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Abstract
In this paper, we consider the communications involved by the execution of a complex
application, deployed on a heterogeneous platform. Such applications extensively use
macro-communication schemes, for example to broadcast data items. Rather than
aiming at minimizing the execution time of a single broadcast, we focus on the steady-
state operation. We assume that there is a large number of messages to be broadcast
in pipeline fashion, and we aim at maximizing the throughput, i.e. the (rational)
number of messages which can be broadcast every time-step. We target heterogeneous
platforms, modeled by a graph where resources have different communication speeds
under the unidirectional one-port model (i.e. at a given time step, a processor can
be involved in at most one (incoming or outgoing) communication with one of its
neighbors). Achieving the best throughput may well require that the target platform
is used in totality: we show that neither spanning trees nor DAGs are as powerful as
general graphs.
We propose a rather sophisticated polynomial algorithm for determining the optimal
throughput that can be achieved using a platform, together with a (periodic) schedule
achieving this throughput. The algorithm is based on the use of polynomial oracles
and of the ellipsoid method [9, 13] for solving in linear programs in rational numbers.
The polynomial compactness of the description comes from the decomposition of the
schedule into several broadcast trees that are used concurrently to reach the best
throughput. It is important to point out that a concrete scheduling algorithm based
upon the steady-state operation is asymptotically optimal, in the class of all possible
schedules (not only periodic solutions).

Keywords: Scheduling, steady-state, heterogeneous platforms, ellipsoid method

Résumé
Nous nous intéressons ici aux communications qui ont lieu lors de l’exécution d’une
application complexe distribuée sur un environnement hétérogène de type “grille de
calcul”. De telles applications font un usage intensif de la diffusion de données à travers
le réseau d’interconnexion. Nous cherchons à optimiser le débit d’une telle diffusion
en régime permanent, en supposant qu’un grand nombre de messages doivent être
diffusés successivement, comme c’est le cas pour le parallélisme de données. Nous
visons des plates-formes hétérogènes, modélisées par un graphe où les ressources de
communications ont des vitesses différentes et utilisent le modèle un-port ; i.e. à un
instant donné, un nœud est impliqué dans au plus un transfert de données (émission
ou réception). Nous étudions la diffusion utilisant des sous-réseaux avec des topologies
restreintes (arbres ou graphes acycliques dirigés) et montrons que celles-ci sont moins
puissantes que des graphes généraux. Nous proposons un algorithme sophistiqué pour
calculer le débit optimal dans le cas général et construire un ordonnancement pério-
dique qui le réalise. Notre algorithme est basé sur l’utilisation d’oracles polynomiaux
et de la méthode de l’ellipsöıde [9, 13] afin de résoudre des systèmes linéaires en
nombres rationnels. Nous montrons que l’ordonnancement réalisé est asymptotique-
ment optimal, parmi tous les ordonnancements possibles (pas seulement les solutions
périodiques).

Mots-clés: Ordonnancement, régime permanent, plates-formes hétérogènes, méthode de l’ellipsöıde



1 Introduction

Broadcasting in computer networks is the focus of a vast literature. The one-to-all broadcast, or single-node
broadcast [16], is the most primary collective communication pattern: initially, only the source processor
has the data that needs to be broadcast; at the end, there is a copy of the original data residing at each
processor.

Parallel algorithms often require to send identical data to all other processors, in order to disseminate
global information (typically, input data such as the problem size or application parameters). Numerous
broadcast algorithms have been designed for parallel machines such as meshes, hypercubes, and variants (see
among others [12, 29, 27, 15, 28]). The one-to-all MPI routine [26] is widely used, and particular case has
been given to its efficient implementation on a large variety of platforms [11]. There are three main variants
considered in the literature:

Atomic broadcast: the source message is atomic, i.e. cannot be split into packets. A single message is
sent by the source processor, and forwarded across the network.

Pipelined broadcast: the source message can be split into an arbitrary number of packets, which may be
routed in a pipelined fashion, possibly using different paths.

Series of broadcasts: the same source processor sends a series of atomic one-to-all broadcasts, involving
messages of the same size. The processing of these broadcasts can be pipelined.

For the first two problems, the goal is to minimize the total execution time (or makespan). For the third
problem, the objective function is rather to optimize the throughput of the steady-state operation, i.e. the
average amount of data broadcast per time-unit.

In the case of the atomic broadcast, there is no reason why a processor (distinct from the source) would
receive the message twice. Therefore, the atomic broadcast is frequently implemented using a spanning
tree. In the case of the pipelined broadcast, things get more complex: the idea is to use several edge-disjoint
spanning trees to route simultaneously several fractions of the total message. Along each spanning tree, the
message fraction is divided into packets, which are sent in a pipeline fashion, so as to minimize start-up idle
times. See [29] for an illustration with two-dimensional meshes.

The series of broadcasts problems has been considered by Moore and Quinn [22], and by Desprez et
al. [8], but with a different perspective: they consider that distinct processor sources successively broadcast
one message, and their goal is to load-balance this series of communications. Here, we assume that the same
source processor initiates all the broadcasts: this is closer to a master-slave paradigm where the master
disseminates the information to the slaves in a pipelined fashion, for instance the data needed to solve a
collection of (independent) problem instances.

The series of broadcasts resembles the pipelined broadcast problem in that we can solve the latter using
an algorithm for the former: this amounts to fix the granularity, i.e. the size of the atomic messages (packets)
that will be sent in pipeline. However, an efficient solution to the pipelined broadcast problem would require
to determine the size of the packets as a function of the total message length.

The series of broadcasts problem has already been addressed in the case of heterogeneous computing
platforms in [4], under the bidirectional one-port model, where a node can simultaneously send a message
(and only one) to one of its neighbors and receive a message (and only one) from one of its neighbors.
In [4], a polynomial algorithm is proposed to determine the optimal throughput and a schedule achieving
this throughput, using network flows and graph theory (Edmond’s branching theorem). We will prove in
Section 2.2.2 that under the unidirectional 1-port model, we need to rely on more sophisticated algorithmic
techniques, since we cannot consider separately the problem of finding the set of trees used to broadcast
the message and the problem of building a schedule based on this set of trees. In this paper, we propose
an algorithm for computing simultaneously the set of trees and the schedule. This algorithm relies on tools
such as rational linear programming (ellipsoid method with polynomial oracles) and fractional edge coloring
for general graphs.

The rest of the paper is organized as follows. The next section (Section 2) is devoted to the formal
specification of our broadcast problems and of the target heterogeneous network (2.1). In particular, we
underline the differences between the unidirectional and the bidirectional one-port model and how this
affects the design of an algorithm for the series of broadcasts problem (2.2). In 2.3, we compare topologies



for the series of broadcasts problem and we prove that general platforms are strictly more powerful than
DAGs, and that DAGs are strictly more powerful than trees. In Section 3, we move to the design of the
optimal steady-state algorithm, when the target network is a general graph. We extend this study to other
collective communication scheme in Section 4, and to the case of a complex platform with mixed one-port
and multi-port nodes in Section 5. In 6, we prove that our algorithm (which optimize the throughput) is
asymptotically optimal if we try to optimize the makespan. We briefly survey related work in Section 7, and
we state some concluding remarks in Section 8.

