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Understanding untyped λµµ̃ calculus

Pierre Lescanne
Silvia Likavec
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Abstract

We prove the confluence of λµµ̃T and λµµ̃Q, two well-behaved subcalculi of
the λµµ̃ calculus, closed under call-by-name and call-by-value reduction, re-
spectively. Moreover, we give the interpretation of λµµ̃T in the category of
negated domains, and the interpretation of λµµ̃Q in the Kleisli category. To
the best of our knowledge this is the first interpretation of untyped λµµ̃ calculus.

Keywords: Continuation semantics, classical logic, categories, type theory

Résumé

On prouve la confluence de λµµ̃T et λµµ̃Q, deux sous-calculs de λµµ̃ dotés de
bonnes propriétés et clos par réduction en appel par nom et en appel par valeur,
respectivement. De plus, on donne l’interprétation de λµµ̃T dans la catégorie
des “domaines niés” et l’interprétation de λµµ̃Q dans la catégorie de Kleisli. A
notre connaissance, cela constitue la première interpétation non typée du λµµ̃
calcul.

Mots-clés: sémantique par continuation, logique classique, catégories,
théorie des types



1 Introduction

When interpreting calculi that embody a notion of control, it is convenient to start from contin-
uation semantics that enables to explicitly refer to continuations, the semantic constructs that
represent evaluation contexts.

The method of continuations was first introduced in [21] in order to formalize flow control in
programming languages. Continuation-passing-style (cps) translations were introduced by Fisher
and Reynolds in [6] and [17] for call-by-value lambda calculus, whereas a call-by-name variant was
introduced by Plotkin in [16]. Moggi gave a semantic version of call-by-value cps translation in
his study of notions of computation in [14]. Lafont [10] introduced cps translation of call-by-name
λC calculus [4], [5] to a fragment of lambda calculus that corresponds to the ¬,∧-fragment of
intuistionistic logic.

Categorical semantics for both call-by-name and call-by-value versions of Parigot’s λµ calculus
[15] with disjunction types was given by Selinger in [20]. The two variants of λµ calculus are
shown to be isomorphic in the presence of product and disjunction types. Hofmann and Stre-
icher presented categorical continuation models for call-by-name λµ calculus in [9] and showed the
completeness. Lengrand gave categorical semantics for typed λµµ̃ calculus and λξ calculus (impli-
cational fragment of the classical sequent calculus LK) in [13]. First attempt to give denotational
semantics for pure (untyped) λµ calculus is presented in Laurent [12] by defining a type system
with intersection and union types.

Although the original λµµ̃ calculus of [2] has a system of simple types based on the sequent
calculus, the untyped version is a Turing-complete language for computation with explicit repre-
sentation of control, as well as code. In this work we try to give a meaning to untyped λµµ̃ calculus
and understand its behaviour. We interpret its variant closed under call-by-name reduction in the
category of negated domains, and the variant closed under call-by-value reduction in the Kleisli
category. As far as we know, this is the first interpretation of untyped λµµ̃ calculus. We also prove
the confluence of both versions.

The paper is organized as follows. In Section 2 we recall the syntax and the reduction rules
of λµµ̃ calculus, and its two well-behaved subcalculi λµµ̃T and λµµ̃Q. In Section 3 we prove the
confluence for λµµ̃T and λµµ̃Q. Section 4 gives an account of negated categories where we interpret
λµµ̃T calculus. In Section 5 we present the basic notions of Kleisli triple and Kleisli category and
interpret λµµ̃Q calculus. Finally, we give the improved interpretation of λµµ̃T calculus. We
conclude in Section 6.

2 Overview of λµµ̃ calculus

2.1 Intuition and syntax

λµµ̃ calculus was introduced by Curien and Herbelin in [2], giving a Curry-Howard correspondence
for classical logic. The terms of λµµ̃ represent derivations in a sequent calculus proof system and
reduction reflects the process of cut-elimination.

The untyped version of the calculus can be seen as the foundation of a functional programming
language with explicit notion of control and was further studied by Dougherty, Ghilezan and
Lescanne in [7] and [3].

The basic syntactic entities are given by the following, where v ranges over the set CalleR of
callers, e ranges over the set CalleE of callees and c ranges over the set Capsule of capsules:

v ::= x | λx.v | µα.c e ::= α | v • e | µ̃x.c c ::= 〈v ‖ e〉

There are two kinds of variables in the calculus: the set Varv of caller variables (denoted by x, y, . . .)
and the set Vare, of callee variables (denoted by α, β, . . .). The caller variables can be bound by
λ abstraction and µ abstraction, whereas the callee variables can be bound by µ̃ abstraction. The
sets of free caller and callee variables, Fvv and Fve, are defined as usual, respecting Barendregt’s
convention.
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Capsules are the place where callers and callees interact. A caller can either get the data from
the callee or it can ask the callee to take place as one of its internal callee variables. A callee can
ask a caller to take place as one of its internal caller variables. The components can be nested and
more processes can be active at the same time.

