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We give a Hoare-like proof system for the data-parallel language L, and we present an automatic tool to aid program correctness proof. After recalling L's operational semantics, we de ne an axiomatic semantics. We illustrate proof of L programs with two examples. Then we extend our semantics to weakest precondition, and we deduce techniques for mechanizing program veri cation from Gordon's veri cation condition method. We prove its correctness, and we present an implementation of this method in the Centaur system.

S emantique axiomatique des langages a parall e l i s m e d e d o n n ees automatisation de la preuve de programmes

op erations ottantes par seconde). Les constructeurs de calculateurs nous promettent de fournir de telles capacit es par le biais du parall elisme massif. Mais de la diversit e et de la complexit e des machines qui nous sont, et seront, propos ees na^ t un autre probl eme : comment exploiter rapidement e t a moindre coût toutes ces nouvelles architectures? La solution consiste a fournir un mod ele de programmation unique a toutes ces machines, a l'aide de langages de programmation ad equats.

Le parall elisme de donn ees semble être un bon candidat, il rallie la plupart des su rages, comme le prouve l a d e nition de la norme HPF 18]. Boug e 7 ] souligne que ce mod ele n'est pas une vision restreinte des architectures parall eles, mais doit être consid er e comme une discipline de programmation, comme pour l'introduction de la structure de contrôle while dans les langages s equentiels.

Jusqu' a p r esent, les langages a parall elisme de donn ees ont et e p e u etudi es d'un point d e v u e formel. Notre travail tente de combler ce vide a p a r t i r d e l a d e nition d'un langage repr esentatif minimal : le langage L 6]. La d e nition d'une s emantique op erationnelle pr ecise a permis d' etudier 4] : { l ' expressivit e de L par rapport aux langages r eels tels que C , Mpl ou Pompc, c ' e s t -a-dire que toutes structures de contrôle de ces derniers sont exprimables dans notre langage cible { l a v alidation des processus de compilation de ces derni eres. Nous allons maintenant etudier une autre s emantique de L visant l a p r e u v e de programmes : la s emantique axiomatique 23], dite encore ( (logique de Hoare) ). Plus orient ee vers l'utilisateur de part sa nalit e, nous allons nous int eresser plus particuli erement a son emploi comme outil de g enie logiciel pour le d eveloppement e t l a p r e u v e de programmes.

Dans un premier temps nous rappellerons la d e nition du langage L, ainsi que sa s emantique axiomatique associ ee. Nous illustrerons sur deux exemples sa mise en uvre pour prouver, et surtout pour aider la d erivation de programmes. Apr es avoir introduit la notion de pr e-condition la plus faible, nous d e nirons une m ethode pour automatiser partiellement l a p r e u v e de programmes. Nous terminerons en pr esentant une implantation de cette m ethode dans l'atelier logiciel Centaur.

1 Le langage L Le langage L a et e propos e par Boug e 6] pour o rir une plate-forme d' etude des langages dataparall eles. L'objectif est de disposer d'un langage qui soit a la fois su samment simple pour pouvoir en d ecrire les aspects s emantiques de fa con exhaustive, mais egalement su samment expressif pour que les r esultats obtenus puissent être etendus aux structures de contrôle pr esentes dans les langages data-parall eles r eels, comme C , Mpl ou encore Pompc. O n n e d ecrit pas ici le mod ele d'ex ecution sous-jacent qui est associ e a L, et qui est directement inspir e des architectures de types simd : une unit e d e c o n trôle centralis ee di use de mani ere synchrone les instructions du programme a u n ensemble de processeurs qui les ex ecutent ou non selon leur activit e (le contexte), chaque processeur traitant des donn ees propres. Une description plus d etaill ee de ce mod ele peut être trouv ee dans 6] On donne la d e nition du langage L qui a et e adopt ee dans la suite en pr esentant tout d'abord la syntaxe de ses instructions, ainsi que leur signi cation informelle, puis en en donnant une s emantique op erationnelle pr ecise. On termine alors cette section en proposant une ( (forme normale) ) qui a et e choisie pour repr esenter les programmes que l'on consid ere du point de vue de la v eri cation.

Description informelle du langage

Pour des raisons de simplicit e, on supposera que les variables des programmes appartiennent a u n seul type de donn ees, les vecteurs d'entiers de dimension 1, et on les notera a l'aide d'identi cateurs ecrits en majuscule. Par suite, la valeur locale au processeur u d'une variable parall ele X, qui repr esente la u e composante de ce vecteur, sera not ee (X)j u . En n, des expressions parall eles peuvent être construites sur ces variables a l'aide des op erateurs arithm etiques et logiques usuels. Ces expressions sont locales, c . -a-d. qu'il n'est pas possible de faire r ef erence a des composantes di erentes dans une expression. En reprenant l e m o d e l e d e m a c hine abstrait simd pr ec edemment cit e, cela signi e que l' evaluation d'une expression pour un processeur ne fait aucune r ef erence aux valeurs d etenues par un autre processeur. Le seul moyen d'acc eder aux valeurs des autres processeurs est d'e ectuer une instruction de communication explicite auparavant.

On donne les di erentes instructions du langage L que l'on va c o n s i d erer dans la suite, en pr ecisant leur signi cation informelle :

A ectation : X := E L'expression E est evalu ee localement par chacun des processeurs actifs, sa valeur a l'adresse u ne d epend que des valeurs a l'adresse u des variables qui la composent, la valeur obtenue est alors a ect ee a leur composante de la variable parall ele X.

Communication globale : get Y from A into X Chaque processeur actif u a ecte a sa composante locale du vecteur X la valeur de la composante de Y situ ee sur le processeur d'adresse A j u , o u A est une expression donn ee. On suppose que les composantes de A qui correspondent a des processeurs actifs contiennent toutes des adresses correctes.

Composition s equentielle : S T

Les instructions S et T sont e x ecut ees en s equence, de mani ere synchrone, par l'ensemble des processeurs.

It eration : while B do S end L'ensemble des processeurs actifs ex ecutent le programme S tant que l'un d'entre eux au moins evalue l'expression bool eenne vectorielle B a vrai. L'instruction se termine donc quand tous les processeurs actifs evaluent B a faux.

Conditionnement :where B do S end L'ensemble des processeurs actifs qui evaluent l'expression bool eenne vectorielle B a faux sont rendus inactifs pendant toute l'ex ecution du programme S. L'activit e des autres processeurs est inchang ee.

S emantique op erationnelle

Nous pr esentons bri evement une s emantique op erationnelle ( ( a la Plotkin) ) pour le langage L, qui est inspir ee de 4].

L'objectif d'une telle s emantique est de d ecrire formellement, a partir de la syntaxe d'un programme, les transitions e ectu ees par une machine abstraite qui ex ecuterait ce programme. Confor-m ement a u m o d ele d'ex ecution sous-jacent que l'on consid ere pour L, les etats de cette machine abstraite sont des triplets de la forme hS s i.

{ S repr esente la partie du programme restant a e x ecuter (la continuation). La continuation vide est not ee . { repr esente la fonction environnement, qui associe une valeur a c hacune des variables du programme : Dans la suite, on utilisera egalement les notations suivantes.

: V A R ! V A L o u V A R et V A L d
{ La pile de contexte vide est not ee ". Elle repr esente l'activit e des processeurs au d ebut du programme, et l'on suppose To p (") = vrai. { P our tout processeur u, l e p r edicat actif (u) r e p r esente l'activit e du processeur u : actif (u) (T o p (s)j u = vrai)

{ La fonction est implicitement etendue aux expressions parall eles: pour toute expression parall ele E, qui contient o u n o n d e s v ariables libres, on note (E) l a v aleur (parall ele) de E, et (E)j u la valeur de E locale au processeur u. { P armi les expressions parall eles, on distingue la constante parall ele Th i so u p o u r c haque composante u, o n a (This)j u = u. { P our tout environnement , o n n o t e X V ], l'environnement obtenu a partir de en rempla cant l a v aleur (X) par la nouvelle valeur V :

8Y : X 6 = Y ) X V ](Y ) = (Y ) X V ](X) = V
{ P our tout ensemble d' etats EC env ctxte, o n n o t e pr e (respectivement pr c ) la projection de EC dans env (respectivement ctxte).

Il reste alors a donner pour chaque instruction L, la transition correspondante e ectu ee par la machine abstraite :

A ectation :

hX := E s i ; ! h 0 s i avec : { 0 (X)j u = (E)j u si actif(u) { 0 (X)j u = (X)j u si :actif (u) { 0 (Y )j u = (Y )j u si Y 6 = X Communication g en erale : hget Y from A into X s i ; ! h 0 s i avec : { 0 (X)j u = (Y )j (A)ju si actif(u) { 0 (X)j u = (X)j u si :actif (u) { 0 (Y )j u = (Y )j u si Y 6 = X.
Composition s equentielle : hS s i ; ! h S 0 0 s 0 i hS T s i ; ! h S 0 T 0 s 0 i hS s i ; ! h 0 s 0 i hS T s i ; ! h T 0 s 0 i It eration : 8u : (actif(u) ) : ( (B)j u )) hwhile B do S end s i ; ! h s i 9u : (actif(u) ^ (B)j u ) hwhile B do S end s i ; ! h S while B do S end s i Ces deux r egles indiquent bien que tant qu'il existe un processeur actif qui v eri e la condition de boucle, le corps de celle-ci est ex ecut e. La pile de contexte n'est, quant a elle, pas modi ee.