2 Framework

2.1 Platform model
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Figure 1: Simple network topology. The value of cj,k is indicated along each edge. The node Ps is the source
of the broadcasts.

The target architectural platform is represented by an edge-weighted directed graph G = (V, E, c), as
illustrated in Figure 1. Note that this graph may well include cycles and multiple paths. Let p = |V | be the
number of nodes. There is a source node Ps, which plays a particular role: it initially holds all the data to
be broadcast. All the other nodes Pi, 1 � i � p, i �= s, are destination nodes which must receive all the data
sent by Ps.

There are several scenarios for the operation of the processors, which will be discussed in Section 7. In
this paper, we concentrate on the unidirectional one-port model, where a processor node can receive data
from one of its neighbor or send data to one of its neighbor. At any given time-step, there is at most one
communication involving a given processor, one in emission or one in reception. We will discuss in next
section the differences induced by the unidirectional one-port model with respect to the bidirectional one-
port model, where at a given time-step, there are at most two communications involving a given processor,
one in emission and one in reception.

Each edge ej,k : Pj → Pk is labelled by a value cj,k which represents the time needed to communicate one
unit-size message from Pj to Pk (start-up costs are dealt with below, for the pipelined broadcast problem).
The graph is directed, and the time to communicate in the reverse direction, from Pk to Pj , provided that this
link exists, is ck,j . Note that if there is no communication link between Pj and Pk we let cj,k = +∞, so that
cj,k < +∞ means that Pj and Pk are neighbors in the communication graph. We state the communication
model more precisely: if Pj sends a unit-size message to Pk at time-step t, then (i) Pk cannot initiate another
receive operation or another send operation before time-step t+ cj,k, and (ii) Pj cannot initiate another send
operation or another receive operation before time-step t + cj,k.

Series of broadcasts In the series of broadcasts problem, the source processor broadcasts a (potentially



infinite) sequence of unit-size messages. Start-up costs are included in the values of the link capacities cj,k.
The optimization problem Series(V, E, c) is to maximize the throughput.

2.2 Fundamental differences between unidirectional and bidirectional one-port
models

2.2.1 Bidirectional one-port model

In order to describe the algorithm in the case of unidirectional one port nodes and to illustrate the differences
between unidirectional and bidirectional one-port models, we work out the little example of the platform
depicted in Figure 2, where P1 broadcasts a message to P2 and P3. We first briefly summarize the method
given in [4] in the case of the bidirectional one-port model.

1/2
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Figure 2: Example of topology for the broadcast problem

In what follows, we try to determine the maximal fractional number of messages a that can be broadcast
during one time unit, at steady state. Let us denote by xj,k

i the (fractional) number of messages sent to Pi

which transit on the edge between Pj and Pk (in our example, we only need to consider x1,2
2 , x1,2

3 , x1,3
3 and

x2,3
3 . We express some constraints one these quantities with linear inequalities or equalities. The first set of

equalities says that the whole message must leave P1 and must reach P2 and P3:




x1,2
2 = a (all messages targeting P2 leave P1)

x1,2
3 + x1,3

3 = a (all messages targeting P3 leave P1)
x1,2

2 = a (all messages targeting P2 reach P2)
x1,3

3 + x2,3
3 = a (all messages targeting P3 reach P3)

We also need to add a conservation law, which states that all the messages whose final destination is Pi and
that arrive in Pj �= Pi must leave Pj . In our example, the only interesting case is the set of messages whose
final destination is P3 and that transit by P2:

x1,2
3 = x2,3

3 .

The following set of constraints is related to link occupation. The fraction of messages that transit on (Pj , Pk)
are xj,k

1 , xj,k
2 , . . . , xj,k

n . Since we consider a broadcast (and not a scatter), some of the messages with different
final destination may well be identical. In this case, xj,k

i and xj,k
i′ may count for the same message. Thus the

link between Pj and Pk may well be busy during less than cj,k ×
∑

i xj,k
i time units (remind that cj,k is the

time necessary to transfer one single message). In [4], it is proved that on the contrary, it is always possible
to organize the communications so that all the messages transiting between Pj and Pk are sub-messages of
the largest one, so that if tj,k denotes the fraction of time when the link between Pj and Pk is busy, then

tj,k = cj,k × max
i

xj,k
i holds true.

For our example, it leads to the following set of inequalities

t1,2 � 1 × x1,2
2 , t1,2 � 1 × x1,2

3 , t1,3 � 1 × x1,3
3 , t2,3 � 1

2
× x2,3

3 .



The last set of inequalities is related to port occupation. In the bidirectional one-port model, we assume
one-port for incoming communications and one-port for outgoing communications so that, if we denote by
tinj and tout

j the occupation time of the communication ports of Pj , we obtain, for our example


tout
1 = t1,2 + t1,3

tin2 = t1,2

tout
2 = t2,3

tin3 = t2,3 + t1,3

At last, since our aim is to maximize the number of messages broadcast during one time unit, none of
incoming or outgoing ports can be used more than one unit of time and we thus obtain the following linear
program

Bidirectional Steady-State Broadcast Problem on G
Maximize a,
subject to


x1,2
2 = a, t1,2 � x1,2

2 ,

x1,2
3 + x1,3

3 = a, t1,2 � x1,2
3 ,

x1,2
2 = a, t1,3, � x1,3

3 ,

x1,3
3 + x2,3

3 = a, t2,3 � 1
2x2,3

3 ,

x1,2
3 = x2,3

3 ,

tout
1 = t1,2 + t1,3, tout

1 � 1,
tin2 = t1,2, tin2 � 1,
tout
2 = t2,3, tout

2 � 1,
tin3 = t2,3 + t1,3, tin3 � 1

The solution of above linear program is given by

x1,2
2 = 1, x1,2

3 = 1, x2,3
3 = 1 and a = 1,

so that one message can be broadcast every time unit.
Although an optimal schedule reaching this throughput can easily be derived in this small example, this

might be a complicated problem in the general case. However, from the solution of above linear program,
it is possible (see [4]) to build a set of weighted broadcast trees (α1, T1), . . . (αk, Tk) such that

∑
i αi = a,

thus achieving optimal throughput. The set of trees is determined using graph techniques such as flows
and a weighted version of Edmond’s branching theorem. Figure 3 depicts the set of all trees that can be
used in this decomposition, which consists here in two trees, T1 and T2. For our small example, the optimal
throughput is achieved using only tree T2 weighted by 1.

P1

P2 P3

(a) Tree T1

P1

P2 P3

(b) Tree T2

Figure 3: Possible broadcast trees of Platform depicted on Figure 2.

The last step of the algorithm consists in determining the actual schedule of the communications induced
by above set of trees. Each port (for incoming or outgoing communications) is associated to a node in a
weighted bipartite graph. More precisely, we denote by P out

j and P in
j the outgoing and incoming commu-

nication ports of Pj and the edge between P out
j and P in

k is weighted by the communication time between



Pj and Pk induced by the set of trees. On our small example, the corresponding bipartite graph is depicted
in Figure 4. In order to determine the effective schedule of the communications, a weighted version of
König’s bipartite graph edge coloring algorithm is used. Clearly, all the communications corresponding to a
given matching can be performed simultaneously, and it is proved in [4] that the corresponding schedule of
communication achieves optimal throughput.