In [2], the basic constructs are called commands, terms, and contexts. The present names for
the syntactic constructs of the calculus were chosen by Ghilezan and Lescanne in [7], since they
reflect better the symmetry of the calculus. Also, it should be possible to use the notion “term”
to refer to all the expressions of the calculus, not just to a subset of terms. Finally, commands
definitely do not denote commands. We use this new terminology in our work.

2.2 Reduction rules

There are only three rules that characterise the reduction in λµµ̃:

(→′) 〈λx.v1 ‖ v2 • e〉→〈v2 ‖ µ̃x.〈v1 ‖ e〉〉
(µ) 〈µα.c ‖ e〉→ c[α← e]
(µ̃) 〈v ‖ µ̃x.c〉→ c[x← v]

The above substitutions are defined as to avoid variable capture [1].
The calculus has a critical pair 〈µα.c1 ‖ µ̃x.c2〉 where both, (µ) and (µ̃) rule can be applied

ambiguously, producing two different results. For example,

〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 →µ 〈y ‖ β〉 and
〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 →µ̃ 〈z ‖ γ〉.

Hence, the calculus is not confluent. But if the priority is given to one of the rules, we obtain two
confluent subcalculi λµµ̃T and λµµ̃Q. We give the details in the next section.

2.3 Two confluent subcalculi

There are two possible reduction strategies in the calculus that depend on the orientation of the
critical pair, [2]. If the priority is given to (µ̃) redexes, we obtain the calculus λµµ̃T , closed under
call-by-name reduction, whereas giving the priority to (µ) redexes, we obtain λµµ̃Q calculus with
call-by-value reduction strategy.

We first give the syntactic constructs of λµµ̃T and λµµ̃Q, respectively:

λµµ̃T λµµ̃Q

c ::= 〈v ‖ e〉 c ::= 〈v ‖ e〉
E ::= α | v • E V ::= x | λx.v
v ::= x | λx.v| µα.c e ::= α | µ̃x.c | V • e
e ::= E| µ̃x.c v ::= V | µα.c

In λµµ̃T we distinguish a subset E of callees, called applicative contexts. In λµµ̃Q, notice the
presence of values V , which form the subset of the set of callers and help distinguish values from
the rest of computations.

The reduction rules of λµµ̃T and λµµ̃Q are the following:

(→) 〈λx.v1 ‖ v2 • E〉→〈v1[x← v2] ‖ E〉
(µ) 〈µα.c ‖ E〉→ c[α←E]
(µ̃) 〈v ‖ µ̃x.c〉→ c[x← v]

(→′) 〈λx.v1 ‖ V2 • e〉→〈V2 ‖ µ̃x.〈v1 ‖ e〉〉
(µ) 〈µα.c ‖ e〉→ c[α← e]
(µ̃) 〈V ‖ µ̃x.c〉→ c[x←V ]

Let us notice that in λµµ̃T , we are allowed to consider (→) reduction, since (→′) rule can be
immediately followed by the (µ̃) rule, which has the priority. On the other hand, in λµµ̃Q, we
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have to use the rule (→′), since the priority is given to (µ) rule. A different choice would be
to consider only the (→′) rule for both subcalculi, but we think this choice makes explicit the
priorities of the rules in each subcalculus.

3 Confluence

Since in the next sections we work with two confluent subcalculi of λµµ̃, we first prove the conflu-
ence for each of them. We adopt the technique of parallel reductions given by Takahashi in [24].
This approach consists of simultaneously reducing all the redexes existing in a term.

We give the proof only for λµµ̃T , since the proof for λµµ̃Q is obtained by a straightforward
modification of the proof for λµµ̃T . We denote the union of the three reduction relations for λµµ̃T

by →n and its reflexive and transitive closure by →→n.
First, we define the notion of parallel reduction⇒n for λµµ̃T . We will see that→→n is a reflexive

and transitive closure of ⇒n, so in order to prove the confluence of →→n, it is enough to prove the
diamond property for ⇒n. The diamond property follows from the stronger “Star property” for
⇒n.

3.1 Parallel reduction for λµµ̃T

Definition 3.1 [Parallel reduction for λµµ̃T ]
The parallel reduction, denoted by ⇒n is defined inductively, as follows:

x⇒n x
(g1n)

v⇒n v′

λx.v⇒n λx.v′
(g2n)

c⇒n c′

µα.c⇒n µα.c′
(g3n)

α⇒n α
(g4n)

v⇒n v′, E⇒n E′

v • E⇒n v′ • E′
(g5n)

c⇒n c′

µ̃x.c⇒n µ̃x.c′
(g6n)

v⇒n v′, e⇒n e′

〈v ‖ e〉⇒n〈v′ ‖ e′〉
(g7n)

v1⇒n v′1, v2⇒n v′2, E⇒n E′

〈λx.v1 ‖ v2 • E〉⇒n〈v′1[x← v′2] ‖ E′〉
(g8n)

c⇒n c′, E⇒n E′

〈µα.c ‖ E〉⇒n c′[α←E′]
(g9n)

v⇒n v′, c⇒n c′

〈v ‖ µ̃x.c〉⇒n c′[x← v′]
(g10n)

Lemma 3.2

1. For every term G, G⇒n G.

2. If G→n G′ then G⇒n G′

3. If G⇒n G′ then G→→n G′

4. If G⇒n G′, H⇒n H ′, then G[x←H]⇒n G′[x←H ′].

Proof: See Appendix.

