H. P. Barendregt, The Lambda Calculus: its Syntax and Semantics, 1984.

P. Curien and H. Herbelin, The Duality of Computation, Proc. 5th ACM SIGPLAN International Conference on Functional Programming (ICFC'00), pp.233-243, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00156377

D. Dougherty, S. Ghilezan, and P. Lescanne, Characterizing strong normalization in a language with control operators, Proc. 6th ACM-SIGPLAN International Conference on Principles and Practice of Declarative Programming PPDP'04, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02101950

M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. F. Duba, A syntactic theory of sequential control, Theoretical Computer Science, vol.52, issue.3, pp.205-237, 1987.

M. Felleisen and R. Hieb, The revised report on the syntactic theories of sequential control and state, Theoretical Computer Science, vol.103, issue.2, pp.235-271, 1992.

M. Fischer, Lambda calculus schemata, Proc. ACM Conference on Proving Assertions About Programs '72, pp.104-109, 1972.

S. Ghilezan and P. Lescanne, Classical proofs, typed processes and intersection types, International Workshop TYPES'03, vol.3085, pp.226-241, 2004.

M. Hofmann and T. Streicher, Continuation models are universal for lambda-mu-calculus, Proc. 11th IEEE Annual Symposium on Logic in Computer Science LICS '97, pp.387-397, 1997.

M. Hofmann and T. Streicher, Completeness of continuation models for ?µ-calculus. Information and Computation, vol.179, pp.332-355, 2002.

Y. Lafont, Negation versus implication. Draft, 1991.

Y. Lafont, B. Reus, and T. Streicher, Continuation semantics or expressing implication by negation, 1993.

O. Laurent, On the denotational semantics of the pure lambda-mu calculus, 2004.

S. Lengrand, Call-by-value, call-by-name, and strong normalization for the classical sequent calculus, Electronic Notes in Theoretical Computer Science, vol.86, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00150290

E. Moggi, Notions of computations and monads. Information and Computation, vol.93, 1991.

M. Parigot, ?µ-calculus: An algorithmic interpretation of classical natural deduction, Proc. International Conference on Logic Programming and Automated Reasoning, LPAR'92, vol.624, pp.190-201, 1992.

G. D. Plotkin, Call-by-name, call-by-value and the ?-calculus, Theoretical Computer Science, vol.1, pp.125-159, 1975.

J. C. Reynolds, Definitional interpreters for higher-order programming languages, Proc. ACM Annual Conference, pp.717-740, 1972.

D. S. Scott, Continuous lattices, Toposes, Algebraic Geometry and Logic, vol.274, pp.97-136, 1972.

D. S. Scott, Domains for denotational semantics, Automata, Languages and Programming, vol.140, pp.577-613, 1982.

P. Selinger, Control categories and duality: on the categorical semantics of the lambda-mu calculus, Mathematical Structures in Computer Science, vol.11, pp.207-260, 2001.

C. Strachey and C. P. Wadsworth, Continuations: A mathematical semantics for handling full jumps, 1974.

. Th, B. Streicher, and . Reus, Classical logic, continuation semantics and abstract machines, Journal of Functional Programming, vol.8, issue.6, pp.543-572, 1998.

. Th, B. Streicher, and . Reus, Continuation semantics: Abstract machines and control operators. Unpublished manuscript, 1998.

M. Takahashi, Parallel reduction in ?-calculus. Information and Computation, vol.118, pp.120-127, 1995.