Conditionnement :

La nouvelle activit e, qui correspond au vecteur bool een To p (s) ^ (B), doit être empil ee sur la pile des contextes s. P our conserver une trace des blocs conditionnels, on utilise egalement la nouvelle construction syntaxique begin S end : hwhere B do S end s i ; ! h begin S end s 0 i avec s 0 = Push (T o p (s) ^ (B) s ): Les r egles suivantes indiquent alors que le programme P est ex ecut e jusqu' a sa terminaison eventuelle, et que l'ancien contexte est ensuite restaur e a la sortie du bloc en d epilant la pile s : hS s i ; ! h S 0 0 s 0 i hbegin S end s i ; ! h begin S 0 end 0 s 0 i hbegin end s i ; ! h P o p (s)i

Pour compl eter cette description formelle du langage, on d e nit egalement la fonction S] ] , qui, pour tout programme S et pour tout environnement e t c o n texte initial ( s ), retourne le r esultat de l'ex ecution de S, lorsqu'il existe (c.-a-d. lorsque S termine).

D e nition 1-1

Pour tout programme S, et, pour tout environnement e t c o n texte ( s ) :

S] ] ( s ) = f( 0 s 0 ) j h S s i ; ! h 0 s 0 ig Par abus de notations, nous etendons la fonction S] ] aux ensembles d' etats, c.-a-d. si : EC env ctxte on a :

S] ] ( EC) = f( 0 s 0 ) j 9 ( s ) 2 E C:hS s i ; ! h 0 s 0 ig On a alors les r esultats suivants, qui seront u t i l i s es par la suite :

Proposition 1-1

Pour tout environnement 2 env et contexte s 2 ctxte on a:

X := E] ] ( s ) = f( X V ] s )g o u V est d e nie comme suit : V j u = (E)j u si actif(u) V j u = (X)j u si :actif (u) get Y from A into X] ] ( s ) = f( X V ] s )g o u V est d e nie comme suit : V j u = (Y )j (A)ju si actif(u) V j u = (X)j u si :actif (u) S 1 S 2 ] ] ( s ) = S 2 ] ] ( S 1 ] ] ( s ))
where B do S end]] ( s ) = f( 0 s ) j 0 2 pr e ( S] ] ( P u s h (T o p (s) ^ (B) s )))g while B do S end]] ( s ) = ( s ) si : 8u:actif (u) ) : (B)j u while B do S end]] ( s ) = S while B do S end]] ( s ) si : 9u:actif (u) ^ (B)j u Notons que, le langage L etant d eterministe, le cardinal de ces ensembles est au plus de un.

Restrictions sur les programmes consid er es

La m ethode de preuve qui est propos ee dans ce rapport a et e appliqu ee a un sous-ensemble du langage L par rapport a celui pr esent e dans la section 1.1. On d ecrit ici les hypoth eses qui sont e ectu ees sur les programmes que l'on consid ere dans la suite, puis on montre comment c e s restrictions peuvent être lev ees.

On introduit tout d'abord les notations suivantes : { P our tout programme S, o n d esigne par Change(S) l'ensemble des variables qui peuvent être modi ees lors de l'ex ecution de S. Il s'agit donc des variables qui apparaissent en partie gauche d'une a ectation ou dans une instruction de communication.

{ P our toute expression E, o n d esigne par V a r (E) l'ensemble des variables qui apparaissent dans E. On d esigne alors par Pg mun sous-ensemble des programmes en L qui satisfont l a d e nition suivante.

D e nition 1-2

Un programme T de L est dit a contexte xe si pour toute instruction ( (where B do S end)) de T, o n a :

Change (S) \ V a r (B) = En d'autres termes, cette contrainte signi e que les variables de T qui apparaissent dans une expression de conditionnement n e s o n t pas modi ees dans le corps du sous-programme S qui est conditionn e. Notons qu'il est possible de d eterminer statiquement si un programme L donn e satisfait ou non cette contrainte.

Le motif de cette restriction est qu'elle permet de simpli er de fa con notable le syst eme de preuve qui d ecrit la s emantique axiomatique de de L, en supprimant notamment la notion d' equivalence de contexte 23]. Par suite, les preuves mises en uvre pour etablir la correction d'un programme sont plus simples que dans le cas g en eral, et leur automatisation s'en trouve egalement facilit ee. En outre, il est possible de montrer qu'un programme P qui n'est pas a c o n texte xe peut toujours être transform e en un programme P 0 qui la satisfait. L'id ee intuitive de cette transformation est de remplacer dans P chaque instruction where B do S end telle que Change(S) \ V a r (B) 6 = , par la s equence d'instruction :

B 0 := B where B 0 do S end o u B 0 est une nouvelle variable.

Cette transformation peut être justi ee formellement a l'aide d'une notion d' equivalence de programme 4] d e nie a p a r t i r d e l a s emantique op erationnelle.

En n, Le Guyadec et Virot 16] o n t r ecemment p r o p o s e une modi cation du syst eme de preuve dans laquelle cette transformation est cod ee de mani ere simple a l'aide d'une r egle d'inf erence. L'automatisation que nous d ecrivons dans la suite pourrait être adapt ee a c e s y s t eme de preuve, et elle deviendrait donc ainsi applicable a un programme L quelconque.

S emantique axiomatique

Nous rappelons dans cette section la s emantique axiomatique propos ee dans 23] pour le langage L. L'objectif d'une telle s emantique est de fournir un syst eme de preuve, similaire a l a ( (Logique de Hoare) ) des langages s equentiels, qui permet d'inf erer statiquement d e s assertions sur le comportement d'un programme au cours de son ex ecution, et a terme de prouver qu'un programme est correct. Plus pr ecis ement, la ((Logique de Hoare) ) se pr esente de la fa con suivante : soient u n programme S et deux pr edicats P et Q qui d ecrivent l e s v aleurs d'entr ee et de sortie des variables manipul ees par S (autrement d i t s a sp eci cation). Le but est de prouver que, si celles-ci v eri ent P avant l'ex ecution de S, e t s i S termine, alors elles v eri ent Q apr es l'ex ecution. On note alors cette propri et e fP g S fQg, o u P est appel e pr econdition, e t Q postcondition. Binop::= + j ; j j div j mod j : : :

{ Rel est un ensemble d'op erateurs de comparaison : Rel ::= = j 6 = j < j > j j : : :

{ Connect est un ensemble de connecteurs logiques : Connect ::= ĵ _ j ) j , j : : : 

] ( ) = c x] ] ( ) = (x) V j s ] ] ( ) = ( V ] ] ( ))j ( s] ] ( )) s 1 Binop s 2 ] ] ( ) = s 1 ] ] ( ) Binop s 2 ] ] ( ) if b then s 1 else s 2 ] ] ( ) = ( s 1 ] ] ( ) s i b] ] ( ) = vrai s 2 ] ] ( ) s i b] ] ( ) = faux Pour une expression de type V arith, C] ] ( ) = C Th i s ] ] ( ) = Th i s , o u Th i s j u = u X] ] ( ) = (X) V 1 j V2 ] ] ( ) = V , o u V j u = ( V 1 ] ] ( ))j ( V2] ] ( ))ju V 1 Binop V 2 ] ] ( ) = V , o u V j u = ( V 1 ] ] ( ))j u Binop ( V 2 ] ] ( ))j u IF B THEN V 1 ELSE V 2 FI] ] ( ) = V , o u V j u = ( ( V 1 ] ] ( ))j u si ( B] ] ( ))j u = vrai ( V 2 ] ] ( ))j u si ( B] ] ( ))j u = fa u x

Interpr etation bool eenne

Pour une expression de type Sbool, true] ] ( ) = vrai fa ls e ] ] ( ) = faux Bj s ] ] ( ) = ( B] ] ( ))j ( s] ] ( )

) : b] ] ( ) = : b] ] ( ) s 1 Rel s 2 ] ] ( ) = s 1 ] ] ( ) Rel s 2 ] ] ( ) b 1 Connect b 2 ] ] ( ) = b 1 ] ] ( ) Connect b 2 ] ] ( ) Pour une expression de type V Bool, TR UE ] ] ( ) = B, o u Bj u = vrai FALSE] ] ( ) = B, o u Bj u = faux : B] ] ( ) = : ( B] ] ( )) V 1 Rel V 2 ] ] ( ) = B, o u Bj u = ( V 1 ] ] ( ))j u Rel ( V 2 ] ] ( ))j u B 1 Connect B 2 ] ] ( ) = B, o u Bj u = ( B 1 ] ] ( ))j u Connect ( B 2 ] ] ( ))j u
Il reste alors a p r eciser la s emantique des formules bool eennes Sform.

Interpr etation des formules

Etant donn e u n e n vironnement , i n terpr eter une formule F dans revient a d eterminer si cette formule est vraie ou non dans cet environnement.