From 2. and 3. we conclude →→n is the reflexive and transitive closure of ⇒n.

3.2 Confluence of λµµ̃T

Next, we define the term G∗ obtained from G by simultaneously reducing all the existing redexes
of the term G.
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Definition 3.3 Let G be arbitrary term of λµµ̃T . The term G∗ is defined inductively as follows:
(∗1n) x∗ ≡ x (∗2n) (λx.v)∗ ≡ λx.v∗

(∗3n) (µα.c)∗ ≡ µα.c∗ (∗4n) α∗ ≡ α
(∗5n) (v • E)∗ ≡ v∗ • E∗ (∗6n) (µ̃x.c)∗ ≡ µ̃x.c∗

(∗7n) (〈v ‖ e〉)∗ ≡ 〈v∗ ‖ e∗〉 if 〈v ‖ e〉 6= 〈λx.v1 ‖ v2 • E〉,
〈v ‖ e〉 6= 〈µα.c ‖ E〉 and 〈v ‖ e〉 6= 〈v ‖ µ̃x.c〉

(∗8n) (〈λx.v1 ‖ v2 • E〉)∗ ≡ 〈v∗1 [x← v∗2 ] ‖ E∗〉
(∗9n) (〈µα.c ‖ E〉)∗ ≡ c∗[α←E∗]

(∗10n) (〈v ‖ µ̃x.c〉)∗ ≡ c∗[x← v∗]

Theorem 3.4 (Star property for ⇒n) If G⇒n G′ then G′⇒n G∗.

Proof: See Appendix.

Now it is easy to deduce the diamond property for ⇒n.

Theorem 3.5 (Diamond property for ⇒n)
If G1 n⇐G⇒n G2 then G1⇒n G′ n⇐G2 for some G′.

Finally, from Theorem 3.5, it follows that λµµ̃T is confluent.

Theorem 3.6 (Confluence of λµµ̃T )
If G1 n←←G→→n G2 then G1→→n G′ n←←G2 for some G′.

4 Continuation semantics

4.1 Category of negated domains

Category of negated domains NR was introduced by Lafont in [10], and can be seen as a
specialization of Hofmann and Steicher’s category of continuations [8].

If C is a category with distributive finite products and sums, with a fixed object R ∈ C such
that exponentials of the form RA exist for all A, RA 6= RB for all A 6= B, and C satisfies mono
requirement1, then such a category C is called response category and R is called object of
responses.

For a given response category C, the full subcategory of C that consists of the objects of the
form RA is called category of continuations and is denoted by RC . This category is cartesian
closed [11] and has a canonical premonoidal structure [20]. This can be summarized as follows:

1 ∼= R0 RA ×RB ∼= RA+B (RB)(R
A) ∼= RRA×B

⊥ := R1 ∼= R RAORB := RA×B .

Next, let P be a category of predomains2 and continuous functions, D be a category of domains
and continuous functions and let R be some fixed domain with bottom ⊥R. We will call R a
domain of responses. For each predomain A ∈ P we can form an exponential RA ∈ D. Since
by assumption, R has a bottom, all the exponentials have bottom elements, given by ⊥RA = λx :
A.⊥R for any A ∈ P. Then the category of negated domains NR is a full subcategory of
D, where the morphisms operate on exponentials of the form RA. The category NR is actually
obtained from the category of continuations just taking the category P of predomains as a basic
category, since it has distributive finite products and sums, and exponentials of the form RA exist.

Since the category NR is cartesian closed and has a least fixpoint operator, for any domain R
(see [22]), it has enough structure to interpret functional calculi, especially the calculi with control
operators.

1the morphism ∂A : A → RRA
is monic for all A ∈ C

2Predomain is a partial order where all directed subsets have a supremum. It does not necessarily have the
least element.
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4.2 From ordinary models to continuation models

For the extensional lambda calculus, a model is given by an object C in cartesian closed category,
such that C is isomorphic to its function space i.e. C ∼= [C→C] = CC (see [18], [19]). We call
such an object reflexive object.

In order to obtain a model of lambda calculus and its extensions in NR, we have the same
requirement in the category NR, which means that we are looking for an object K such that
K = RK × K in D. For K which is initial solution of this domain equation, we have that
RK ∼= RRK×K ∼= (RK)(R

K), so we conclude that C = RK is a solution of domain equation
C = CC in D and is called continuation model of untyped lambda calculus.