1

1

P out
1

P out
2

P out
3

P in
2

P in
3

P in
1

Figure 4: Bipartite graph of communications for the platform depicted on Figure 2 in the bidirectional
one-port model.

2.2.2 Unidirectional one-port model

In the case of the unidirectional one-port model, one may think at first sight that the approach depicted
in the above section for the bidirectional one-port model could be adapted. However, let us consider again
the platform depicted in Figure 2. An equivalent linear program, analogous to the bidirectional case would
simply be obtained by changing the constraints corresponding to the occupation of communication ports. In
the unidirectional one-port model, the occupation time tj of the communication port of Pj is simply obtained
by summing up the occupation time for both incoming and outgoing communications. For our example, the
only change is about node P2, which is the only node that may send and receives messages. The occupation
of this node is now t2 = t1,2 + t2,3. This leads to the following linear program:

Unidirectional Steady-State Broadcast Problem on G(Wrong Solution)

Maximize a,
subject to


x1,2
2 = a, t1,2 � x1,2

2 ,

x1,2
3 + x1,3

3 = a, t1,2 � x1,2
3 ,

x1,2
2 = a, t1,3 � x1,3

3 ,

x1,3
3 + x2,3

3 = a, t2,3 � 1
2x2,3

3 ,

x1,2
3 = x2,3

3 ,

t1 = t1,2 + t1,3, t1 � 1,
t2 = t1,2 + t2,3, t2 � 1,
t3 = t2,3 + t1,3, t3 � 1

The optimal throughput of the above linear program is 3
4 . The solution can be divided into the two

following weighted trees: ( 1
4 , T1) and (1

2 , T2). Using this set of weighted trees, the communication ports of
P1, P2 and P3 are busy during respectively 1, 1 and 1

2 time units, so that all port constraints are fulfilled.
Nevertheless, it is impossible to broadcast 3

4 messages every time unit, and therefore to achieve the announced
throughput. Indeed, in the solution provided by the linear program, the occupation time of the different
links is as depicted in Figure 5.

Unfortunately, during the communication between P1 and P2, that lasts for 3
4 time units, no other

communication can take place, since the ports of P1 and P2 are busy, and thus no communication to P3 is
possible. Then, the communications to P3 have to be scheduled (the communication from P2 to P3 takes 1

4
time units and the communication from P1 to P3 takes 1

4 time units). Again, those communications have to
be sequentialized since both involve the communication port of P3. Thus, the overall communication time
necessary to perform all the communications necessary to send a message of size 1

4 according to T1 and a
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P1

P3P2

Figure 5: Occupation time of the links in the solution of the first linear program for unidirectional one-port
model.

message of size 1
2 is equal to 5

4 time units, whereas none of the communication ports is busy during more
than one time unit.

In fact, as we will prove it at the end of this section, the set of weighted trees provided using Edmond’s
branching theorem is not optimal. The optimal solution under the unidirectional one-port model is obtained
when sending a message of size 2

3 according to broadcast tree T1. In this case the value of the objective
function of the linear program is smaller (2

3 instead of 3
4 ) but the actual throughput achieved in nevertheless

larger (2
3 instead of 3

5 ).
Therefore, in the case of the unidirectional one-port model, we cannot consider separately the construc-

tion of the broadcast scheme (i.e. how to determine the set of weighted trees used to perform the broadcast)
and the construction of the actual schedule (i.e. how to find the set of matchings used to organize communi-
cations). In the case of the bidirectional one-port model, scheduling the communications is equivalent to edge
coloring a weighted bipartite graph, which can be solved using a weighted version of König’s algorithm so
that the total execution time of the schedule corresponds to the maximal occupation time of an incoming or
outgoing communication port. As we have seen above, this property does not hold true for the unidirectional
one-port model. Indeed, edge coloring general graphs is much more complex than edge coloring weighted
bipartite graphs. In particular, even if fractional edge coloring can be solved in polynomial time for general
graphs [23, 24], this is not true that the overall sum of the weighted matchings involved in the description is
equal to the maximal weighted degree of a vertex.

P1

P2 P3

(a) Matching M1

P1

P2 P3

(b) Matching M2

P1

P2 P3

(c) Matching M3

Figure 6: Possible matchings for platform depicted in Figure 2 in the unidirectional one-port model

Thus, in order solve the broadcast throughput problem under the unidirectional one-port model, we
need to simultaneously consider the problems of determining the set of weighted trees used to broadcast
the message and the set of weighted matchings used to schedule the communications. Let us again consider
the small example depicted in Figure 2. There are 3 possible matchings M1, M2 and M3 (with respective
weight x1, x2 and x3) and 2 different possible broadcast trees T1 and T2 (with respective weights y1 and
y2), as depicted in Figures 3 and 6. In order to determine the maximal number of messages that can be
broadcast during one time unit, we aim at finding a weighted set of trees of maximal weight (y1 + y2) and a
set of weighted matchings achieving the communications corresponding to the weighted set of trees, whose
overall weight x1 + x2 + x3 is smaller than 1. We add a constraint to ensure that on a given link, the set of
matchings covers all the communications induced by all broadcast trees. For example, on link P1 → P2, the
matchings including this link (here only M1) has the same weight than the sum of the trees going through
this links (here trees T1 and T2) multiplied by the time necessary to transfer one message through this link.



This leads to the following linear program

Unidirectional Steady-State Broadcast Problem on G
Maximize y1 + y2,
subject to


x1, x2, x3, y1, y2 � 0
x1 + x2 + x3 � 1
x1 = (y1 + y2) × c1,2 = y1 + y2

x2 = y1

x3 = y2 × c1,3 = 1
2y2

whose solution is given by y1 = 0, y2 = 2
3 , x1 = 2

3 , x2 = 0, x3 = 1
3 and therefore y1 + y2 = 2

3 . Thus,
with respect to the broadcast throughput problem under the unidirectional one-port method, the optimal
solution has throughput 2

3 and consist in sending the messages along tree T1, as said above.
Therefore, it is possible to find the optimal set of weighted trees and the corresponding set of matchings

by solving a linear program. Unfortunately, if this method can be applied to the small platform depicted
in Figure 2, both the number of possible matchings and the number of possible broadcast trees may be
exponential in the size of the platform graph!

The main contribution of the paper consists in the efficient (polynomial time) resolution of this linear
program, as developed in Section 3. However, before going into details, we illustrate why using the whole
platform instead of a single broadcast tree in useful to our goal, by comparing the throughput obtained when
we allow different network topologies to broadcast a series of messages.

2.3 Comparing topologies for series of broadcasts

In this section, we work out a small example, whose objective is to show the difficulty of the problem. We
compare the best throughput that can be achieved using a tree, a directed acyclic graph (DAG), or the
full topology with cycles and we prove on the platform depicted in Figure 1, the throughput that can be
achieved using the whole platform is strictly larger than the throughput that can be achieved using a DAG
only, which is itself strictly larger than the throughput that can be achieved using a single tree. In the
platform G depicted Figure 1, there are 3 possible broadcast trees:

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

T1 T2 T3

and 8 possible matchings:

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

M1 M2 M3 M4 M5 M6 M7 M8

In what follows, we provide for each kind of platform (tree, DAG, general graph) both the set of trees used
to broadcast the messages and the set of matchings used to schedule the communications. Our aim is not
to describe how the trees and the matchings have been computed. Since the platform is small, the set of
weighted trees and weighted matchings have been determined using the linear program described in the
previous section.