Appliqu ee aux formules, la fonction ] ] a donc le pro l : ] ] : Sform ! (env ! f vrai fauxg) et elle est d e nie par :

: F] ] ( ) = : F] ] ( ) F 1 Connect F 2 ] ] ( ) = F 1 ] ] ( ) Connect F 2 ]
] ( ) 9x : P ] ] ( ) = vraissi 9c 2 N tel que P c=x]] ] ( ) = vrai La s emantique de la formule ((8x : P )) s'obtient en utilisant l ' equivalence suivante : Il est facile de voir que cette d e nition reste coh erente lorsque l'on compare des assertions en fonction de leur s emantique :

fP Cg C ) f Q Dg ) fP Cg] ] fQ Dg] ]

Substitutions

A n de pouvoir d eduire statiquement de nouvelles assertions sur le comportement d'un programme, il est n ecessaire de disposer d'un m ecanisme qui permette de modi er de mani ere symbolique l'expression repr esent ee par une variable dans une assertion. Nous introduisons donc une fonction de substitution sur les variables parall eles, qui permet de remplacer, dans une expression

E, une variable Y par une expression T, d u m ême type que Y . L a n o u v elle expression obtenue est not ee E T=Y].

Notons que, compte tenu d e l a s emantique que nous avons donn ee aux assertions, la substitution d e nit en fait une interaction entre les langages d' etat et de contexte, puisque les propositions sur les variables du programme sont toujours conditionn ees par l'expression de contexte. Stewart 21] propose un m ecanisme similaire pour l'instruction d'a ectation data-parallel de Fortran 90, mais comme pour Gabarr o e t G a vald a l e c o n texte est toujours d enot e explicitement par un ensemble d'entiers, alors que dans notre m ethode il est d enot e implicitement.

En supposant que Y est une variable parall ele et que T repr esente une expression de type V arith, et en conservant l e s c o n ventions etablies dans la section 2.1 pour les types des autres identi cateurs, ce m ecanisme de substitution peut alors être d e ni par induction comme suit.

Expressions scalaires :

c T=Y] = c true T=Y] = true fa ls e T=Y] = fa ls e

x T=Y] = x

V j s T=Y] = (V T=Y])j (s T= Y]) Bj s T=Y] = (B T=Y])j (s T= Y]) (s 1 Binops 2 ) T=Y] = s 1 T=Y] Binop s 2 T=Y] (s 1 Rel s 2 ) T=Y] = s 1 T=Y] Rel s 2 T=Y] (b 1 Connect b 2 ) T=Y] = b 1 T=Y] Connect b 2 T=Y] (: b) T=Y] = : (b T=Y]) (if b then s 1 else s 2 ) T=Y] = if b T=Y] then s 1 T=Y] e l s e s 2 T=Y] (9x : F ) T=Y] = 9x : (F T=Y]) (8x : F ) T=Y] = 8x : (F T=Y])
Expressions vectorielles :

C T=Y] = C TR UE T=Y] = TR U E FALSE T=Y] = FALSE X T=Y] = ( T si X = Y X si X 6 = Y (V 1 Binop V 2 ) T=Y] = V 1 T=Y] Binop V 2 T=Y] (V 1 Rel V 2 ) T=Y] = V 1 T=Y] Rel V 2 T=Y] (B 1 Connect B 2 ) T=Y] = B 1 T=Y] Connect B 2 T=Y] (: B) T=Y] = : (B T=Y]) (IF B THEN V 1 ELSE V 2 ) T=Y] = IF B T=Y] T H E N V 1 T=Y] ELSE V 2 T=Y]

Quelques equivalences utiles

Apr es avoir d e ni la notion d' equivalence sur les composantes de notre langage d'assertions, nous pr esenterons quelques r esultat utiles pour la manipulation de ce dernier, puis nous enoncerons une propri et e fondamentale du m ecanisme de substitution.

Equivalence de formules ou d'expressions

Nous d e nissons une notion d' equivalence entre des formules ou des expressions de la mani ere suivante :

D e nition 2-3

Deux expressions E 1 et E 2 sont dites equivalentes, ce que l'on note E 1 E 2 si l'on a :

8 : E 1 ] ] ( ) = E 2 ] ] ( )

D e nition 2-4

Deux formules F 1 et F 2 sont d i t e s equivalentes, ce que l'on note F 1 F 2 si l'on a :

Equivalences pratiques

On termine cette section en etablissant un certain nombre de propositions relatives aux substitutions qui seront utilis ees dans la suite.

Proposition 2-1

(V 1 BinopV 2 )j s V 1 j s Binop V 2 j s (V 1 Rel V 2 )j s V 1 j s Rel V 2 j s (B 1 Connect B 2 )j s B 1 j s Connect B 2 j s (: B)j s : (Bj s ) (IF B THEN V 1 ELSE V 2 )j s if Bj s then V 1 j s else V 2 j s (if b then s 1 else s 2 ) Binop s 3 if b then (s 1 Binop s 3 ) e l s e ( s 2 Binop s 3 ) (if b then s 1 else s 2 ) Rel s 3 if b then (s 1 Rel s 3 ) e l s e ( s 2 Rel s 3 ) (IF B THEN V 1 ELSE V 2 ) Binop V 3 IF B THEN (V 1 Binop V 3 ) ELSE (V 2 Binop V 3 ) (IF B THEN V 1 ELSE V 2 ) Rel V 3 IF B THEN (V 1 Rel V 3 ) ELSE (V 2 Rel V 3 )
Preuve :

La preuve consiste a v eri er que la fonction s emantique ] ] retourne bien des r esultats identiques pour les membres gauches et droits de chacune des equivalences propos ees. Il su t ensuite d'utiliser l'implication suivante :

Corollaire 2-1 Pour tout environnement et formule P on a :

X IF C THEN E 1 ELSE E 2 ] ] ( )] j= P ssi j= P IF C THEN E 1 ELSE E 2 =X]
Ce corollaire est a l a b a s e d e l a v alidit e des axiomes du syst eme de preuve que nous pr esentons dans la suite.

Le syst eme de preuve

On rappelle le syst eme de preuve qui d ecrit la s emantique axiomatique du langage L. Comptetenu des restrictions que nous avons impos ees sur la structure des programmes que l'on consid ere (c.-a-d. a contexte xe comme d e ni en section 1.3), on donne en fait ici une version simpli ee de ce syst eme par rapport a l a v ersion originale propos ee dans 23].

Ce syst eme de preuve est constitu e de deux axiomes, qui correspondent respectivement aux instructions d'a ectation et de communications, et de trois r egles d'inf erences, associ ees aux instructions de composition s equentielle, de conditionnement, et d'it eration. Rappelons que les objets manipul es sont des triplets de la forme fP Cg S fQ Dg, o u fP Cg et fQ Dg sont des assertions et S est un fragment de programme L a contexte xe telle que Change(S) \ (V a r (C) V a r (D)) = , ceci a n de simpli er la gestion des variables de contextes. En n, on ajoute egalement a c e s y s t eme une derni ere r egle d'inf erence, la r egle de cons equence, qui permettra de renforcer une pr econdition ou encore d'a aiblir une postcondition : fP Cg C

) f P 0 C 0 g fP 0 C 0 g S fQ 0 D 0 g fQ 0 D 0 g C ) f Q Dg fP Cg S fQ Dg On notera classiquement p a r f P Cg S fQ Dg le fait que le triplet fP Cg S fQ Dg puisse être d eduit du syst eme de preuve.

Pour justi er le fait que ce syst eme de preuve d ecrit bien la s emantique attendue pour le langage L, il reste a etablir le lien avec la s emantique op erationnelle qui etait propos ee dans la section 1.2. On donne pour ce faire une interpr etation des triplets en termes de la machine abstraite qui nous avait permis de d eriver cette s emantique op erationnelle.

Plus pr ecis ement, on dira qu'un triplet fP Cg S fQ Dg est valide ce que l'on note : j= fP Cg S fQ Dg si et seulement si toute ex ecution termin ee du programme S a partir d'un etat de la machine qui v eri e l'assertion fP Cg, m ene a u n etat qui satisfait l'assertion fQ Dg. F ormellement, cette proposition s' ecrit donc de la mani ere suivante :

j= fP Cg S fQ Dg ssi S] ] ( fP Cg] ] ) fQ Dg] ]
Il resterait alors a m o n trer que le syst eme de preuve est correct, c'est a dire que tout triplet qui peut être d eduit est un triplet valide :

(f P Cg S fQ Dg) ) (j = fP Cg S fQ Dg) Nous ne donnons pas cette preuve de correction qui sera d etaill ee par ailleurs. Nous donnons ici deux lemmes, qui seront n ecessaire par la suite, concernant l ' invariances des expressions de contexte lorsque les fragments de programmes ne modi ent pas ces derni eres. 

Une preuve compl ete de programme

Nous allons voir ici comment notre syst eme de preuve peut nous aider a trouver et prouver ce que calcule un programme donn e.

Consid erons le programme M de la gure 1, le probl eme est de savoir ce qu'il calcule.

Apr es une premi ere lecture syntaxique, on peut d ej a p r esumer du rôle de chaque variable du programme: { T est apparemment l a v ariable d'entr ee du programme, puisqu'elle est la seule non initialis ee { j est une variable compteur scalaire1 { S est sûrement l a v ariable de sortie du programme parce qu'elle cumule plusieurs valeurs { A est apparemment une variable auxiliaire car r einitialis ee a c haque it eration.