Untyped λ-calculus can be interpreted in RK ∈ NR [22], and this interpretation can be extended
to Felleisen’s λC calculus [5] and untyped version of Parigot’s λµ calculus.

4.3 Semantics for λµµ̃T

As we have seen, the category NR of negated domains is convenient for defining the semantics
of the various calculi with control operators, since it allows to explicitly deal with continuations.
Therefore, we think it was a good starting point in our quest for better understanding the meaning
and behaviour of λµµ̃.

As we have already mentioned, λµµ̃ is not confluent due to the presence of the critical pair
〈µα.c1 ‖ µ̃x.c2〉. Hence, we will consider separately two well-behaved subsyntaxes which are closed
either under call-by-name (λµµ̃T ) or under call-by-value reduction (λµµ̃Q).

Let us now turn to the interpretation of call-by-name variant of untyped λµµ̃ calculus, in the
category of negated domains introduced in the previous section.

We define the interpretation functions for all syntactic categories of λµµ̃T in the category NR

of negated domains.

Definition 4.1 Let K be an initial solution of domain equation K = RK ×K and let C = RK .
With Env we denote the set of environments that map caller variables to elements of C and callee
variables to elements of K, i.e. for ρ ∈ Env, ∀x ∈ Varv, ρ(x) ∈ C and ∀α ∈ Vare, ρ(α) ∈ K. Then
the interpretation functions

[[−]]C : CalleR →Env→C = RK

[[−]]K : CalleE →Env→K
[[−]]R : Capsule →Env→R

are defined as follows

CalleR:
[[x]]Cρ = λ〈s, k〉.s〈ρ(x), k〉

[[λx.v]]Cρ = λ〈s, k〉.s〈λ〈s1, k1〉.[[v]]Cρ[x := s1]k1, k〉
[[µα.c]]Cρ = λ〈s, k〉.s〈λh.[[c]]Rρ[α := h], k〉

CalleE:
[[α]]Kρ = 〈λ〈s, k〉.sρ(α), stop〉

[[v • E]]Kρ = 〈λ〈s, k〉.[[v]]Cρ〈s, [[E]]Kρ〉, stop〉
[[µ̃x.c]]Kρ = 〈λ〈s, k〉.[[c]]Rρ[x := s], stop〉
Capsule:

[[〈v ‖ e〉]]Rρ = [[v]]Cρ([[e]]Kρ)

We will omit the subscripts in various interpretations, since they can be deduced from the
terms being interpreted.

Intuitively, the callers represent computations and are mapped into C. Callees represent contin-
uations and are mapped into K. Finally, capsules can be seen as responses, hence are mapped into
R. The distinguished continuation stop represents the stable state. Since it does not influence the
computation, we can take any continuation for stop but this choice (taken from [22]) is justified by
the fact that it also works for the simplest continuation model where C = Σ. Σ = {⊥,>} is known
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as Sierpinski space, where it is only possible to observe termination (represented by ⊥) and diver-
gence (represented by >). It is the greatest element of K and is defined as stop = 〈λk.>R, stop〉,
where k ∈ K and >R is the greatest element of the domain R.

Let us now give some explanations for the given interpretations. First of all, since K ∼= RK×K,
continuations are of the form 〈s, k〉, where s ∈ C and k ∈ K. Therefore we can see continuations as
lists of denotations which correspond to denotational versions of call-by-name evaluation contexts.

Callers are interpreted as functions that map continuations to responses. This reflects the fact
that a caller can either get data from a callee or ask it to take place of one of its internal callee
variables. Hence, callers expect callees as arguments. The double abstraction over callees comes
from the necessity to trigger the computation in (µ̃) rule. It actually enables applying the current
evaluation context to a computation and continuing the computation.

Since a callee can ask a caller to take the place of one of its internal caller variables, it has a
functional part that can be applied to a caller (the first part of the pair). The second component
of the pair is stop, since during the computation, a new evaluation context is provided by the
caller.

Finally, in the case of capsules, the interpretation of the caller is applied to the interpretation
of the callee, thus producing an element in R.

Next, we give two lemmas, that will be used in order to prove that the semantics is preserved
by the reduction rules.

Lemma 4.2 (Substitution lemma 1) Let G be the term of λµµ̃T calculus (caller, callee, or
capsule). Then

1. [[G[x← y]]]ρ = [[G]]ρ[x := ρ(y)];

2. [[G[x←λy.v]]]ρ = [[G]]ρ[x := λ〈s, k〉.[[v]]ρ[y := s]k];

3. [[G[x←µα.c]]]ρ = [[G]]ρ[x := λh.[[c]]ρ[α := h]].