2.3.1 Best tree

We first consider the problem of determining the best tree, subgraph of G. The only possible trees are T1,
T2 and T3. Due to symmetry, T2 and T3 will achieve exactly the same throughput. Our aim is therefore to
determine the maximal number of messages that can be broadcast in one time unit along T1 and T2.

Using the linear program introduced in previous section, the throughput that can be achieve using T1 is
1
2 and the throughput that can be achieved using T2 is 4

7 , thus slightly better. The corresponding matchings
used to schedule the communications are as follows

1
2


 1/21/2
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Ps

P1 P2

P4P3


 =

1
4




Ps

P1 P2

P4P3


 +

1
4




Ps

P1 P2

P4P3


 +

1
4




Ps

P1 P2

P4P3


 +

1
4




Ps

P1 P2

P4P3




and

4
7


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2.3.2 Best DAG

We now consider the problem of determining the best DAG, subgraph of G. There are only 5 different DAGs
subgraph of G and such that the messages sent from Ps can reach all the nodes, i.e.

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

Ps

P1 P2

P4P3

D1 D2 D3 D4 D5

The cases of the first three DAGs (which are trees) have already been addressed and for symmetry
reasons, the last two DAGs will lead to the same throughput.

The best throughput that can be achieved using D1 is 8
13 , thus slightly better than what can be achieved

with a single tree. More precisely, during one time unit, 4
13 of messages can be sent along T1 and 4

13 of
messages can be sent along T2. The corresponding matchings used to schedule the communications are as
follows
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2.3.3 Optimal solution

Let us now consider the case of the whole platform. The best throughput that can be achieved using the
whole platform is 2

5 , thus slightly better than what can be achieved with a single tree or even a DAG. More
precisely, during one time unit, 1

5 of messages can be sent along T2 and 1
5 of messages can be sent along T3.



The corresponding matchings used to schedule the communications are as follows
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3 Steady-state throughput of the broadcast

In this section, we move to the formal definition of the Series of Broadcast problem in the unidirectional
one-port model (which we be called the Broadcast problem in the following for short), and we develop its
resolution in the general case. A small example was presented Section 2.2.2, leading to a linear program. In
this simple case, it was possible to solve this program since it involves very few variables and constraints.
However, in the general case developed in Section 3.2, this formulation may lead in an exponential linear
program. The rest of this Section (parts 3.3 to 3.5) is devoted to the description a complicated polynomial
algorithm which solves this linear program in polynomial time and provides a polynomial description of an
optimal schedule for the Broadcast problem.

3.1 Definition of the Broadcast problem

In the Broadcast operation, we consider a platform represented by an edge-weighted directed graph G =
(V, E, c) where V = (P1, . . . , Pn) is the set of processors, E is the set of communication links between these
processors, and c(e) for e ∈ E is the cost of edge e, that is the time needed to transfer a message of unit size
through edge e. We denote by Psource the processor initiating the broadcast operation. All other processors
have to receive the messages broadcast by the source.

As we focus on the steady-state performance, we assume that Psource has a huge number of messages
that have to be sent to other processors. We call throughput of a schedule for the broadcast operation the
average number of messages received by all the processors during one time-unit.

Definition 1 (BROADCAST(G, Psource)). Given a platform graph G and a source node Psource, find
a schedule for a broadcast operation on G from Psource achieving the best throughput in the steady-state
operation.

Note that this problem does not belong to NP, as it might be too long to check if a given schedule is
valid. To build valid schedule, we have to ensure that its description is polynomial is the size of the initial
data. We now introduce a few notations for the broadcast problem.

T denotes the set of broadcast trees: all spanning trees rooted in Psource in G can be used to broadcast one
of the messages emitted by Psource, so T is the set of these trees.

M denotes the set of subset of links that can be used to perform simultaneous communications: if two
edges e1 = (P1 → Q1) and e2 = (P2 → Q2) belongs to the same subset, this means that P1 may send a
message to Q1 while P2 sends a message to Q2. As we consider here the unidirectional one-port model,
each processor may perform only one communication (sending or receiving a message) at a given time
step. So M is the set of the matchings in the platform graph G = (V, E).

Note that these sets T and M may not have a polynomial description. To ensure that the solutions built
by the algorithm have a polynomial size, we need to describe them with a polynomial number of trees and
matchings.



3.2 Constraints and linear program

In this section, we introduce notations so as to express the Broadcast problem as a linear program.
Let us note T = {T1, . . . , T|T |} and M = {M1, . . . , M|M|}. The variables of the linear program are the

followings:

• xm is the weight of matching Mm in a solution, that is the average time this matching is used to
perform communications during one time-unit.

• yt is the weight of tree Tt in a solution, that is the average number of message carried by this tree
during one time-unit.

The first constraints express that these variables have to be non-negative:

∀Mm ∈ M, xm � 0, ∀Tt ∈ T , yt � 0

Then come the constraints expressing that the average communicating can be orchestrated during one
time-unit. A matching represents a set of communications that can be scheduled concurrently, but the
communications involved in two distinct matchings have to be sequentialized. Thus the total weight of all
matchings must be smaller than one-time unit:

(comm)
∑

Mm∈M
xm � 1

The last set of constraints express that the matchings can actually perform all the communications
needed by the broadcast trees. On each link, the weight of all matchings including this link (that is the total
communication time on this link) must be equal to the total number of messages carried by each tree using
this link multiplied by the time necessary to transfer one message:

(edgek) ∀ek = (i, j) ∈ E
∑

Mm∈M
(i,j)∈Mm

xm =
∑

Tt∈T
(i,j)∈Tt

ci,j · yt

Finally, the objective function is the total weight of the broadcast trees:

max
∑

Tt∈T
yt

We get the following linear program :

(P )




Maximize

∑
Tt∈T

yt,

subject to

∀Mm ∈ M, ∀Tt ∈ T , xm � 0, yt � 0

(comm)
∑

Mm∈M
xm � 1

(edgek) ∀ek = (i, j) ∈ E
∑

Mm∈M
(i,j)∈Mm

xm =
∑

Tt∈T
(i,j)∈Tt

ci,j · yt

To solve the Broadcast(G, Psource) problem, it is enough to find an optimal solution of (P ) consisting in
a polynomial number of trees and matchings with non zero weight. In the following, we aim at finding such
a solution to (P ).

The linear program (P ) has a number of constraints potentially exponential in the size of the graph
(equals to the number of matchings and trees in G), but has a polynomial number of constraints (equals
to |E| + 1). The method we want to use to find an optimal solution can be applied on a system with a
limited (polynomial) number of variables, but without any bound on the size of the constraints set, as soon
as we know some properties on this set, for example if we can decide in polynomial time if a solution satisfy



every constraints or not. That is the reason why we compute the dual linear program of (P ), denoted by D:
(D) has a polynomial number of variables and a potentially exponential number of constraints, but all these
constraints are linked to matchings or trees in G, which provides some interesting properties, as developed
in Section 3.5.