Maintenant que nous avons une information sur le type des variables, il faut s'int eresser aux valeurs calcul ees par le programme, c.-a-d. connaissant T, que vaut S a l a n d e l ' e x ecution.

Pour cela le premier r e exe est d'ex ecuter le programme avec un jeu d'essai. La gure 2 en est un exemple avec huit processeurs. En entr ee T vaut 1 partout, et on constate qu'en sortie chaque el ement d e S est egal au num ero de processeur plus un. A priori le programme calcul pour chaque processeur la somme des valeurs de ces pr ed ecesseurs. Ce qui equivaut a la fonction scan, ou somme pr e x ee, de la Connection Machine 2. S := T j := 1 while j < N do A := S where This > j do Get A from This -j S = S + A J 

1 3 2 4 2 1 1 1 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 1 S 4
Fig. 2 -Essai du programme P Mais cela n'est encore qu'une supposition, et n'est vrai que pour l'exemple tr es particulier du test.

Pour valider notre hypoth ese dans un cadre plus g en eral, nous allons appliquer notre syst eme de preuve axiomatique. Nous allons chercher a p r o u v er l'assertion suivante : f8u:1 u N ) Tj u 2 N t r u e g M f8u:1 u N ) Sj u = i=u X i=1 Tj i t r u e g En examinant notre syst eme et le programme P, o n v oit qu'il est n ecessaire de d egager un invariant pour la boucle while.

Trouver un invariant de boucle est souvent une tâche d elicate, car non seulement doit-il être correct, c.-a-d. rester stable apr es ex ecution du corps de la boucle, mais il doit être aussi su sant pour prouver la condition qui suit imm ediatement la boucle dans le programme (en l'occurrence la post-condition nale de la sp eci cation de notre programme), mais pas trop pour que la condition pr ec edente a la boucle le satisfasse.

La trace du programme o u l'on aurait plac e un point d'arrêt a la position ( (J) ) de la gure 1, est aussi repr esent ee sur la gure 2. Les valeurs ombr ees sont celle des processeurs inactifs.

En s'attardant sur une etape particuli ere du calcul, par exemple pour j = 4, on peut remarquer que les valeurs de S en entr ees de l'it eration, c.-a-d. celle en sorties de l'it eration pr ec edente, satisfont les propri et es suivantes.

{ T ous les processeurs inactifs a une it eration, le restent pour les it erations suivantes, c.-a-d.

que leur valeur pour S est la valeur nale. De plus celle-ci est la somme des valeurs de T de tous les pr ed ecesseurs.

{ P our tous les processeurs actifs, c'est la somme des j pr ed ecesseurs. Le seul cas d elicat dans cette preuve est de v eri er que (1))(2), avec :

(1) f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u N ) Sj u = P i=u i=u;j+1 Tj i t r u e g f8u:1 u N ) Tj u 2 N t r u e g f8u:1 u N ) Tj u = P i=u i=u;1+1 Tj i t r u e g S := T f8u:1 u 1 ) Sj u = P i=u i=1 Tj i ^1 < u N ) Sj u = P i=u i=u;1+1 Tj i t r u e g j := 1 f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u N ) Sj u = P i=u i=u;j+1 Tj i t r u e g while j < N do

(1) f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u N ) Sj u = P i=u i=u;j+1 Tj i t r u e g (2) f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u j 2 ) Sj u + Sj u;j = P i=u i=1 Tj i ^j 2 < u N ) Sj u + Sj u;j = P i=u i=u;j 2+1 Tj i t r u e g A := S f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u j 2 ) Sj u + Aj u;j = P i=u i=1 Tj i ^j 2 < u N ) Sj u + Aj u;j = P i=u i=u;j 2+1 Tj i t r u e g where This > j do f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u j 2 ) Sj u + Aj u;j = P i=u i=1 Tj i ^j 2 < u N ) Sj u + Aj u;j = P i=u i=u;j 2+1 Tj i This > j g

Get A from This -j f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u j 2 ) Sj u + Aj u = P i=u i=1 Tj i ^j 2 < u N ) Sj u + Aj u = P i=u i=u;j 2+1 Tj i This > j g S = S + A f8u:1 u j 2 ) Sj u = P i=u i=1 Tj i ^j 2 < u N ) Sj u = P i=u i=u;j 2+1 Tj i This > j g end f8u:1 u j 2 ) Sj u = P i=u i=1 Tj i ^j 2 < u N ) Sj u = P i=u i=u;j 2+1 Tj i t r u e g j = j * 2 f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u N ) Sj u = P i=u i=u;j+1 Tj i t r u e g end f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u N ) Sj u = P i=u i=u;j+1 Tj i ^j N trueg f8u:1 u N ) Sj u = P i=u i=1 Tj i t r u e g Fig. 3 -Programme M annot e par sa preuve (2) f8u:1 u j ) Sj u = P i=u i=1 Tj i ^j < u j 2 ) Sj u + Sj u;j = P i=u i=1 Tj i ^j 2 < u N ) Sj u + Sj u;j = P i=u i=u;j 2+1 Tj i t r u e g Dans la condition (2), le cas o u 1 u j se d eduit directement de la condition (1). Pour le cas o u j < u j 2, il su t de remarquer que u ; j j pour voir que celui-ci se d eduit aussi de (1). De même pour le cas o u j 2 < u N, remarquer que u ; j > j su t a prouver l'implication.

En n on voit que l'invariant ((remonte) ) bien vers la pr e-condition initiale de notre sp eci cation. Nous avons donc employ e notre s emantique a n de d ecouvrir et prouver ce que calcule un programme x e. Pour cela nous avons etudi e une trace de son ex ecution a n de d egager une propri et e constante associ ee a un point d'arrêt. Cette m ethode est celle qui a et e p r econis ee par Peter Naur 20], et qui a et e justement a l a g e n ese de la s emantique axiomatique.

Conception d'un programme dirig ee par sa preuve

Nous allons maintenant illustrer l'utilit e de notre syst eme dans la conception conjointe d'un programme et de sa preuve. L'exemple choisi est la g en eration de quadtrees a partir d'images binaires. Le quadtree est une structure de donn ee largement u t i l i s ee dans le traitement d'image. Comme exemple d'application on peut citer les travaux de P. Bonnin sur la segmentation coop erative c o n tour/r egion 5], dont le programme pr esent e ici est issu d'une mise en uvre en Pompc 3].

Approche abstraite

La notion de quadtree est li ee a la propri et e d e r ecursivit e du maillage carr e. On peut repr esenter une image discr ete par un arbre quaternaire. Chaque n ud de l'arbre correspond a u n p a v e unique de l'image, de taille d ependant de sa profondeur dans l'arbre. Le niveau le plus bas etant celui du pixel du capteur. La gure 4 est un exemple de quadtree, o u l'arbre est construit en observant l'image de gauche a droite et de haut en bas.

Un quadtree est une bonne repr esentation d'une image discr ete si chaque feuille de l'arbre repr esente une zone homog ene de celle-ci, auquel cas on etiquette chaque feuille avec la ((couleur) ) de la zone. On dit alors qu'il est ((correct)) relativement a l'image.

Parmi ces quadtrees ((corrects)), il en existe un qui a un nombre minimal de n uds : c'est celui o u toutes les feuilles ont u n f r ere qui ne d ecrit pas une zone homog ene de l'image, ou alors d'une autre couleur, tel que celui pr esent e e n g u r e 4 .

C'est un algorithme a parall elisme de donn ees de construction d'un quadtree minimal a partir d'une image binaire de dimension 2 N 2 N que nous nous proposons de construire ici, en nous aidant de la s emantique axiomatique.

Dans un premier temps, nous consid erons que nous pouvons traiter directement les quadtrees sans nous pr eoccuper de leur impl ementation. La structure de donn ees parall ele (collection au sens de Pompc) est l'arbre quaternaire complet. Les variables sont : Feuille : un bool een qui indique pour chaque n ud s'il est une feuille d'un quadtree correct Cl : indique la couleur de la zone homog ene repr esent ee par la feuille Niveau : une constante enti ere indiquant a q u e l n i v eau ce trouve le n ud dans l'arbre quaternaire.

Si l'on part d'une image quelconque, le quadtree complet o u l a v ariable Fe u i l l en'est vraie que pour les n uds de niveau le plus bas (Ni ve a u= 0), et o u Clest alors x ee a celle du pixel, est un quadtree correct par rapport a l'image. La sp eci cation initiale du programme cherch e est donc : f8n:N iveauj n = 0 , Feuillej n t r u e g Si l'on est capable d' enum erer tous les quadtrees corrects, il est alors ais e de trouver le minimal. On peut repr esenter tous les quadtrees corrects sur notre structure si tous les n uds repr esentant une zone homog ene de l'image sont etiquet es par Fe u i l l e= tt. f8n:(N iveauj n = 0 , Fe u i l l e j n ) t r u e g fI 0=j] t r u e g j := 0 fI trueg while j < N ; 1 do fI ^j < N ; 1 t r u e g S fI 8 n:(Ni ve a u j n = j + 1 ) (Hj n , homog ene(n))) t r u e g fI IF(Niveau = j + 1 ^H) THEN true ELSE Feuille=Feuille j + 1 =j] t r u e g where Niveau = ( j + 1 )do where H do Feuille := true Get Cl from ls into Cl end end fI j + 1 =j] t r u e g j := j + 1 fI trueg end fI ^j = N ; 1 t r u e g f8n:((F euillej n ) homog ene(n)) ^(:F e u i l l e j n ) : homog ene(n))) t r u e g Fig. 6 -Synopsis du programme de quadtree Qt 

Impl ementation

Nous avons d egag e le squelette du programme en raisonnant sur une structure de donn ees abstraite. Maintenant nous allons nous int eresser a l'impl ementation de celui-ci sur une structure de donn ees manipulable par L, c.-a-d. les tableaux.