Lemma 4.3 (Substitution lemma 2) Let G be the term of λµµ̃T calculus (caller, callee, or
capsule). Then

1. [[G[α←β]]]ρ = [[G]]ρ[α := ρ(β)];

2. [[G[α← y • E]]]ρ = [[G]]ρ[α := 〈ρ(y), [[E]]〉].
3. [[G[α←λy.v • E]]]ρ = [[G]]ρ[α := 〈λ〈s, k〉.[[v]]ρ[y := s]k, [[E]]〉].
4. [[G[α←µβ.c • E]]]ρ = [[G]]ρ[α := 〈λh.[[c]]ρ[β := h], [[E]]〉].

Proofs of both lemmas are by induction on the structure of G.
Finally, we can prove the following theorem.

Theorem 4.4 (Preservation of semantics for λµµ̃T ) If G1→G2 then [[G1]] = [[G2]].

Proof: See Appendix.

5 Kleisli category and continuation semantics

5.1 Kleisli category

Kleisli categories provide a categorical semantics of computations based on monads. Since every
monad corresponds to Kleisli triple, the semantics can be given based on Kleisli triples that are
easier to justify computationally.

When interpreting a programming language in call-by-value setting in a category C, we need
to distinguish the objects A that represent values of type A from the objects TA that represent
computations of type A. Computations of type A are obtained by applying a functor T (called

6



notion of computation in [14]) to A. There are certain conditions that T has to satisfy and it
turns out that T needs to be a Kleisli triple, whereas programs form the Kleisli category for such
a triple.

The following definitions are taken from Moggi’s paper on notions of computation [14]

Definition 5.1 A Kleisli triple over a category C is a triple (T, η, ∗), such that for
- T : Obj(C) → Obj(C)
- ηA : A → TA for A ∈ Obj(C)
- f∗ : TA → TB for f : A → TB

the following equations hold:
- η∗A = idTA;
- f∗ ◦ ηA = f for f : A → TB;
- g∗ ◦ f∗ = (g∗ ◦ f)∗ for f : A → TB and g : B → TK.

Next we give the definition of the Kleisli category.

Definition 5.2 The Kleisli category CT over a category C for a given Kleisli triple (T, η, ∗) is
defined as follows:

- the objects of CT are objects of C;
- CT (A,B) = C(A, TB);
- idCT

= ηA : A → TA;
- g ◦CT

f = g∗ ◦ f : A → TK for f ∈ CT (A,B) and g ∈ CT (B, K).

5.2 Kleisli triple of continuations

Depending on the specific computation we want to model, different Kleisli triples can be chosen.
In this work we consider Kleisli triple of continuations given by the functor

TA = RRA

,
where R is the fixed object of responses (predomain with a least element and at least one more
element), together with the functors

- ηA(a) = λk : RA.k(a) and
- f∗(s) = λk : RB .s(λa : A.f(a)(k)) for f : A → TB and s ∈ TA.

We denote byKR the Kleisli category over the category P of predomains for a given Kleisli triple
of continuations (T, η, ∗). The intuitive meaning of ηA is the inclusion of values into computations,
whereas f∗ can be seen as an extension of a function f mapping values to computations into a
function mapping computations into computations.

As noticed in [23], the Kleisli category KR for a continuation Kleisli triple and the dual of the
category of negated domains N op

R are isomorphic.
In the next section, we will see how call-by-value variant of untyped λµµ̃ calculus, can be

interpreted in the Kleisli category KR.

5.3 Semantics for λµµ̃Q

In this section we will consider λµµ̃Q, which is a variant of untyped λµµ̃ calculus closed under
call-by-value reduction. It permits giving always precedence to (µ) rule.

We give the definition of interpretation functions for all four syntactic categories of the calculus.
It means that there is an interpretation function also for values, since it prevents the values and
computations to be confused. Functions are applied to values, but can still have computations for
a result, hence it is necessary to have W = CW .

Definition 5.3 Let us consider an initial solution of the system of domain equations
W = CW K = RW C = RK .

Let Env be the set of environments that map caller variables to elements of W and callee variables to
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elements of K i.e. for ρ ∈ Env, ∀x ∈ Varv, ρ(x) ∈ W and ∀α ∈ Vare, ρ(α) ∈ K. The interpretation
functions

[[−]]W : Value →Env→W = CW

[[−]]K : CalleE →Env→K = RW

[[−]]C : CalleR →Env→C = RK

[[−]]R : Capsule →Env→R

are defined as follows
Value:
[[x]]W ρ = ρ(x)

[[λx.v]]W ρ = λw.[[v]]Cρ[x := w]
CalleE:
[[α]]Kρ = ρ(α)

[[V • e]]Kρ = λw.(w([[V ]]W ρ))([[e]]Kρ)
[[µ̃x.c]]Kρ = λw.[[c]]Rρ[x := w]

CalleR:
[[x]]Cρ = λk.k[[x]]W ρ

[[λx.v]]Cρ = λk.k[[λx.v]]W ρ
[[µα.c]]Cρ = λk.[[c]]Rρ[α := k]
Capsule:

[[〈v ‖ e〉]]Rρ = [[v]]Cρ([[e]]Kρ)

We will leave the subscript only in the case of [[−]]W to avoid the ambiguity.
One important difference when interpreting call-by-value calculus is that variables are inter-

preted as values, i.e. ρ(x) ∈ W , whereas in call-by-name case values are interpreted as computa-
tions, i.e. ρ(x) ∈ C.

