I�systems an order on clauses is needed to establish their correction� In our system
we also require that for each �C�� C�� 
 Clauses�� there exist two k�ary predicates
�C��C�

and vC��C�
� where k is the sum of the number of free variables in C� and

the number of free variables in C�� and two binary predicates �s and �s for each
s 
 S representing well�founded orders on clauses� We let the set of predicates P
be the set of these predicates plus the equality predicates�
We will denote �C��C�

�x�y� vC��C�
�x�y� �s xy and �s xy respectively by �x �C��C�

�y� �x vC��C�
�y� x �s y� and x �s y� where bold�font variables �x and �y denote terms

vectors� and the length of �x and �y are respectively the numbers of free variables of
C� and C��
We assume the usual rules of �rst�order natural deduction with equality� plus a

set of rules Ax giving properties about the predicates �C��C�
� vC��C�

� �s and �s�
For instance� these rules can make these predicates represent a polynomial ordering
�see Appendix A�� or lexicographic path ordering� � � Indeed� in order to ensure that
the chosen relations represent ordering relations� we only require the following rules
to be admissible in our system�

� 
rec �x �C��C�
�y

� 
rec �x vC��C�
�y
� 
rec �x vC�C �x

� 
rec �x �C��C�
�y � 
rec �y vC��C�

�z

� 
rec �x �C��C�
�z

� 
rec �x vC��C�
�y � 
rec �y �C��C�

�z

� 
rec �x �C��C�
�z

� 
rec �x vC��C�
�y � 
rec �y vC��C�

�z

� 
rec �x vC��C�
�z
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generate� �E � fCg�H� 
D �E � fC�� � � � � Cng�H � fCg� and

f��x��x �C� �C �y � C���x�� j C� 
 E �H � fC�� � � � � Cngg 
rec C��y�

simplify� �E � fCg�H� 
D �E � fC�� � � � � Cng�H� and

f��x��x vC� �C �y � C���x�� j C� 
 E �H � fC�� � � � � Cngg 
rec C��y�

delete� �E � fCg�H� 
D �E�H� and

f��x��x vC��C �y � C���x�� j C� 
 E �Hg 
rec C��y�

where �y denotes new variables�

Figure �� Conditions for D to be a K�system

However� we want this relation on clauses to be well�founded� Therefore we also
require the following rule to be admissible�

�� �y vC�C �t� ��z��z �C�C �y � C��z�� 
rec C��y�

� 
rec C��t�
C 
 Clauses and y not free in �

We also add rules allowing to prove something about x by inspection of the
several possible cases of its constructors in Ax�


rec �sx���t� x � C���t��� � � � �� ���tk x �s Ck��tk�� ���

where C�� � � � � Ck are the constructors of the sort s�
Finally� as we want to work on the given speci�cation L� we also add the axiom


rec ��x C��x� for every C in the speci�cation L� and we require that every clause C
such that 
rec C is provable is an inductive theorem of L�

� K�systems

��� De�nition

As we have explained our logical framework� we can now express formally what
class of inference system we shall consider�
We say that an inference system D is a K�system if and only if� whenever

�E�H� 
D �E��H��� we are in one of the three cases given in Figure �� This notion
is distinct of Bouhoula�s notion of I�system� since our conditions are not semantical
ones� Therefore� even if the two notions express similar ideas� they are di�erent�
The point is to know whether every K�system is correct or not�

��� Correction

Assume D is a K�system� and �E�� �� 
D � � � 
D ���Hm�� We shall prove in this
section that for every clause C in E� we have 
rec C� Moreover� the proof of this
fact is constructive� we propose an algorithm giving the skeleton of a proof of 
rec C
from the run �E�� �� 
D � � � 
D ���Hm�� We mean by �skeleton� of a proof of the
judgement  
rec P a tree such that the root of the tree is the judgement  
rec P
and such that each node is labelled by a judgement ! 
rec Q which can be deduced

�



in our framework from the proofs of the judgements J�� � � � � Jk labelling its sons�
i�e� the following rule is admissible in 
rec�

J� � � � Jk
! 
rec Q

The idea behind this algorithm is the following� if a clause C is replaced by
C�� � � � � Cn in E� this means we can build a skeleton of proof of C by building
skeletons for C�� � � � � Cn� and then making these skeletons be the sons of a root
labelled by 
rec C� But this only works in very simple cases� since ifC is �indirectly�
used to prove itself then this algorithm loops forever� So� in this case� we have to
apply an induction scheme� and make sure that the well�foundness properties of
the inference system guarantee that we can use the induction hypothesis instead of
looping� Therefore� we keep the induction hypothesis in the judgements � 
rec C�
plus those stating inequalities between terms� allowing us to conclude that the
induction hypothesis can be used�
Let us now describe more precisely the algorithm�

Algorithm � �Proof reconstruction�
We assume we have as an input the run �E�� �� 
D � � � 
D ���Hm� of D on �E�� ���
Notice we have

Sn

i��Hi �
Sn

i��Ei� Proof reconstruction is done by calling the
function recurse clauses� de�ned as follows�

Function recurse clauses

Input�

� C� a clause belonging to
Sn

i��Ei �

� G� a ��nite� set of clauses �corresponding to induction hypothesis� G �Sn

i��Hi� �

� J � a judgement � 
rec D �which is what we want to prove � D is a renaming
of C��

Output�

A tree labelled with judgements�
Method�

� if C is in G� then return the tree whose root is labelled with J and having only
one son� labelled with � 
rec �x vC�C �y where �x and �y are the variables such
that D � C��x� and ��z��z �C�C �y � C��z�� belongs to ��

� else� if C disappears from E between i and i " � by the use of the generate
rule �i�e� C 
 Ei� but C �
 Ei���� and D � C��x� then take some new
variables �u� �y and �z� let �� � �� �y vC�C �x� ��z��z �C�C �y � C��z�� and call
recursively recurse clauses on �C�� G � fCg� ���� �u �C��C �y 
rec C���u���� for
C� 
 Ei �Hi � fCg � fC�� � � �Cng� let T�� � � �Tk be the resulting trees� Then
return the tree whose root is labelled by � 
rec C��x� and has one only son
labelled by �� 
rec C��y� itself having T�� � � � � Tk as sons �

� if not� then� withD � C��x�� call recursively recurse clauses on �C�� G� ��� �y vC��C

�x 
rec C ���y��� for C� 
 Hi � E�� where E� is Ei � fC�� � � � � Cng if C disap�
pears with the simpli�cation rule and Ei otherwise� and �y is a vector of new
variables�

Initialisation�

call recurse clauses on �C� ��
rec C��x���

�



sorts �
nat� list� bool
constructors �
� � nat
s � nat� nat
Nil � list
Cons � nat� list � list
T rue � bool
False � bool
functions

length � list � nat
insert � nat� list� list
��� nat � nat� bool
axioms

� �� x � True
s�x� �� � � False
s�x� �� s�y� � x �� y
length�Nil� � �
length�Cons�x� y�� � s�length�y��
insert�x�Nil� � Cons�x�Nil�
x �� y � True �� insert�x�Cons�y� z�� � Cons�x�Cons�y� z��
x �� y � False �� insert�x�Cons�y� z�� � Cons�y� insert�x� z��
x �� x � True
x �� y � True � x �� y � False
x �� y � True � y �� x � True
x �� y � False � y �� z � False � x �� z � True

Figure �� A speci�cation example

Theorem � If this algorithm terminates� it gives a skeleton of a proof of 
rec C�

Proof � See Appendix B�

Theorem � This algorithm always terminates�

Proof � See Appendix B�

As a consequence� every K�system is a correct system� and we can �nd a proof
in 
rec of each conjecture justi�ed by a K�system�

��� Example

Let us consider the speci�cation given in Figure � which is part of the speci�cation
of an insertion sort working on integer lists� We want to study the conjecture
length�insert�x� y�� � s�length�y���
Here is how a mathematician would prove this conjecture�
By induction on x�� it is enough to prove length�insert�x� � x��� � s�length�x���

under the hypothesis �x���x
�
� x

�
� �list x� � length�insert�x��� x���� � s�length�x����

where �list is the well�founded ordering on lists de�ned by �x� y y �list Cons�x� y�
plus the transitivity rule�
Then� either x� � Nil or x� � Cons�x�� x���

� in the �rst case� our conjecture is veri�ed since length�insert�x�� Nil�� �
length�Cons�x�� Nil�� � s�length�Nil�� �

�



� in the second case� as we have x��y � True � x��y � False in L� we can
consider the two following cases�


 if x���x� � True then insert�x�� Cons�x�� x��� � Cons�x�� �Cons�x�� x����
�by L� and length�insert�x�� Cons�x�� x���� � s�length�Cons�x�� x����


 if x���x� � False� then insert�x�� Cons�x�� x��� � Cons�x�� insert�x�� x���
�by L� and length�insert�x�� Cons�x�� x���� � s�length�insert�x� � x�����
and s�length�Cons�x�� x���� � s�s�length�x����� But since x� �list x��
by induction hypothesis� length�insert�x� � x��� � s�length�x���� and the
conjecture is also true if x���x� � False��

We shall compare later this �natural� proof to the one we shall compute with
our algorithm from the run of a K�system�
However� in order to have a K�system run on this example� we �rst need to

choose which rules we put in Ax� An acceptable choice is to take a polynomial
ordering� as explained in Appendix A� Here is now the possible run of such a
K�system�

�
E� � f length�insert�x�� x��� � s�length�x��� g
H� � �

By the generate rule �the following is correct since x� �� x� � False � x� ��
x� � True 
 L��

� put length�insert�x�� x��� � s�length�x��� in H��

� put s��� � s��� inE�� which is equivalent to length�insert�x�� x��� � s�length�x����x��
Nil� in the initial model of L�

� put x� �� x� � True �� s�s�length�x���� � s�s�length�x���� which is
equivalent to length�insert�x�� x��� � s�length�x����x� � Cons�x�� x��� for
every instance of x�� x� such that x� �� x� � True in E��

� put x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x����
whose any instance such that x� �� x� � False is equivalent to the same
instance of length�insert�x�� x��� � s�length�x����x�� Cons�x�� x��� in E������

���

E� � f s��� � s����
x� �� x� � True �� s�length�x��� � s�length�x����
x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x���� g

H� � f length�insert�x�� x��� � s�length�x��� g

By the delete rule� remove the �rst conjecture� which is trivially true�

��
�

E� � f x� �� x� � True �� s�length�x��� � s�length�x����
x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x���� g

H� � f length�insert�x�� x��� � s�length�x��� g

By the delete rule also remove the �rst of the remaining conjectures�

�
E� � f x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x���� g
H� � f length�insert�x�� x��� � s�length�x��� g

By simplify the remaining conjecture becomes�

�
E� � f x� �� x� � False �� length�insert�x�� x��� � s�length�x��� g
H� � f length�insert�x�� x��� � s�length�x��� g

�



By delete� since the conjecture in E� is subsumed by the clause of H���
E� � �
H� � f length�insert�x�� x��� � s�length�x��� g

Then E� is empty� which means that the conjecture in E� is an inductive theorem
of L� �

���recv��	v
	False	�length�insert�v��v�

	s�length�v�



���recw��w��C��C�
y��y�

���reclength�insert�w��w�

	s�length�w�



���recu��	u
	False	�s�length�insert�u��u�


	s�s�length�u�




���recu��	u
	True	�s�s�length�u�


	s�s�length�u�




���recs��
	s��


���reclength�insert�y��y


	s�length�y




�reclength�insert�x��x


	s�length�x




Figure �� Proof skeleton built by the algorithm

It is clear that this run is not immediately human�readable since no proof struc�
ture arises� Let us now see what gives our algorithm� let us call recurse clauses on
�length�insert�x�� x��� � s�length�x���� ��
rec length�insert�x�� x��� � s�length�x�����
We get the proof skeleton given in Figure �� where

�� � y�� y� vC��C�
x�� x�� �z�� z��z�� z� �C� �C�

y�� y�� C��z�� z���

�� � ��� u�� u�� u��C��C�
y�� y�

�� � �� v�� v�� v� vC��C�
u�� u�� u�

�� � ��� w�� w� vC��C�
v�� v�� v�

and

C��x�� x�� � length�insert�x�� x��� � s�length�x���

C��x�� x�� x�� � x� �� x� � True �� s�s�length�x���� � s�s�length�x����

C��x�� x�� x�� � x� �� x� � False �� s�length�insert�x�� x���� � s�s�length�x����

C��x�� x�� x�� � x� �� x� � False �� length�insert�x�� x��� � s�length�x���

�



We can notice that the structure of the computed skeleton is very similar to the
proof we gave above� though a little more complicated� This suggests that some
optimizations could be added to our algorithm� in order to introduce new variables
only when it is necessary�

� Application to SPIKE

Our notion of K�system is based on relations between �rst�order formulas� But
in usual inference systems� only clauses are manipulated� relations de�ning the
inference system only involve clauses and a meta�level ordering� Therefore� it seems
interesting to de�ne another class of inference system involving only such relations�
So� we say that an inference system D is an M �system if and only if� whenever
�E�H� 
D �E��H��� we are in one of the three cases given in Figure �� where 

denotes deduction in �rst�order logic�

generate �E�fCg�H� 
D �E�fC�� � � � � Cng�H�fCg� and there exists a partition
fK� j � CV substitutiong� of f�� � � �mg such that for every CV substitution �
f��xC���x� j C� 
 Lg�ft� j t 
 E�H�fCg � constructor substitution and t� �c