Un quadtree est enti erement s p eci e par la liste de ses feuilles. De plus le nombre de feuilles maximales est egal au nombre de pixels de l'image initiale. D'o u l'id ee de plonger le quadtree dans un tableau a deux dimensions comme le montre la gure 9.

Chaque une variable tableau a deux dimensions2 Ni vqui satisfait la propri et e suivante : I r 8 (x y):(Ni vj (x y) = k) , (8n 2 noeud(x y): Niveauj n k ) Fe u i l l e j n ^N i ve a u j n > k ) : Fe u i l l e j n ) noeud(x y) etant l'ensemble des n uds d ecrit par le pixel de position (x y).

Remarquons que les pixels qui d ecrivent les n uds de Ni ve a u= j sont ceux dont les coordonn ees sont des multiples de 2 j :

8(x y):(9n 2 noeud(x y):Niveauj n = j) , (9k l:x = k 2 j ^y = l 2 l ) On peut de même d e nir la fonction Rang pour un niveau j donn e p a r : Rang(j (x y)) = Le programme nal r esultant est non trivial. R esumons la d emarche suivie pour y aboutir. Tout d'abord nous avons sp eci e le probl eme sur une structure de donn ee abstraite : l'arbre quaternaire. Apr es avoir not e les propri et es de celui-ci (r ecursivit e li ee au maillage carr e e t a l a d e nition d'homog en eit e), nous avons d egag e u n invariant de boucle I. N o u s a vons introduit une nouvelle variable H, q u i s p eci ait l'ensemble des n uds qui devaient être mis a jour pour conserver l'invariant. Nous avons ensuite, a p a r t i r d e s a s p eci cation, exhib e un fragment de programme calculant correctement celle-ci. Nous avons donc utilis e la propri et e d e compositionnalit e de la s emantique axiomatique pour construire le corps de la boucle.

Pour la phase d'impl ementation, il a su t d' etablir une equivalence entre la repr esentation abstraite du quadtree et la variable tableaux Ni vpar l'introduction de l'invariant I r , pour exhiber le programme nal qui conserve l a m ême structure que la version interm ediaire.

Discussion

De ces deux applications de notre s emantique axiomatique, on constate nalement que les m ethodes employ ees sont t r es proches de celle du cas s equentiel. Cela est r econfortant pour l'utilisateur nal, car une fois qu'il aura assimil e les notions sp eci que au parall elisme de donn ees tel que celles de localit e et de contexte, il pourra employer les mêmes m ethodes d'approche pour les probl emes qu'il aura a r esoudre. Ces m ethodes sont le fruit de plus de 20 ann ees de recherche autour de la logique de Hoare et de la construction de programme en g en eral, qui sont couramment employ ees et enseign ees par la communaut e informatique d'aujourd'hui.

L'application la plus importante est bien sûr l'aide a la conception de programme. G en eralement quand un programme est ecrit, il devient di cile de le prouver. Il faut donc syst ematiquement d evelopper tout programme avec sa preuve, sous forme d'assertions interm ediaires. Il est clair que f8n:N iveauj n = 0 , Feuillej n t r u e g fI 0=j] ^Ir 0=Ni v] t r u e g j := 0 Ni v:= 0 fI ^Ir t r u e g while j < N ; 1 do where x%2 j = 0 ^y%2 j = 0 do H := Ni v= j where x%2 j+1 = 0 do Get H from (x + 2 j y ) into H 0 Get Cl from (x + 2 j y ) into Cl 0 H := (H ^H0 ) ^(Cl= Cl 0 ) end end where x%2 j+1 = 0 ^y%2 j+1 = 0 do Get H from (x y + 2 j ) into H 0 Get Cl from (x y + 2 j ) into Cl 0 H := (H ^H0 ) ^(Cl= Cl 0 ) where H do Ni v:= j + 1 end end j := j + 1 end fI ^Ir ^j = N ; 1 t r u e g fI r 8 n:Feuillej n ) homog ene(n) : Feuillej n ) : homog ene(n) t r u e g Fig. 10 -Programme de quadtree nal pour ne pas freiner le processus de d eveloppement, le degr e de formalisme des assertions doit rester faible, c.-a-d. se limiter aux assertions fortes tel que les sp eci cations initiales/ nales et les invariants. En fait, on ram ene la conception d'un programme a la recherche des invariants. Il existe maintenant des heuristiques pour trouver ceux-ci. Celle que nous avons employ ee pour le quadtree est connue sous le nom de relaxation des constantes, d'autres peuvent être trouv ees dans 15].

Il est clair qu'un relâchement du degr e de formalisme dans la conception d'un programme avec sa preuve r eintroduit un risque majeur d'erreur. Si on veut une preuve correcte du programme, il faut redescendre a un formalisme strict. C'est une tâche fastidieuse, qui heureusement, peut être automatis ee comme nous le verrons dans la partie suivante. [START_REF] Becerril | Impl ementation en langage parall ele Pompc d'algorithmes de segmentation coop erative c o n tour/r egion[END_REF] Automatiser la preuve de programmes L Nous avons donc illustr e (( a l a m a i n )) comment l a s emantique axiomatique est utilis ee pour prouver les programmes. Elle consiste a s p eci er le probl eme sous la forme d'un triplet fP Cg S fQ Dg o u, d'apr es la s emantique des assertions, on a : { l a p r econdition fP Cg d etermine l'ensemble des etat possibles, dans lequel est suppos e s e trouver le programme a son initialisation { la postcondition fQ Dg repr esente l'ensemble des etats autoris es, dans lequel doit n ecessairement se trouver le programme apr es l'une de ses ex ecutions termin ees.

Par cons equent, pour v eri er que S satisfait ces sp eci cations, une approche envisageable consiste a montrer que le triplet fP Cg S fQ Dg peut être d eduit du syst eme de preuve, la correction de ce dernier impliquant l a validit e du triplet.

On pr esente tout d'abord globalement l'approche qui a et e retenue pour automatiser cette m ethode de preuve, ainsi que l'architecture g en erale d'un outil d'aide a la preuve qui en d ecoule. On d ecrit alors de fa con plus pr ecise comment cette solution peut être sp eci ee dans le cas particulier du langage L, et on la justi e formellement.

Une strat egie automatisable pour g en erer des preuves

Comme il a et e rappel e au paragraphe pr ec edent, une approche possible pour prouver un programme L consiste a d ecider si un enonc e fP Cg S fQ Dg peut ou non être d eduit du syst eme de preuve qui d e nit la s emantique axiomatique de ce langage. Toutefois, en raison de l'expressivit e du langage que l'on a choisi pour d ecrire les assertions (l'arithm etique de Peano), ce probl eme n'est pas d ecidable, en particulier dans la recherche des invariants 9]. Par contre, si l'on dispose d'une ((preuve) ) suppos ee correcte du triplet fP Cg S fQ Dg, c.-a-d. d'une s equence fP 0 C 0 g S 0 fQ 0 D 0 g fP 1 C 1 g S 1 fQ 1 D 1 g : : : fP n C n g S n fQ n D n g = fP Cg S fQ Dg il est alors possible de d ecider de mani ere automatique si une telle preuve est e ectivement v alide dans notre syst eme, c.-a-d. si chaque triplet fP i C i g S i fQ i D i g est soit un axiome, soit obtenu a partir des triplets pr ec edents a l'aide d'une r egle d'inf erence.

Par cons equent, la solution que l'on envisage ici pour automatiser cette m ethode de preuve d e programme est une approche semi-automatique, qui consiste a impl ementer respectivement : { u n proof-generator, c.-a-d. un outil d'aide a l a g en eration de preuves au sein du syst eme de preuve { u n proof-checker, c.-a-d. un outil qui permet de v eri er si une preuve d o n n ee est ou non valide dans ce syst eme. On d etaille cette solution plus pr ecis ement dans la suite, en nous int eressant tout d'abord au probl eme de la g en eration de la preuve.

Tel qu'il a et e propos e, le syst eme de preuve d ecrit une m ethode formelle pour prouver des enonc es, mais il ne fournit pas un algorithme qui permette d'en g en erer automatiquement une preuve. Il est donc n ecessaire en pratique de lui adjoindre une strat egie qui d etermine en particulier dans quel ordre les r egles doivent être appliqu ees a c haque etape de la preuve. La strat egie qui a et e c hoisie ici est directement inspir ee des r esultas obtenus dans le cas des langages s equentiels, c.-a-d. un calcul des plus faibles pr econditions [START_REF] Cousot | Methods and logics for proving programs[END_REF]). Intuitivement, etant donn e un programme S et une postcondition fQ Dg pour S, il est possible de construire l'assertion fP 0 C 0 g qui correspond a s a p r econdition la plus large (au sens de l'implication). Par suite, d ecider si un enonc e fP Cg S fQ Dg est valide revient a v eri er que fP 0 C 0 g contient bien fP Cg.