The different syntactic constructs of λµµ̃Q can be seen as elements of the following semantical
objects: values are elements of W , callers as computations are elements of C = RRW

, callees as
continuations are elements of K = RW , and capsules as responses are elements of R.

Also notice, that the interpretation of values in C is obtained by applying the function ηA(a) =
λk : RA.k(a) from a Kleisli triple, to the interpretation of values in W . Hence, we include values
into computations. On the other hand, µα.c is not a value, hence its interpretation is given only
in C.

In the case of callees, V • e and µ̃x.c can be seen as call-by-value evaluation contexts. Hence,
for V • e the computation (seen as value) is applied to V and then evaluated in the evaluation
context e. For µ̃x.c, the caller is just fed into a capsule c.

As in the previous section, we first give some lemmas that will be used later to prove the
preservation of semantics under reduction.

Lemma 5.4 (Substitution lemma 1) Let G be the term of λµµ̃Q calculus (caller, callee, or
capsule). Then

1. [[G[x← y]]](W )ρ = [[G]](W )ρ[x := ρ(y)];

2. [[G[x←λy.v]]](W )ρ = [[G]](W )ρ[x := [[λy.v]]W ρ];

where [[−]](W ) means that in the case of values, lemma holds for both interpretations, namely [[−]]C
and [[−]]W .

Proof: By induction on the structure of G.

Lemma 5.5 (Substitution lemma 2) Let G be the term of λµµ̃Q calculus (caller, callee, or
capsule). Then [[G[α← e]]]ρ = [[G]]ρ[α := [[e]]ρ]

Proof: By induction on the structure of G followed by induction on the structure of e.

Theorem 5.6 (Preservation of semantics for λµµ̃Q) If G1→G2 then [[G1]] = [[G2]].

Proof: See Appendix.
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5.4 Improving the semantics for λµµ̃T

In this part, we would still keep the domain equations from Section 4.3, but we will also try to
integrate the ideas from Section 5.3.

In Section 5.3, we considered two different types of computations, namely values as elements
of W and computations as elements of C. With the help of the functor ηA(a) = λk : RA.k(a) from
Kleisli triple, we had a way of including values into computations.

So we will apply the same technique at the level of continuations. In the set of callees we
will distinguish basic continuations that we call co-values (called applicative contexts in [2]), from
the rest of continuations. Co-values will be interpreted in K as in Section 4.3, but callees will be
interpreted in RRK

. The functor
ηK(k) = λs : RRK

.s(k)
from the Kleisli triple will serve to include co-values into continuations.

We give interpretation functions for all the four syntactic constructs of λµµ̃T , which means
that the interpretation function is also given for co-values, thus making a clear difference between
them and rest of callees.

Definition 5.7 Let K be an initial solution of domain equation K = RK ×K and let C = RK

and F = RC . With Env we denote the set of environments that map caller variables to elements
of C and callee variables to elements of K, i.e. for ρ ∈ Env, ∀x ∈ Varv, ρ(x) ∈ C and ∀α ∈
Vare, ρ(α) ∈ K. Then the interpretation functions

[[−]]K : Co-value →Env→K
[[−]]C : CalleR →Env→C = RK

[[−]]F : CalleE →Env→F = RC

[[−]]R : Capsule →Env→R

are defined as follows

Co-value:
[[α]]Kρ = ρ(α)

[[v • E]]Kρ = 〈[[v]]Cρ, [[E]]F ρ〉
CalleR:
[[x]]Cρ = ρ(x)

[[λx.v]]Cρ = λ〈s, k〉.[[v]]Cρ[x := s]k
[[µα.c]]Cρ = λk.[[c]]Rρ[α := k]

CalleE:
[[α]]F ρ = λs.s([[α]]Kρ)

[[v • E]]F ρ = λs.s([[v • E]]Kρ)
[[µ̃x.c]]F ρ = λs.[[c]]Rρ[x := s]
Capsule:

[[〈v ‖ e〉]]Rρ = [[e]]F ρ([[v]]Cρ)

We leave the subscript only in the case of [[−]]F to avoid the ambiguity.
We can see the different syntactic constructs of λµµ̃T as elements of the following semantical

objects: callers as computations are elements of C = RK , co-values as basic continuations are
elements of K ∼= RK × K, callees as continuations are elements of F = RC , and capsules as
responses are elements of R.

Also notice that the interpretation of co-values in F is obtained by applying the function
ηK(k) = λs : RRK

.s(k) from a Kleisli triple, to the interpretation of co-values in K, thus including
co-values into continuations. On the other hand, µ̃x.c is not a co-value, so its interpretation is
given only in F .