3.3 Dual linear program for Broadcast

In this section, we compute the dual linear program of (P ). We first rewrite the initial linear program:

• variables X =
(

x
y

)
∈ R|M|+|T |

• the objective function is Maximize dT · X where d = (0, · · · , 0︸ ︷︷ ︸
|M|

, 1, · · · , 1︸ ︷︷ ︸
|T |

)T

• constraints for the one-port model: A · X � a where a = 1 and
 ∀Mm ∈ M, A1,m = 1

∀Tt ∈ T , A1,|M|+t = 0

• constraints for the matching realizing all the communications needed by the trees: D · y = b where
b = 0 ∈ R|E| and



∀k = 1, . . . , |E| ∀Mm ∈ M, Dk,m =
{

−1 if ek ∈ Mm

0 otherwise

∀k = 1, . . . , |E| ∀Tt ∈ T , Dk,|M|+t =
{

ci,j if ek = (i, j) ∈ Tt

0 otherwise

The initial linear program is equivalent to the following:

Maximize dT · X
subject to

X � 0
A · X � a
D · X = b

These are the same notations as the general formulation of the dual problem [25], with the other matrices
(B, C, E, F , G and H) empty. This is equivalent to solve the dual program:

Minimize a · u + b · v
subject to

u � 0
AT · u + DT · v � d

For m in {1, . . . , |M |}, the mth line of the last inequalities gives the constraints corresponding to matching
Mm: [

AT · u + DT · v
]
m

� dm

⇔ A1,m · u +
|E|∑
k=1

Dk,m · vk � 0

⇔ u +
∑

k=1...|E|
ek∈Mm

−vk � 0

⇔
∑

ek∈Mm

vk � u



For t in {1, . . . , |T |}, the (|M| + t)th line of the inequalities gives the constraints corresponding to tree
Tt: [

AT · u + DT · v
]
|M|+t

� d|M|+t

⇔ A1,|M|+t · u +
|E|∑
k=1

Dk,|M|+t · vk � 1

⇔
∑

ek=(i,j)∈Tt

ci,j · vk � 1

In these constraints, ui is the variable of the dual linear program corresponding to the initial con-
straint comm, and vk corresponds to the initial constraint edgek. The dual linear program is summarized
by:

(D)




Minimize u,
subject to

u � 0

∀Mm ∈ M,
∑

ek∈Mm

vk � u

∀Tt ∈ T
∑

ek=(i,j)∈Tt

ci,j · vk � 1

3.4 Combinatorial optimization problems and results

In this section, we present the formal definition of the separation and optimization problem, and we recall
some theoretical results about combinatorial optimization presented in [9]. Let us first introduce the SOPT
and SSEP problems:

Definition 2 (The Strong Optimization Problem (SOPT(K, C))). Given a convex K and a vector
C ∈ Rn, find a vector x ∈ K that maximizes CT · x or assert that K is empty.

Definition 3 (The Strong Separation Problem (SSEP(K, x))). Given a vector x ∈ Rn, decided whether
x ∈ K, and if not, find a vector hyperplane that separates x from K; more exactly, find a vector C ∈ Rn

such that CT · x > max
{
CT · y | y ∈ K

}
.

The optimization problem of the linear program (D) is equivalent to solve the strong optimization problem
SOPT(K, C) for some K and C. Note that in the following, n denotes the dimension of the solution space:
n = 1 + |E|. Considering a vector x of this space Rn, the first coordinates correspond to the u variable and
the following |E| coordinates are the vi. Formally, we have: x1 = u and xk+1 = vk for k = 1, . . . , |E|. We
may know define formally K and C corresponding to (D):

K =




x ∈ Qn,

x1 � 0
∀m = 1, . . . , |M|

∑
ek∈Mm

xk+1 � x1

∀t = 1, . . . , |T |
∑

ek=(i,j)∈Tt

ci,j · xk+1 � 1




and

C1 = −1 ∀i = 1, . . . , |E| Ci+1 = 0

The equivalence between the optimization and the separation problem can be found in [9, chapter 6], and
is formulated in the following theorem:

Theorem 1 (Theorem 6.4.9 in [9]). Any one of the following three problems:



• strong separation,

• strong violation,

• strong optimization,

can be solved in oracle-polynomial time for any well-described polyhedron given by an oracle for any of the
other two problems.

There remains to define what is a “well-described” polyhedron, and to check that K is well-described.
The following definition can be found in [9]:

Definition 4. Let P ⊆ Rn be a polyhedron and let ϕ be a positive integer.

(i) We say that (P ) has facet-complexity at most ϕ if there exists a system of inequalities with rational
coefficients that has solution set (P ) and such that the encoding length of each inequality of the system
is at most ϕ.

(ii) A well-described polyhedron is a triple (P ; n, ϕ) where P ⊆ Rn is a polyhedron with facet-complexity
at most ϕ. The encoding length 〈P 〉 of a well-described polyhedron (P ; n, ϕ) is ϕ + n.

The polyhedron K corresponding to the optimization problems (D) is clearly expressed as a set of
inequalities. Each of these inequalities consists in a sum of at most |E| terms with coefficients either 1 or
one of the ci,j . So each of these inequalities describing K can be encoded in length polynomial in the size of
the platform graph G. Thus, the encoding length for K is polynomial in the size of G. In this special case,
the previous theorem leads to the following result:

Lemma 1. The following properties are equivalent:

(i) there exists a polynomial-time algorithm that solves the strong optimization problem SOPT(K, c),

(ii) there exists a polynomial-time algorithm that solves the strong separation problem SSEP(K).

In the case of the Broadcast problem, the the separation problem corresponding to the dual linear program
can be expressed as follows:

Definition 5 (Broadcast-SSEP(G,Psource,x)). Given a platform graph for the broadcast G, a source node
Psource, and a vector x ∈ R|E|+1, is there a vector C ∈ Rn such that CT · x > max

{
CT · y, y ∈ K

}
.

In the next section, we show that the strong separation problem for the linear program (D) is equivalent
to a classical graph problem, which can be solved in polynomial time. However, solving the linear program
(D) is not equivalent to solving the Compact-Weighted-Broadcast problem: this latter problem is equivalent
to solving the linear program (P ), as noticed before. Although the value of the objective function is the
same in both linear program, we cannot a priori derive a solution of (P ) from a solution of (D). Fortunately
another result in [9] allows us to go from a separation oracle for the dual problem (D) to a an optimal
solution to the primal problem (P ).

Theorem 2 (Theorem 6.5.15 in [9]). There exists an oracle-polynomial time algorithm that, for any
c ∈ Qn and for any well-described polyhedron (P ; n, φ) given by a strong separation oracle where every output
has an encoding length at most φ, either

(i) finds a basic optimum dual solution with oracle inequalities, or

(ii) asserts that the dual problem is unbounded or has no solution.

The basic optimum dual solution with oracle inequalities is an optimal solution in the dual of the problem
defined by the set of inequalities given by the oracle separation. In our case, the separation oracle outputs
inequalities of the linear program (D). We call (D′) the linear program made up with the same objective
function as in (D) and the subset of inequalities answered by the separation oracle. Note that the number of
inequalities in (D′) is polynomial since the execution of the ellipsoid method involves a polynomial number
of calls to the separation oracle. The execution of the ellipsoid method on (D) is exactly the same as the



execution on (D). Thus, the maximum objective value α is the same on (D) and on (D′). To simplify the
computation of the dual linear program of (D′) we add the constraints u � 0 to the set of inequalities in
(D′). By adding this constraint, we do not modify the execution of the ellipsoid algorithm on (D′). We call
m the total number of constraints obtained. As the execution of the ellipsoid algorithm outputs a polynomial
number of constraints, m is polynomial in the size of the initial data.