L'origine du choix d'un calcul de pr econdition, qui revient a e ectuer les preuves ( (en arri ere) ), vient du fait que, comme dans le cas s equentiel, les axiomes de notre syst eme de preuve n e p e u v ent être appliqu es de mani ere constructive que si on les suppose orient es de droite a g a u c he. Plus pr ecis ement, l'axiome fP IF C THEN E ELSE X=X] C g X := E fP Cg permet de calculer la pr econdition associ ee a une postcondition fP Cg donn ee, mais la r eciproque n'est pas vraie. En n, notons egalement que la r egle d'inf erence associ ee a l'instruction d'it eration n'est constructive que si les invariants sont c o n n us. Ces assertions n' etant pas calculable en pratique, la solution la plus raisonnable consiste a supposer qu'ils sont fournis avec le programme a v eri er. Toutefois, il reste n ecessaire de s'assurer que ces invariants sont corrects, c.-a-d. qu'il repr esentent bien des propositions invariantes lors de l'ex ecution des it erations du programme.

Par cons equent, une v eri cation semi-automatique de la validit e d'un enonc e d u t ype :

fP Cg S fQ Dg peut être mise en uvre selon l'algorithme informel suivant :

1. annoter a la main le programme S en lui ajoutant s e s i n variants 2. calculer la plus faible pr econdition fP 0 C 0 g associ ee a fQ Dg et au programme S annot e 3. montrer que fP 0 C 0 g contient fP Cg et que les invariants qui ont et e a j o u t es sont corrects.

Les etapes 2 et 3 sont s p eci ees plus en d etail dans les sections 4.2 et 4.3. On montre en particulier que les conditions qui doivent être v eri ees dans l' etape 3 peuvent être exprim ees par un ensemble de formules de logique du premier ordre, usuellement d esign ees sous le terme de veri cation conditions [START_REF] Gordon | Mechanizing programming logics in higher order logic[END_REF]). Prouver que ces propositions sont correctes su t donc pour montrer que fP Cg S fQ Dg est valide. On termine en d ecrivant bri evement sur la gure 11 l'architecture d'un outil d'aide a l a p r e u v e, et en indiquant les di erentes ressources n ecessaires a c hacune des etapes.

Notons que la phase de g en eration des veri cation conditions peut être assimil ee a un processus de compilation : elle transforme un probl eme d ecrit dans un langage ( (utilisateur) ) (celui des triplets), en une ((impl ementation) ) exprim ee dans un langage ( (ex ecutable) ) par un theorem prover classique (la logique du premier ordre). (i) fP Cg est une pr econdition : j= fP Cg S fQ Dg (ii) Tout autre pr econdition est plus forte : 8fP 0 C 0 g : (j = fP 0 C 0 g S fQ Dg) ) (fP 0 C 0 g C ) f P Cg) A partir de la d e nition 4-1, la proposition 4-1 etablit alors, pour chaque instruction du langage L, la plus faible pr econdition associ ee a une postcondition donn ee. En fait, on ne donne pas l'expression exacte de wp mais uniquement une valeur approch ee, obtenue sous certaines hypoth eses.

Cette approximation sera toutefois su sante dans la suite. where B do S end]] ( s ) = f( 0 s ) j 0 2 pr e S] ] ( P u s h (T o p (s) ^ (B) s ))g et que 0 a et e pris tel qu'il existe une pile s 0 o u :

( 0 s 0 ) 2 S] ] ( P u s h (T o p (s) ^ (B) s ))

It eration : wp(( (while B do S end)) fQ Dg) \ f9u:(Dj u ^Bj u ) D g]] = f( s ) j ( s ) 2 f9u:(Dj u ^Bj u ) D g]] ^ while B do S end]] ( s ) fQ Dg] ] g on a :

f9u:(Dj u ^Bj u ) D g]] (9u:actif(u) ) Bj u ))

d'o u par d e nition de la s emantique op erationnel du while on a :

8( s ) 2 f9u:(Dj u ^Bj u ) D g]] while B do S end]] ( s ) = S while B do S end]] ( s ) = while B do S end]] ( S] ] ( s ))
or :

f( s ) j while B do S end]] ( S] ] ( s )) fQ Dg] ] g = f( s ) j S] ] ( s ) f ( 0 s 0 ) j while B do S end]] ( 0 s 0 ) fQ Dg] ] gg = wp(( (S) ) w p (( (while B do S end)) fQ Dg))

Calcul des veri cation conditions

Les r esultats obtenus dans la section pr ec edente permettent de calculer e ectivement la fonction wp sur un programme L uniquement lorsque les invariants de boucle sont fournis. En pratique, il est donc n ecessaire de modi er la grammaire du langage pour permettre a l'utilisateur d'indiquer explicitement, pour chaque it eration, quel est l'invariant pressenti qui lui est associ e. On introduit donc la nouvelle instruction while B do inv fI Eg S end dans laquelle fI Eg d enote une assertion.

Dans la suite, on d esignera par Annoted Pg ml'ensemble des programmes de Pg mdans lesquels les instructions d'it erations sont ainsi annot ees, et le r esultat de la transformation d'un programme S en un programme annot e s e r a n o t e S . Notons que la s emantique de ces programmes ne di ere en rien de celle des programmes originaux, et qu'en particulier pour tout programme S on a S] ] = S ] ] .

On est d esormais en mesure de donner une approximation de la fonction wp qui soit calculable pour un programme annot e. Plus pr ecis ement, on d e nit en fait simultan ement deux fonctions pour chaque instruction du langage :

{ Une fonction V C g e n , qui retourne, pour tout programme S et pour toute assertion fQ Dg, un ensemble de propositions de logique du premier ordre, construites sur le langage d'assertions :

V C g e n: Annoted Pg m Assertion ! 2 Sform Intuitivement, ces propositions seront v alides si et seulement si les invariants de S sont corrects (ce sont bien des invariants), et s'ils sont su sants (ils permettent bien de d eduire la postcondition fQ Dg). { Une fonction pre, qui, pour un programme S et une assertion fQ Dg donn es, permet d'approcher la fonction wp(S fQ Dg): pre : Annoted Pg m Assertion ! Assertion Si les propositions V C g e n (S fQ Dg) sont v alides, alors pre (S fQ Dg) est une pr econdition pour (S fQ Dg). On notera pre e et pre c les projections respectives de cette fonction sur la partie etat ou expression de contexte. Ces deux fonctions sont explicit ees dans la d e nition suivante. D e nition 4-2 A ectation : ( 0 s 0 ) 2 fI 8 u : (Ej u ) : Bj u ) E g]] Donc a rmer que ( 0 s 0 ) 6 2 fQ Dg] ] est en contradiction avec la proposition (ii).

pre (( (X := E) ) fQ Dg) = (Q IF D THEN E ELSE X=X] D ) V C g e n (( (X := E) ) fQ Dg) = Communication : pre (( (get Y from A into X) ) fQ Dg) = (Q IF D THEN Y j A ELSE X=X] D ) V C g e n (( (get Y from A into X) ) fQ Dg) = Composition s equentielle :
On d eduit de cette proposition le corollaire suivant, sur lequel repose en fait l'ensemble de la m ethode de v eri cation que l'on a propos ee. Plus pr ecis ement, ce corollaire fournit une condition su sante, qui est d ecidable, et qui permet de d eterminer si un triplet fP Cg S fQ Dg donn e p e u t être d eduit du syst eme de preuve. Par suite, l' evaluation des fonctions pre et V C g e n sur le couple (S fQ Dg) su t en pratique pour con rmer que le programme S satisfait bien ses sp eci cations. 5 Un environnement d'aide a la preuve automatique

Outre la d e nition d'une m ethode de preuve de programmes qui puisse être automatisable, l'un des objectifs de notre travail etait egalement d e p o u v oir la valider d'un point de vue pratique en proposant une impl ementation au sein d'un outil. Comme on l'a vu dans la section 4.1, l'approche que nous avons retenue est une approche semi-automatique, qui n ecessite la r eunion de plusieurs composants logiciels avec lesquels l'utilisateur doit interagir. Par cons equent, le prototype qui a et e d evelopp e d o i t être consid er e plus comme un environnement d'aide a l a p r euve de programmes L, que comme un outil de v eri cation automatique, capable de d ecider sans aide ext erieure si un programme est correct ou non.

On pr esente tout d'abord l'architecture g en erale de cet environnement, en d ecrivant l e s i n teractions entre ses di erents composants. On pr ecise alors comment ces composants peuvent être mis en uvre a l'aide des outils logiciels Centaur et Hol. En n, on termine en indiquant b r i evement les perspectives d' evolution de notre environnement, et notamment les principales fonctionnalit es qui resteraient a i m p l ementer.