We can again prove the Substitution lemma and Preservation of semantics under reduction.

Lemma 5.8 (Substitution lemma) Let G be the term of λµµ̃T calculus (caller, callee, or cap-
sule). Then
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1. [[G[x← v]]]ρ = [[G]]ρ[x := [[v]]ρ];

2. [[G[α←E]]](K)ρ = [[G]](K)ρ[x := [[E]]Kρ]

where [[−]](K) means that lemma holds for both interpretations, [[−]]F and [[−]]K .

Theorem 5.9 (Preservation of semantics for λµµ̃T ) If G1→G2 then [[G1]] = [[G2]].

Proof: See Appendix.

6 Conclusions and future work

As a step towards better understanding of denotational semantics of λµµ̃ calculus, we interpreted
its untyped call-by-name (λµµ̃T ) and call-by-value (λµµ̃Q) versions, which permits us to exploit
λµµ̃ as a programming language. Continuation semantics of λµµ̃T is given by the interpretation
in the category of negated domains of [22], whereas λµµ̃Q is interpreted in Moggi’s Kleisli category
over predomains for the continuation monad [14]. Using computational monads, we also give an
improved interpretation for λµµ̃T . As a first research direction it would be interesting to better
understand the correspondence between these interpretations.

Another important contribution of this work is the proof of confluence for both versions of
λµµ̃.

We would like to extend the present work to the complete symmetric calculus of [2] and find
the interpretation for all the constructs of that calculus, including e • v and βλ.e. It seems that
this is not a trivial task, and that we need better understanding of the behaviour of these terms.

Another interesting direction to follow would be to interpret the typed λµµ̃ calculus in Selinger’s
control (co-control) categories [20], for both call-by-name and call-by-value variant of the calculus,
similar to the ones given in [13], but giving different interpretations for types (closer to the ones
given in [8]).

Finally, thorough analysis of semantics of the calculus typed using intersection and union types
[3] is foreseen.
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A Appendix

Proof of Lemma 3.2

1. By induction on the structure of G. Base cases are the rules (g1n) and (g4n) from Definition
3.1. For any other term of the calculus, we apply the induction hypothesis to the immediate
subterms of G (rules (g2n), (g3n), (g5n)− (g7n)). 2
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2. By induction on the context of the redex. If G→n G′ then G = C[H], G′ = C[H ′] and
H→n H ′. We just show a few illustrative cases.

* If C = [ ], then H→n H ′ can be one of the following:

- H = 〈λx.v1 ‖ v2 • E〉 and H ′ = 〈v1[x← v2] ‖ E〉. Then by (g8n), H⇒n H ′ since
vi⇒n vi i = 1, 2 and E⇒n E by Lemma 3.2(1).

- H = 〈µα.c ‖ E〉 and H ′ = c[α←E]. Then H⇒n H ′ by (g9n) because c⇒n c and
E⇒n E by Lemma 3.2(1).

- H = 〈v ‖ µ̃x.c〉 and H ′ = c[x← v]. Then H⇒n H ′ using (g10n) and Lemma 3.2(1)
since v⇒n v and c⇒n c.

* If C = µ̃x.C′[ ], then G = µ̃x.C′[H] and G′ = µ̃x.C′[H ′]. By the induction hypothesis,
C′[H]⇒n C′[H ′], so by (g3n) of the definition of ⇒n we get G⇒n G′.

* If C = 〈µα.c ‖ C′[ ]〉, then G = 〈µα.c ‖ C′[H]〉 and G′ = 〈µα.c ‖ C′[H ′]〉. By the
induction hypothesis, C′[H]⇒n C′[H ′], so by (g7n) G = 〈µα.c ‖ C′[H]〉⇒n〈µα.c ‖
C′[H ′]〉 = G′.

3. By induction on the structure of G.

4. By induction on definition of G⇒n G′. 2

Proof of Theorem 3.4 By induction on the structure of G. Since all the cases follow by the
straightforward induction, we show only a few illustrative ones.

1. If G = x, then G can only parallel reduce to x itself and x ≡ x∗ which is G∗.

2. When G = µα.c, then µα.c⇒n µα.c′ for some c′ such that c⇒n c′. By the induction hy-
pothesis, c′⇒n c∗, hence µα.c′⇒n µα.c∗ = G∗.

4. For G = 〈λx.v1 ‖ v2 • E〉, if 〈λx.v1 ‖ v2 • E〉⇒n G′, we distinguish two subcases:

* G′ = 〈λx.v′1 ‖ v′2 • E′〉 for some v′1, v
′
2, and E′ such that vi⇒n v′i (i = 1, 2) and

E⇒n E′. By the induction hypothesis, v′i⇒n v∗i (i = 1, 2) and E′⇒n E∗. Then, either
〈λx.v′1 ‖ v′2 • E′〉⇒n〈λx.v∗1 ‖ v∗2 • E∗〉⇒n〈v∗1 [x← v∗2 ] ‖ E∗〉 by (g7n) followed by (g8n)
or 〈λx.v′1 ‖ v′2 • E′〉⇒n〈v∗1 [x← v∗2 ] ‖ E∗〉 by (g8n).