We now compute the dual of the linear program (D′), which is denoted by (P ′). The optimization
problem (D′) can be written as:

Minimize a · u + b · v
subject to

u � 0
A∗T · u + D∗T · v � d∗

where A∗ and D∗ are selected columns from matrices A and B defined in Section 3.3, corresponding to
constraints output by the separation oracle. Using the same formulation of duality, the dual problem of (D′)
is the following:

(P ′)




Maximize d∗T · X
subject to

X � 0
A∗ · X � a
D∗ · X = b

We notice that (P ′) is equivalent to the linear optimization problem (P ) where some variables are set to 0;
these variables correspond to inequalities in (D) which have not been selected in (D′). If we denote by M∗

the set of matchings and by T ∗ the set of trees corresponding to the inequalities of (D′) (and thus, to the
variables of (P ′)), we can rewrite (P ′) as:

(P )




Maximize

∑
Tt∈T

yt,

subject to

∀Mm ∈ M∗, ∀Tt ∈ T ∗, xm � 0, yt � 0∑
Mm∈M∗

xm � 1

∀ek = (i, j) ∈ E
∑

Mm∈M∗, (i,j)∈Mm

xm =
∑

Tt∈T ∗, (i,j)∈Tt

ci,j · yt

In (P ′), the number of variables m and the number of constraints m+1+ |E| is polynomial in the size of
the initial data, so it can be solved in polynomial time. Consider an optimal (xopt, yopt) solution of (P ′). As
(P ′) is the dual problem of (D′), the optimal solution (xopt, yopt) reaches the same value α of the objective
function. This solution provides a polynomial number of trees and matchings with optimal throughput α:
this is a compact description of an optimal solution for the broadcast problem. This result is summarized in
the following lemma:

Lemma 2. Given a platform graph for the broadcast G and a source node Psource, and a strong separation
oracle for the convex defined by the linear inequalities of the corresponding dual problem (D), there exists
a polynomial time algorithm that finds an optimal solution of the broadcast problem which consists in a
polynomial number of trees and matchings

To use this result, we have to build a separation oracle for (D), that is to prove that the separation
problem in the dual can be solved in polynomial time.

3.5 Separation problem in the dual and spanning tree

In this section, we show that the separation problem for (D) can be solved in polynomial time.

Lemma 3. Broadcast-SSEP(G,Psource,x) can be solved in polynomial time.



Proof. Consider an instance of the strong separation problem on K, that is a vector x ∈ Rn. We have
to choose whether x is in K, and if not, find a hyperplane separating x from K, that is a vector c such
that cT · x > max

{
cT · y | y ∈ K

}
. To answer to this question, it is enough to check if all the inequalities

in the definition of K are satisfied for x, and if not, output one inequality which is not satisfied. Once
the inequality u � 0 is verified, there remains two types of inequalities defining K: the first inequalities
correspond to the matching in M, and the second ones deal with the broadcast trees in T . We consider each
type of inequalities:

• Inequalities of type I:
∀m = 1, . . . , |M|

∑
ek∈Mm

xk+1 � u

Consider the directed edge-weighted graph GM where the vertices and the edges are the same as the
platform graph G, and the weight of an edge ek = (i, j) is cM(ek) = xk+1. There exists a polynomial
time algorithm which finds a matching Mmin with maximum weight in GM. If the weight cM(Mmin)
of this matching is less than u, then for every matching M ∈ M, cM(M) � u. Otherwise, this gives
an inequality which is not satisfied for x: ∑

ek∈Mmin

xk+1 > u

To make it short, solving the separation problem for this set of inequalities can be done by searching
a maximum weight matching.

• Inequalities of type II:
∀t = 1, . . . , |T |

∑
ek=(i,j)∈Tt

ci,j · xk+1 � 1

where T is the set of all spanning trees in G. We consider the directed graph GT consisting in the
same set of nodes and edges as G, and with weight of edge ek = (i, j) equal to cT (i, j) = ci,j · xk+1.
There exists a polynomial time algorithm that finds a tree Tmin with minimum weight in GT . If the
weight of this tree is greater than 1, then all inequalities of type II are satisfied. Otherwise, we have:∑

ek=(i,j)∈Tmin

ci,j · xk+1 < 1

which provides a hyperplane separating x from K.

Using Lemma 2 we can express the following result:

Theorem 3. Computing the best throughput of a broadcast operation in steady-state can be solved in poly-
nomial time.

We have to consider these results as theoretical results, with little practical interest since the ellipsoid
method used in Theorem 2 may be very time-consuming.

4 Other collective communication schemes

This framework can be applied to other communication schemes for obtain a polynomial algorithm for the
unidirectional one-port model. In this section, we extend these results to the Scatter and All-to-all collective
communications.

4.1 Data distribution: the Scatter operation

In the Scatter operation, one source processor Psource has to send a distinct message to each target processor
Ptarget1, . . . PtargetN . As we consider the steady-state operation, we study the Series of Scatter scheme. Thus
we suppose that the same source processor has a large number of different messages to send to each target.
In the steady-state, we define the throughput of such a scatter operation as the average number of messages
receives in each target during one time-unit. We can formally define the Scatter problem as follows:



Definition 6 (Scatter(G,Psource,(Ptarget1, . . . , PtargetN ))). Given a platform graph G, a source processor
Psource, and a set of target processors Ptarget = {Ptarget1, . . . , PtargetN}, find a schedule for a Scatter operation
from Psource and targeting Ptarget achieving the best throughput.

We have already studied this collective communication scheme in [17] considering the bidirectional one-
port model. To study the unidirectional one-port model, we have to adapt the previous framework. The main
difference with the broadcast operation is the set of communication patterns T . The elementary pattern
that can be use to perform a scatter operation is a set of N paths going from Psource to each target Pti .

Let us denote by Pi the set of the paths from Psource to Ptargeti. Then the set of elementary communication
patterns is T = P1 ×P2 × · · · × PN = {(p1, p2, . . . , pN ), p1 ∈ P1, p1 ∈ P2, . . . , pN ∈ PN}. With this new set
T , we construct the same linear program (P ), whose optimization is equivalent to finding an optimal schedule
for the Scatter operation. The dual linear program (D) is the same as previously, but leads to a slightly
different separation problem, which is denoted by Scatter-SSEP(G, Psource,x). However, this separation
problem is also polynomial:

Lemma 4. Scatter-SSEP(G, Psource,x) can be solved in polynomial time.

Proof. As previously, we consider a vector x and try either to prove that x belongs to the convex K defined
by the inequalities of the dual (D) or to find an hyperplane separating x from K. To this goal, we check if
all inequalities in the definition of K are satisfied. We recall that these inequalities are of two types: the first
ones correspond to the matching in M, and the second ones deal with the communication patterns in T .

• Inequalities of type I: we can check if all these constraints are verified in polynomial time as previously
with the search of a minimum matching in GM.