C�g 
 �C�� �� ��k�K�
Ck� and �k 
 K� Ck �c C��

simplify �E�fCg�H� 
D �E�fC�� � � � � Cng�H� and f��xC���x� j C� 
 Lg�ft� j t 

E �H � constructor substitution and t� �c Cg 
 C �� �C�� � � ��Cn� and
�k 
 f�� � � � � ng Ck �c C

delete �E � fCg�H� 
D �E�H� and f��xC���x� j C� 
 Lg � ft� j t 
 E �
H � constructor substitution and t� �c Cg 
 C

Figure �� Conditions for D to be an M �system

Theorem 	 Assume D is an M �system� and that for each pair of clauses �C�� C��
and for every constructor substitutions � and �� whenever C�� �c C��� we have

rec �x� �C��C�

�y� and whenever C�� �c C��� we have 
rec �x� vC��C�
�y�� where �x

and �y are the variables of C� and C�� Then� D is a K�system�

Proof 	 See Appendix B�

SPIKE is a theorem prover whose inference system DS is an I�system� We shall
not describe it here precisely� the interested reader may refer to ��� �� for a complete
survey�
Unfortunately� DS is not a K�system nor anM �system� But we may restrict the

application of rules in order to get an M �system D�
S � we only have to restrict rules

to apply only when they meet the requirements to be anM �system� The only thing
we have to do is to forbid this inference system to use non�constructor instances of
clauses in order to apply its simplify� delete or generate rules� D�

S is weaker
than DS since every conjecture that can be proved by D�

S can also be proved by
DS � but practically� most of the time� DS and D

�
S behaves the same way� so that

in order to get an explicit proof of a conjecture� you can make SPIKE run without
even modifying it� then apply algorithm �� On Figures �� � are some examples
�from Bouhoula�s thesis ���� that SPIKE solves and that our algorithm translates
whithout any di�culty� Notice that the �rst one uses mutually recursive functions�
hence # according to Bouhoula # it is not automatically solvable by NQTHM�
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sorts� axioms�

bool� action� state or�True� x� � True
constructors� or�x� True� � True
True �� bool or�False� False� � False
False �� bool F��do�a� s�� � or�F��s�� F��s��
Nop �� action F��do�a� s�� � F��s�
S� �� state F��do�a� s�� � F��s�
do � action � state� state F��S�� � True
functions� F��S�� � True
or � bool � bool � F��S�� � False
F� � state� bool conjecture

F� � state� bool F��x� � True
F� � state� bool

Figure �� Situation invariant problem

� Conclusion and future work

Properties required for inference systems to be I�systems are only semantical� We
proposed a di�erent class of inference systems� keeping the same ideas as I�systems�
but expressing them in a �rst�order logical framework� This allowed us to present
a method for building an explicit proof of a theorem from a trace of the progress
of a prover by consistency� As far as we know� this approach is original� Since the
inference systems of provers by consitency are generally only based on clauses� we
de�ned a better�suited class of inference systems �M �systems�� which are in fact
particular cases of K�systems �under a few restrictions�� This approach is powerful
enough to succeed on several examples with such a modern prover as SPIKE� We
think it to be a promising way to make provers by consistency safely cooperate
with other provers� as even if bugs remain in the design or implementation of the
interface between them or the prover by consistency� a wrong proof is rejected by
the back�end prover�
A toy implementation of this method �allowing only boolean speci�cation about

naturals� to interface SPIKE with Coq has been done ���� but it has to be com�
pleted in order to work with realistic examples �a good challenging one could be
the Gilbreath�s card trick�� Part of this implementation could also be used to add
to SPIKE interface the capability to explain the proofs it makes� However� further
work could be necessary to extend enough the class of system this method handles�
In this respect� the study of interaction between the order and positions where
induction is done could be fruitful�
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A Simulating a polynomial ordering in our logical

framework

We can simulate a polynomial ordering on clauses in the following way�

� we add to Ax the axioms of �rst�order arithmetic�

� then we de�ne an interpretation in nat for each sort s other than nat� i�e� for
each sort s other than nat� we add a new function symbol 	s and the following
axiom�

� 
rec 	s�t� �nat 	s�t
�� �� t �s t

�

� for each clause C we can add a n�ary function 	C where n is the number of
free variables in C � and we add the rule schema�

� 
rec 	C�
��t�� �nat 	C�

��t�� �� C���t�� �C��C�
C���t��

� for each n�ary symbol function f of the speci�cation� we choose a natural cf
and n naturals df��� � � � � df�n� and we add the rules�


rec 	�h
i��

ai�si
bi��

k

i��
ci�s�

i

di
��t� �

kX
i��


�ci���t� " 
�di���t�

where 
 is de�ned on terms as follows�


�x� � 	s�x� where s is the sort of x


�f��t�� � cf "
X
k

df�k
��tk�

where �tk denotes the k�th element of vector �t and


rec 	s�C�x�� � cC "
X
k

dC�k	��tk� where C is a constructor

For our example� section ���� we can choose the following coe�cients�

cTrue � �
cFalse � �
clength � � dlength�� � � dinsert�� � �
cinsert � � dinsert�� � � dinsert�� � �
c�� � � d���� � � d���� � �
cNil � �

cCons � � dCons�� � � dCons�� � �

B Proofs of given theorems

Proof 
 �of theorem �� We prove this theorem by induction� the second and the
third cases are easy� Indeed� for the third one� from �� �y vC��C �x 
rec C���y� �where
the �y are not free in �� one can deduce � 
rec ��y �y vC��C �x � C���y��� and the
application of the cut rule to these proofs and to the proof of f��y �y vC��C �x �
C���y�� j C� 
 E� �Hg 
rec C��x�� which is a property of any I� system�

Let us now prove the �rst case�
Notice �rst that if recurse clauses called with parameters �C�G�� 
rec C��x�� calls

itself recursively with parameters �C�� G���� 
rec D
�� then G � G�� there exists  

��



such that �� 	 � � there exists �y such that D� 	 C���y�� and �� 
rec �y vC��C �x�
Moreover� if C disappears with the generate rule� then �� 
rec �y �C��C �x�

Then� we can deduce that the following proposition is veri�ed during the com�
putation� when recurse clauses is called with �C�G�� 
rec C��x��� then� for each
C� 
 G� we have � 
rec ��y �y vC��C �x� C���t� � indeed this is true at initialisation
time since G is empty� and this property is preserved during the computation�

As a particular case� when recurse clauses is called with �C�G�� 
rec C��x��� if
C is in G� then � 
rec C��x��

Proof � �of theorem �� By absurdity� otherwise� one branch would be in�nite�
Since

Sn

i��Ei is �nite� this branch would de�ne a cycle on clauses� Since a branch
terminates on clauses C such that C 
 G� none of these clauses in the cycle disap�
pears with the generate rule nor can belong to one of the Hi� But if recurse clauses

called with C recursively calls itself with C� where neither C nor C� belong to one
of the Hi� then this means that C� disappears at a step after C� Therefore� the
existence of a cycle is absurd�

Proof � �of theorem 	� Let us �rst inspect the case of generate�
For every CV substitution �� every C� in E �H � C� and every � constructor

substitution such that C�� �c C�� we have


rec �z� �C��C �x�

Moreover� for every k in K� � we have


rec �x �Ck�C �x�

As we have f��xC���x� j C� 
 Lg�ft� j t 
 E�H�fCg�fC�� � � �Cng � constructor
substitution and t� �c C�g 
rec �C�� we have

f��z��z �C��C �x� � C ���z� j C� 
 E �H � fC�� � � � � Cngg 
rec C��x��

We deduce then


rec f��z��z �C��C �x� � C���z� j C� 
 E �H � fC�� � � � � Cngg � C��x��

Then� by multiple application of axiom �� we have


rec f��z��z �C��C �x� C���z� j C� 
 E �H � fC�� � � � � Cngg � C��x�

So we can conclude

f��z��z �C��C �x� C ���z� j C� 
 E �H � fC�� � � � � Cngg 
rec C��x�

The case of simplify �resp� delete� is similar� though simpler� For every
constructor substitution � and every C� in E�H�fC�� � � � � Cng �resp� E�H� such
that C�� �c C� we have�


rec z� vC��C x�

And for k in f�� � � �ng� we have 
r ecx �Ck�C x�
As f��xC���x� j C� 
 Lg � ft� j t 
 E � H � fCg � fC�� � � �Cng � constructor

substitution and t� �c Cg 
rec C �resp� f��xC���x� j C� 
 Lg�ft� j t 
 E�H�fCg �
constructor substitution and t� �c Cg 
rec C� we conclude�

f��z��z vC��C �x� C ���z� j C� 
 E �H � fC�� � � � � Cngg 
rec C��x�

�resp� f��z��z vC��C �x� C���z� j C� 
 E �H � fC�� � � � � Cngg 
rec C��x��
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