* G′ = 〈v′1[x← v′2] ‖ E′〉 for some v′1, v
′
2, and E′ such that vi⇒n v′i (i = 1, 2) and

E⇒n E′. By the induction hypothesis, v′i⇒n v∗i (i = 1, 2) and E′⇒n E∗. Then,
〈v′1[x← v′2] ‖ E′〉⇒n〈v∗1 [x← v∗2 ] ‖ E∗〉 by Lemma 3.2(4) and (g7n). 2

Proof of Theorem 5.6

1. 〈λx.v ‖ V • e〉→〈V ‖ µ̃x.〈v ‖ e〉〉
[[〈λx.v ‖ V • e〉]]ρ = [[λx.v]]ρ([[V • e]]ρ)
= (λk.k(λw.[[v]]ρ[x := w]))(λw1.(w1([[V ]]W ρ))([[e]]ρ))
= (λw1.(w1([[V ]]W ρ))([[e]]ρ))(λw.[[v]]ρ[x := w])
= (λw.[[v]]ρ[x := w])([[V ]]W ρ)([[e]]ρ)
= [[v]]ρ[x := [[V ]]W ρ][[e]]ρ
= [[v[x←V ]]]ρ([[e]]ρ)

[[〈V ‖ µ̃x.〈v ‖ e〉〉]]ρ = [[V ]]ρ([[µ̃x.〈v ‖ e〉]]ρ)
= [[〈v ‖ e〉[x←V ]]]ρ (as in 3.)
= [[v[x←V ]]]ρ([[e]]ρ) since x 6∈ e

2. 〈µα.c ‖ e〉→ c[α← e]

[[〈µα.c ‖ e〉]]ρ = (λk.[[c]]ρ[α := k])([[e]]ρ)
= [[c]]ρ[α := [[e]]ρ] = [[c[α← e]]]ρ
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3. 〈V ‖ µ̃x.c〉→ c[x←V ]

We proceed by induction on the structure of V .

* V = y
[[〈y ‖ µ̃x.c〉]]ρ = [[y]]ρ([[µ̃x.c]]ρ)
= (λk.kρ(y))(λw.[[c]]ρ[x := w])
= (λw.[[c]]ρ[x := w])ρ(y) = [[c]]ρ[x := ρ(y)]
= [[c[x← y]]]ρ

* V = λy.w
[[〈λy.w ‖ µ̃x.c〉]]ρ
= (λk.k(λw.[[w]]ρ[y := w]))(λw1.[[c]]ρ[x := w1])
= (λw1.[[c]]ρ[x := w1])(λw.[[w]]ρ[y := w])
= [[c]]ρ[x := λw.[[w]]ρ[y := w]] = [[c[x←λy.v]]]ρ
Hence [[〈V ‖ µ̃x.c〉]]ρ = [[c[x←V ]]]ρ. 2

Proof of Theorem 5.9

1. 〈λx.v1 ‖ v2 • E〉→〈v1[x← v2] ‖ E〉
[[〈λx.v1 ‖ v2 • E〉]]ρ = [[v2 • E]]ρ([[λx.v1]]ρ)
= (λs.s([[v2 • E]]Kρ))([[λx.v1]]ρ)
= [[λx.v1]]ρ〈[[v2]]ρ, [[E]]Kρ〉
= (λ〈s, k〉.[[v1]]ρ[x := s]k)〈[[v2]]ρ, [[E]]Kρ〉
= [[v1]]ρ[x := [[v2]]ρ]([[E]]Kρ) = [[v1[x← v2]]]ρ([[E]]Kρ)

[[〈v1[x← v2] ‖ E〉]]ρ = [[E]]ρ([[v1[x← v2]]]ρ)
= (λs.s([[E]]Kρ))([[v1[x← v2]]]ρ)
= [[v1[x← v2]]]ρ([[E]]Kρ)

2. 〈µα.c ‖ E〉→ c[α←E]

[[〈µα.c ‖ E〉]]ρ = [[E]]ρ([[µα.c]]ρ)
= (λs.s([[E]]Kρ))([[µα.c]]ρ) = (λk.[[c]]ρ[α := k])([[E]]Kρ)
= [[c]]ρ[α := [[E]]Kρ] = [[c[α←E]]]ρ

3. 〈v ‖ µ̃x.c〉→ c[x← v]

[[〈v ‖ µ̃x.c〉]]ρ = (λs.[[c]]ρ[x := s])([[v]]ρ)
= [[c]]ρ[x := [[v]]ρ] = [[c[x← v]]]ρ 2

13