• Inequalities of type II:
∀t = 1, . . . , |T |

∑
ek=(i,j)∈Tt

ci,j · xk+1 � 1

Since each scheme t in T is made up with paths from Psource to each target Ptargeti, we can rewrite
these inequalities:

∀(p1, . . . , pN ) ∈ P1 × · · · × PN

N∑
u=1


 ∑

ek=(i,j)∈pu

ci,j · xk+1


 � 1

We now consider the directed graph GT consisting in the nodes and edges of G, with weight of edge
ek = (i, j) set to cT (i, j) = ci,j × xk+1. In polynomial time, we can find, for each target Ptargeti a
path pmin

i of minimum cost in GT from Psource to Ptargeti. If the pattern (Pmin
1 , . . . , Pmin

N ) has a weight
greater than 1, then all other patterns in T has a weight greater than 1, and all inequalities of type II
are satisfied. Otherwise, we have:

N∑
u=1


 ∑

ek=(i,j)∈pmin
u

ci,j · xk+1


 < 1

which provides a hyperplane separating x from K.

4.2 Data sharing : the Total-Exchange operation

Another collective communication scheme close is an extension of the Broadcast problem and is called Total-
Exchange: in this scheme, all processors own a data and want to broadcast this data to all other processors.
This communication scheme is calld the “AllGather” operation in the MPI standard. In the steady-state
operation, we suppose that each processor has a set of data to broadcast to other processors. We define the
throughput of the Total-Exchange operation as the throughput of all broadcast operation involved in this
scheme. We formally define the Total-Exchange problem as follows:

Definition 7 (Total-Exchange(G)). Given a platform graph G, find a schedule for an Total-Exchange
operation achieving the best throughput in the steady state operation.



As previously, we extend the study of the Broadcast problem with a little change on the set of communi-
cation patterns. T now contains collections of broadcast trees: one tree for each source node in the platform
graph. If we denote by Ti the set of spanning trees rooted at Pi, we have:

T = T1 × T2 × · · · × Tn

We can use the framework developed for the Broadcast problem, provided that we can solve the separation
problem on the convex defined by the inequalities of the dual linear program. The only with the separation
problem for the Broadcast are the inequalities of type II:

∀(t1, t2, . . . , tn) ∈ T1 × T2 × · · · × Tn

∑
u=1...n


 ∑

ek=(i,j)∈tu

ci,j · xk+1


 � 1

We can build in polynomial time n minimum spanning trees t1, . . . , tn in GT such that tmin
i is rooted in

Pi. If the previous inequality is satisfied for (tmin
0 , . . . , tmin

n ), then it is verify for each collection of trees in T .
Otherwise, this gives an hyperplane separating x from K.

4.3 Personalized data exchange: the All-To-All operation

We apply our framework to a last communication scheme, known as the (personalized)“All-To-All”operation,
which is close to the Scatter operation, In this new scheme, several sources Psource1, . . . , PsourceM aim at
sending distinct messages to several targets Ptarget1, . . . , PtargetN (the messages are differentiated both by
source and target). In the steady-state All-To-All operation, each source is supposed to have a big number
of messages to send to each target. The throughput of such an All-To-All operation is the average number of
messages receives in each target from each source during one time-unit.We can formally define the All-To-All
problem as follows:

Definition 8 (All-To-All(G,(Psource1, . . . , PsourceM ),(Ptarget1, . . . , PtargetN ))). Given a platform graph
G, a set of source processors Psource = {Psource1, . . . , PsourceM} and a set of target processors Psource =
{Ptarget1, . . . , PtargetN}, find a schedule for an All-To-All operation from Psource to Ptarget achieving the best
throughput in the steady state operation.

The previous study about the Scatter operation can be extended to this communication scheme by
changing the set T : an elementary communication pattern is now a set of N × M paths containing a path
from each source to each target. If we denote by Pi,j the set of all paths going from Pi to Pj , we have:

T =
∏

i=1...M
j=1...N

Psourcei,targetj
=

Psource1,target1 × · · · × Psource1,targetN

×Psource2,target1 × · · · × Psource2,targetN

...
×PsourceM ,target1 × · · · × PsourceM ,targetN

Using the proof of the Scatter case, we can build a polynomial time algorithm that computes an optimal
solution to the All-To-All problem, provided that we are able to solve the separation one the convex defined
by the inequalities of the dual linear program (D). The only difference with the previous separation problem
is the inequalities of type II, which are:

∀(p1,1, . . . , pM,N ) ∈ T
∑

u=1...M
v=1...N


 ∑

ek=(i,j)∈pu,v

ci,j · xk+1


 � 1

Once again, to check if one of these inequalities is not satisfied, we can look for minimum paths from each
source to each target in the graph GT , and verify this condition on the pattern made up with all minimum
paths. Since this can be done in polynomial time, this solves the separation problem in polynomial time,
thus there exists a polynomial time algorithm for the All-To-All problem.



5 Case of a complex platform

In previous sections, we have provided a polynomial time algorithm to find the best schedule for some
communications schemes (Broadcast, Scatter, . . . ) with respect to the throughput under the one-port model.
In a complex and large platform, the different nodes may well be equipped with different network interfaces.
In particular, some nodes may be able to simultaneously send and receive one message (bidirectional one-port
model), and some other nodes may even be able to send and receive several messages at the same time. In
this section, we prove that we handle all these cases using only unidirectional one-port nodes. This is simply
done by slightly transforming the initial platform.

Let us first consider the case of a node in the bidirectional one-port model, as depicted in Figure 7(a).
In order to transform Pi to an equivalent platform where nodes respect unidirectional one-port model, we
add two fictitious nodes P in

i and P out
i as depicted in Figure 7(b).

Pi

ca1,i

ca2,i ci,b3

ci,b2

ci,b1

(a) Initial node

0 0
Pi

ca1,i

ca2,i

ci,b2

ci,b1

ci,b3

P in
i P out

i

(b) Node simulated using one-port nodes

Figure 7: Simulating a bidirectional one-port node (on the left) with three unidirectional one-port nodes (on
the right).

In the transformed platform, the messages sent to P in
i are sequentialized but P in

i can send messages
concurrently to Pi (since ciin,i = 0) and the messages sent by P out

i are sequentialized, but P out
i can receive

messages concurrently from Pi (since ci,iout = 0).
We can also find an equivalent transformation for nodes under ∆-port model, i.e. that can send and

receive several messages concurrently. Again, we can transform any node Pi to an equivalent platform whose
nodes respect unidirectional one-port model, by adding fictitious nodes, as depicted on Figure 8.

Pi

ca1,i

ca2,i ci,b3

ci,b2

ci,b1

(a) Initial node

0

0

0

0

0

0
0 Pi

P in
i,a2

P in
i,a1

P out
i,b1

P out
i,b2

P out
i,b3

ci,b1

ci,b2

ci,b3

ca1,i

ca2,i

(b) Node simulated using one-port nodes

Figure 8: Simulating a ∆-port node with several unidirectional one-port nodes

We also need to add fictitious 0-edges between Pi and P in
j,i in the case of the broadcast, to be sure that

every nodes will receive all messages at the end of the broadcast operation: as soon as Pi holds the messages,
received from one of the P in

j,i nodes (say P in
a1,i for example) it can send it to other such nodes (like P in

a2,i) in
time 0 using these new edges.

Thus, after performing above transformations, we can find the optimal broadcast scheme using the
algorithm depicted in Section 3, for a complex platform consisting in nodes working either an unidirectional
one-port model, bidirectional one-port model or ∆-port model.