Architecture g en erale

On cherche ici a proposer une architecture pour un environnement logiciel qui puisse impl ementer la m ethode de preuve d ecrite dans la section 4.1. Un tel environnement doit donc inclure un certain nombre de fonctionnalit es :

{ faciliter l' ecriture et la modi cation d'un programme et de ses sp eci cations, par exemple a l'aide d'un editeur syntaxique { apporter une aide pour la recherche et l' ecriture des invariants du programme { impl ementer le calcul des plus faibles pr econditions et des veri cation conditions associ ees a un programme annot e (c.-a-d. les fonctions pre et V C g e n d ecrites dans la section 4) { permettre la preuve des veri cation conditions, en donnant notamment a c c es a des proc edures de d ecision dans la logique du premier ordre { en n, o rir des primitives de gestion de la preuve du programme, en autorisant par exemple une preuve modulaire, ou encore la r eutilisation au cours d'une session d' enonc es d ej a prouv es. Etant donn e qu'il n' etait pas souhaitable de d evelopper int egralement u n e n vironnement d e ce type, nous avons choisi d'articuler notre prototype autour d'un ( (g en erateur d'environnement) ), le logiciel Centaur. Le principe de ce g en erateur est de proposer un certain nombre de metalangages qui permettent d e s p eci er des outils relatifs a l a s y n taxe et a l a s emantique d'un langage de programmation, ainsi que des primitives de haut niveau qui permettent d e d e nir une interface graphique pour ces outils. N eanmoins, les meta-langages existant s o u s Centaur ne permettant pas de construire facilement u n o u t i l d e p r e u v e dans la logique du premier ordre, il a egalement et e n ecessaire de faire appel a u n theorem prover externe, le logiciel Hol, p o u r l a p r e u v e d e s veri cation conditions.

La gure 5.1 d ecrit de fa con plus pr ecise comment Centaur et Hol ont et e utilis es, en indiquant quelles sont les fonctionnalit es qu'ils impl ementent.

La partie Centaur de cette application a et e construite a partir d'un environnement d e p r ogrammation pour le langage L d evelopp e par Levaire 19]. Outre un editeur syntaxique, cet environnement c o m p r e n d u n interpr eteur de programme, auquel sont a s s o c i es des outils graphiques d'aide a la mise au point, qui permettent e n tre autre d'examiner le contenu d e s v ariables, ou encore l'activit e des processeurs a t o u t i n s t a n t de l'ex ecution. Deux principales fonctionnalit es ont donc et e ajout ees a cet environnement initial : { l ' editeur et l'interpr eteur ont et e etendus pour pouvoir prendre en compte des assertions interm ediaires incluses dans un programme, fournissant ainsi une aide a l a r e c herche des invariants { u n g en erateur de veri cation conditions. Notons que l'interface graphique o erte par Centaur permet egalement a l'utilisateur de modi er une assertion ou un fragment de programme a tout moment de la preuve, si les r esultats obtenus le n ecessitent. En n, les communications entre Centaur et Hol sont e n visag ees a l'aide d'une interface entre ces deux outils d evelopp ee a l' INRIA 22]. L'origine de cette connexion entre les deux outils etait d'utiliser Centaur comme interface graphique pour Hol, ce qui la rend tout a fait adapt ee a l'utilisation qui en est attendue ici. En conclusion, cette architecture pr esente deux caract eristiques principales qui nous paraissent importantes en pratique.

{ Elle est modulaire, et en particulier les appels au theorem prover restent limit es et tr es cibl es. Par suite, cet outil peut être vu comme un composant auxiliaire, et son choix peut donc être facilement remis en cause, ind ependamment du reste de l'architecture. { T oute interaction avec l'utilisateur se fait par l'interm ediaire de Centaur, ce qui pr esente l'avantage d'o rir une certaine homog en eit e. En outre, le theorem prover reste ainsi transparent du point de vue de l'utilisateur.

Mise en uvre sous Centaur

Le g en erateur d'environnement Centaur a et e d evelopp e d a n s l ' equipe de Kahn a l'INRIA 2]. L'un de ses objectifs est d'o rir une plate-forme pour l' etude et la conception des langages de programmation, et, a ce titre, il a et e utilis e dans de nombreux projets. On rappelle tout d'abord les principales fonctionnalit es de Centaur, puis on d ecrit bri evement l e s i m p l ementations de l'interpr eteur et du g en erateur de veri cation conditions r ealis e a l'aide de ce syst eme.

Sous Centaur, L e d eveloppement d'un environnement de programmation pour un langage donn e s'e ectue selon trois principaux axes.

Syntaxe du langage

Elle est d ecrite au moyen d'un m eta-langage (Metal), qui permet de d e nir deux grammaires d edi ees respectivement a la syntaxe abstraite et a l a s y n taxe concr ete du langage. A partir de cette description, Centaur g en ere automatiquement un analyseur syntaxique. Par ailleurs, un second meta-langage, Ppml, permet d'en sp eci er un pretty-printer, qui, associ e a l'analyseur, fournit un editeur syntaxique pour le langage consid er e. Le mod ele de base utilis e au sein de Centaur pour repr esenter un programme (ou un fragment de programme) est un arbre abstrait. De nombreuses primitives sont donc egalement o ertes pour manipuler les arbres abstraits.

S emantique du langage

Les aspects s emantiques du langage peuvent être sp eci es a l'aide d'un troisi eme m eta-langage, Typol, qui est bas e sur la notion de s emantique naturelle. C o n c r etement, il permet de d e nir un ensemble d'axiomes et de r egles d'inf erences sur les termes d'un programme. Cette sp ecication est ensuite compil ee en un ensemble de clauses Prolog qui portent sur l'ensemble des arbres abstraits du langage. Par suite, Typol permet de d e nir di erents outils relatifs a l a s emantique du langage, et notamment d e s i n terpr eteurs.

Interface utilisateur

Outre les formalismes directement l i es a la description d'outils d edi es a l a s y n taxe et a l a s emantique d'un langage, Centaur o re egalement un certain nombre de primitives de haut niveau qui permettent de leur associer une interface graphique. Par suite, dans l'environnement de programmation qui r esulte de la combinaison de ces outils, les interactions avec l'utilisateur se font e s s e n tiellement a l'aide de menus et fenêtres. Comme on l'a vu dans la section 3, une technique de recherche des invariants consiste a examiner le comportement du programme sur une ex ecution donn ee. Pour faciliter cette recherche, nous avons etendu l'interpr eteur d evelopp e par Levaire a n qu'il puisse prendre en compte des assertions interm ediaires ins er ees dans le programme. Plus pr ecis ement, lors de l'ex ecution d'un programme annot e, pour chaque assertion fP Cg rencontr ee l'expression fP Cg] ] ( s ) est evalu ee en fonction de l'environnement courant et du contexte courant s, e t l e r esultat de cette evaluation est retourn e a l'utilisateur. Lorsque l'assertion s'av ere invalide, un diagnostic plus pr ecis est produit dans lequel il est pr ecis e s'il s'agit de la partie contexte ou de la partie etat de l'assertion qui est erron ee, et, dans ce dernier cas, le sous-terme qui invalide l'assertion est exhib e. Ainsi, l'utilisateur a la possibilit e dans un premier temps de valider rapidement, sur une ex ecution donn ee, les invariants et les sp eci cations associ es au programme, sans avoir a se lancer directement dans une preuve axiomatique compl ete, n ecessairement plus lourde. Le cas ech eant, l'interface utilisateur de Centaur permet de corriger facilement une assertion avant d e r e-it erer le processus. En n, notons que la sp eci cation Typol d'un tel interpr eteur se d eduit directement d e l a d e nition de la s emantique du langage et de celle des assertions.

Une fois que la sp eci cation et les invariants ont et e v alid es sur une ex ecution donn ee, une preuve exhaustive du programme est alors envisageable. Compte tenu d e l a m ethode de v eri cation pr esent ee dans la section 4.1, la premi ere etape consiste a construire les veri cation conditions associ ees au programme annot e. Nous avons donc impl ement e e n Typol un g en erateur dont l e s fonctionnalit es sont les suivantes. { S election d'un triplet fP Cg S fQ Dg au sein du programme annot e initial : il peut s'agir du programme complet ou d'un fragment de programme encadr e par deux assertions interm ediaires. Dans tous les cas, il est v eri e que les invariants sont b i e n p r esents et que le programme est sous une forme qui satisfait les contraintes d ecrites dans la section 1.3. { Calcul de la plus faible pr econdition et des veri cation conditions: les calculs des fonctions pre et V C g e n ont lieu simultan ement, les r esultats etant retourn es dans deux fenêtres distinctes. Plus pr ecis ement, la postcondition fQ Dg est ( (remont ee) ) a t r a vers S (fonction pre), et les veri cation conditions sont g en er ees ( ( a l a v ol ee) ) (fonction V C g e n ) au fur et a mesure du calcul. On exprime ainsi que chaque invariant r e n c o n tr e est correct et su sant, et que la pr econdition fP Cg est elle aussi su sante. Concr etement, le calcul de la fonction pre fait appel a u n m ecanisme de substitution d'une expression dans une assertion (axiomes de l'a ectation et de communication). Dans le cas de l'axiome de communication, il est egalement n ecessaire de ( (normaliser) ) l'assertion au pr ealable, de sorte que la variable X a substituer apparaisse dans un sous-terme de la forme ( (X j s ) ), o u s est une expression scalaire. Ces deux primitives (substitution et normalisation) ont et e impl ement ees directement e n Prolog.