6 Asymptotic optimality

In this section, we prove that the previous periodic schedule is asymptotically optimal: basically, no schedul-
ing algorithm (even non periodic) can execute more broadcast operations in a given time-frame than ours, up
to a constant number of operations. These results are inspired by the work of Bertsimas and Gamarnik [5],
who use a fluid relaxation technique to prove the asymptotic optimality of a simpler packet routing problem.
This section is devoted to the formal statement of this result, and to the corresponding proof.

Given a platform graph G = (V, E, c), a source processor Psource holding an infinite number of unit-size
messages, and a time bound K, define opt(G, K) as the optimal number of messages that can be received by
every target processor in a succession of broadcast operations from the source processor, within K time-units.
Let TP(G) =

∑
yt be the solution of the linear program (P ) of Section 3 applied to this platform graph G.

We have the following result:

Lemma 5. opt(G, K) � TP(G) × K

Proof. Consider an optimal schedule, such that the number of messages broadcast by the source processor
within the K time-units is maximal, i.e. is equal to opt(G, K). Each of these messages has followed a given
tree to reach all processors. Let nt the number of such messages broadcast by the source which go through
tree Tt. We have

∑
Tt∈T nt = opt(G, K).

Let si, (i = 1 . . .N) denotes the dates in the optimal schedule when communications start or stop,
such that si < si+1. Thus the considered schedule can be divided into time intervals [si, si+1] such that
no communication start or stop during one of these time intervals. As the optimal schedule satisfies the
unidirectional one-port model, during one interval, the scheduled communications do not involve a given
node in more than one transfer, so these communications define a matching in G. Let Mf(i) denotes the
matching involved during interval [si, si+1]. Let ti denotes the total time matching Mi is involved during
the considered schedule. We have

ti =
∑

j=1...N−1
f(j)=i

(sj+1 − sj)

Then the following constraints hold true:

• the total time of all interval is less than the duration of the schedule:∑
j=1...N−1

(sj+1 − sj) � opt(G, K)

if we gather the time of intervals by matchings, we get:

∑
j=1...N−1

sj+1 − sj =
∑

Mi∈M


 ∑

j=1...N−1
f(j)=i

sj+1 − sj


 =

∑
Mi∈M

ti

which leads to ∑
Mi∈M

ti � K

• Consider link Pj → Pk. The total number of messages going through this link in the optimal schedule
is

∑
Tt∈Tj,k

nt where Tj,k is the set of trees which include the edge (j, k). The total occupation time of

this link in the schedule is
∑

Mi∈Mj,k

ti where Mj,k is the set of matchings which include the edge (j, k).

So we have the following equality:
∑

Mi∈M
(j,k)∈Mi

ti = cj,k ×
∑

Tt∈T
(j,k)∈Tt

nt



Let yt = nt/K and xm = tm/K. All the constraints of (P ) hold for the xm’s and the yt’s, hence
∑

nt/K �
TP(G) since TP(G) is the optimal value. So we have opt(G, K)/K � TP(G).

Again, this lemma states that no schedule can send more messages that the steady-state. There remains
to bound the loss due to the initialization and the clean-up phase in our periodic solution, to come up with
a well-defined scheduling algorithm based upon steady-state operation. Consider the following algorithm
(assume that K is large enough):

• Solve the linear program (P ) for the target platform G using the method developed in Section 3. This
gives a set of of weighted trees T ∗ and matchings M∗ reaching the optimal throughput TP(G).

• Let L be the maximum depth of all trees in T ∗. Send TP(G)× (K −L) messages using the set of trees
and matchings.

• Since the maximum depth of the broadcast trees is L, it takes at most L time-units for a message to
reach its target nodes. So in K time-units, we can initiate and complete the broadcast of steady(G, K) =
TP(G) × (K − L) messages.

We have proved the following result:

Theorem 4. The previous scheduling algorithm based on the steady-state operation is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1.

Proof. Using the previous lemma, opt(G, K) � 1
TP(G) × K. From the description of the algorithm, we have

steady(G, K) = TP(G) × (K − L), hence the result because L, and TP(G) are constants independent of
K.

7 Related Work

The atomic broadcast problem has been studied under different models to deal with the heterogeneity of the
target architecture. Banikazemi et al. [1] consider a simple model in which the heterogeneity among processors
is characterized by the speed of the sending processors. In this model, the interconnection network is fully
connected (a complete graph), and each processor Pi requires ti time-units to send a (normalized) message
to any other processor. The authors discuss that this simple model of heterogeneity can well describe the
different communication delays in a heterogeneous cluster. They introduce the Fastest Node First (FNF)
heuristic: to construct a good broadcast tree, it is better to put fastest processors (processors that have the
smallest sending time) at the top of the tree. Some theoretical results (NP-completeness and approximation
algorithms) have been developed for the problem of broadcasting a message in this model: see [10, 20, 19, 14].

A more complex model is introduced in [2]: it takes not only the time needed to send a message into
account, but also the time spent for the transfer through the network, and the time needed to receive the
message. All these three components have a fixed part, and a part proportional to the length of the message.

Yet another model of communication is introduced in [7, 6]: the time needed to transfer the message
between any processor pair (Pi, Pj) is supposed to be divided into a start-up cost Ti,j and a part depending
on the size m of the message and the transmission rate Bi,j between the two processors, m

Bi,j
. Since the

message size is a constant in the case of a broadcast, the total communication time between Pi and Pj is
Ci,j = Ti,j + m

Bi,j
. In [7], some heuristics are proposed for the broadcast and the multicast using this model.

All previous models assume the one-port protocol, either bidirectional or unidirectional. Usually, when
considering atomic broadcast, these two flavors of the one-port model are equivalent: a node receives the
broadcast message only once, and is able to forward it only once the receive operation is done. Thus even
if we assume the bidirectional one-port model, there is no overlap between reception and emission, so the
schedule also satisfy the unidirectional one-port model.

Other collective communications, such as multicast, scatter, all-to-all, gossiping, and gather (or reduce)
have been studied in the context of heterogeneous platforms: see [21, 18] and the references provided in [3].



8 Conclusion

In this paper, we have dealt with the problem of broadcasting a series of messages on heterogeneous platforms
using the unidirectional one-port model. Our major objective was to maximize the throughput that can be
achieved in steady-state mode, when a large number of same-size broadcasts are performed in a pipeline
fashion. Achieving the best throughput may well require that the target platform is used in totality: we
have shown neither spanning trees nor DAGs are powerful enough.

We have shown that our previous study using bidirectional one-port model cannot be applied in this
case. However, we have shown how to compute the best throughput and an optimal schedule using a
complex linear programing tool (the ellipsoid method). The solution is then expressed as a set of broadcast
trees weighted by their throughput, and a set of weighted matchings describing how to orchestrate the
communications simultaneously with respect to the one-port model. This study has been extended to other
collective communication schemes such as Scatter, All-To-All, and Total-Exchange. We have also shown
that the unidirectional one-port model can be used to emulate others models (bidirectional one-port model
or multi-port model).

It is important to point out that a concrete scheduling algorithm for the broadcast problem based upon
the steady-state operation is asymptotically optimal, in the class of all possible schedules (not only periodic
solutions).
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