Mise en uvre sous Hol

Le syst eme Hol (High Order Logic) est un theorem prover de type g en eral, d evelopp e a l'universit e de Cambridge 12], qui repose sur la logique d'ordre sup erieur. Di erentes strat egies de preuve peuvent êtres combin ees sous Hol, parmi lesquelles la preuve ( (en arri ere) ) (backward p r oof) s'av ere souvent la plus e cace en pratique. Elle consiste a d ecomposer successivement l e t h eor eme a prouver en sous-buts, tels que chaque d ecomposition soit justi ee par l'application d'une r egle d'inf erence du syst eme de preuve qui mod elise la logique de Hol (le moteur de preuve du syst eme). La preuve se termine alors quand tous les sous-buts courants sont soit des axiomes de ce syst eme de preuve, soit des instances de th eor emes d ej a p r o u v es. Pour mettre en uvre ces d ecompositions, le syst eme Hol fournit une collection de ((tactiques) ), qui peuvent être vues comme des suites de d ecomposition el ementaires, o rant ainsi des primitives de plus haut niveau pour e ectuer des preuves par induction, par r e ecriture, ou encore par ((analyse de cas) ). En n, ces tactiques peuvent e l l e s -m êmes être combin ees a l'aide de tacticals, qui sont d e s o p erateurs sur les tactiques, et qui permettent de programmer des outils de preuve assez puissants, aptes a v eri er automatiquement des classes de th eor emes similaires. En n, une librairie importante de th eor emes d ej a p r o u v es, regroup es en th eories, augmente encore les capacit es du syst eme.

Concr On peut citer deux principales exp eriences men ees avec Hol dans le domaine de la preuve axiomatique de programmes: { Gordon 13] a d e ' v elopp e un outil de preuve pour un langage s equentiel simple. L'approche qu'il a suivie est tout a fait similaire a c e l l e d ecrite dans ce travail, et elle repose donc egalement sur un calcul de plus faibles pr econditions et sur la g en eration et la preuve d e veri cation conditions. La di erence avec notre impl ementation est que ces trois etapes sont mises en uvre uniquement a l'aide de Hol. P ar suite, l'utilisation de cet outil de v eri cation reste tr es d elicate pour un utilisateur non expert en Hol. N eanmoins, l'int erêt majeur de cette approche est sa abilit e, puisque l'ensemble de la preuve du programme peut se ramener a une preuve dans le syst eme de preuve d e Hol : n i n o u v eaux axiomes, ni nouvelles r egles d'inf erence ne sont i n troduits. { Harrison 17] a utilis e Hol pour la preuve axiomatique de programmes distribu es. Toutefois, etant d o n n e l a s emantique assez complexe du langage consid er e, il ne lui a pas et e possible de d e nir de fa con su samment simple des fonctions de calcul de pr econditions et de g en eration de veri cation conditions. Il a donc dû opter pour une approche di erente, qui consiste a impl ementer directement l a s emantique axiomatique de son langage sous Hol, i n troduisant ainsi de nouveaux sch emas d'axiomes et de nouvelles r egles d'inf erence. En n, des fonctions ML sont egalement p r o p o s ees a l'utilisateur pour faciliter la g en eration de preuves directement dans ce syst eme.
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L'utilisation de Hol que l'on envisage ici est tr es proche du module d edi ee a la preuve d e s veri cation conditions de l'outil d evelopp e par Gordon : seuls les langages sur lesquels sont d e nis les propositions logiques di erent. Elle nous para^ t par cons equent a s s e z r ealiste en pratique.

Discussion

A ce jour, seule la partie ((Centaur) ) de l'environnement a et e r ealis ee. La version du langage L consid er ee est essentiellement celle d ecrite dans ce rapport, dans laquelle les variables parall eles consid er ees sont des vecteurs d'entiers de dimension 2 (tableaux). Le langage d'assertion a egalement et e etendu en ajoutant certains op erateurs de r eduction d'une variable parall ele en une expression scalaire (somme et produit de ses el ements). A partir de cette impl ementation, les veri cation conditions ont p u être g en er ees pour un certain nombre d'exemples de programmes non triviaux, notamment le programme de scan pr esent e dans la section 3. Dans tous les cas, la correction des veri cation conditions engendr ees a pu être etablie a l a m a i n .

La suite de ce travail d'impl ementation porte donc sur di erents points : { l'impl ementation sous Hol de la preuve d e s veri cation conditions, en s'inspirant de l'outil r ealis e par Gordon { la mise en uvre de l'interface existant e n tre Centaur et Hol au sein de cet environnement, ce qui signi e en fait d evelopper un outil de traduction dans la syntaxe Hol des v eri cation conditions g en er ees sous Centaur { l a r ealisation de fonctions d'aide a la gestion de la preuve, permettant notamment d e m emoriser au niveau de Centaur les triplets d ej a prouv es depuis le d ebut de la session.

Conclusions

Ce travail se situe dans le cadre de la v eri cation formelle de programmes data-parall eles, et il s'articule autour d'un langage a la fois simple et expressif, le langage L. Plus pr ecis ement, a partir d'une s emantique axiomatique de ce langage, notre objectif etait de proposer une m ethode de preuve de programmes qui soit automatisable, et qui puisse être etendue par la suite a d e s langages r eels. Concr etement, ce travail a donc et e m e n e selon deux axes.

Dans un premier temps, nous avons d'abord e ectu e ( ( a la main) ) la preuve axiomatique d'un certain nombre de programmes data-parall eles ecrits en langage L, certains classiques, comme le scan (section 3.1), d'autres plus originaux, comme la construction de quad-tree (section 3.2). Cette etape etait importante pour di erentes raisons.

{ En premier lieu, elle a permis de montrer que l'approche axiomatique etait tout a f a i t e n visageable dans le cas d'un mod ele data-parall ele, et qu'elle pouvait egalement fournir une aide a la conception de programmes. En particulier, il s'est av er e sur ces exemples que l' ecriture des invariants, qui est g en eralement une des di cult es de cette approche, restait d'une complexit e raisonnable pour le programmeur. { D'autre part, elle a egalement permis de valider le langage d'assertion qui accompagne la s emantique axiomatique de L, notamment du point de vue de son expressivit e. En e et, les propri et es a v alider des di erents programmes que l'on a consid er es ont toujours pu être exprim ees sous forme d'assertions.

{ En n, elle a permis de d e nir plus pr ecis ement quelles etaient les di erentes etapes de la preuve de programme qu'il etait important d'automatiser, et quelles etaient celles qui pouvaient eventuellement rester a l a c harge du programmeur. Cette information a et e utile lors de la sp eci cation des outils d'aide a la preuve. La seconde etape de ce travail a et e d e d e nir en d etail un environnement d'aide a la preuve d e programme L. Nous avons donc tout d'abord propos e une m ethode pour automatiser la g en eration de preuves dans le syst eme axiomatique associ e a ce langage. Cette m ethode, qui est valide pour des programmes normalis es au pr ealable, a et e justi ee formellement a partir de la correction du syst eme de preuve. En n, cet environnement a et e partiellement i m p l ement e a l'aide des logiciels Centaur et Hol, e t a et e e x p eriment e sur quelques exemples.

En conclusion, la d emarche que nous proposons ici pour la preuve de programmes data-parall ele nous semble r ealiste, et il para^ t clair que ce mod ele de programmation, proche du mod ele s equentiel, se prête bien aux m ethodes de v eri cation de type axiomatique. En particulier, de nombreuses techniques issues du domaine s equentiel (comme la g en eration de veri cation conditions) peuvent lui être etendues.

Toutefois, un certain nombre de perspectives restent a e n visager pour poursuivre ce travail :

{ En ce qui concerne la s emantique axiomatique de L, la preuve de la correction et eventuellement de la compl etude du syst eme de preuve semble d esormais envisageable. Par ailleurs, l'application de cette m ethode de preuve aux langages r eels n ecessite d' etendre la s emantique axiomatique de L aux constructions qui n'ont p a s et e e n visag ees dans ce rapport, comme les instructions escape ou all. En n, le syst eme de preuve pourrait egalement être etendu pour prendre en compte la terminaison des programmes. { D e m ême que la s emantique axiomatique, la m ethode de v eri cation automatique qui a et e propos ee dans ce rapport devra être etendue aux autres constructions du langage. Ainsi, les fonction pre et V C g e n devront être d e nies pour les instructions de type everywhere et escape. P ar ailleurs, une deuxi eme am elioration possible consisterait a l e v er la restriction impos ee sur les programmes a v eri er (section 1.3). Concr etement, ceci pourrait être r ealis e soit en automatisant la normalisation des programmes, soit en l'int egrant au sein du syst eme de preuve (ce qui est l'approche suivie dans 16]). { En n, concernant l a r ealisation de l'environnement de programmation di erentes perspectives ont et e evoqu ees dans la section 5.4. Il para^ t toutefois clair que, du point de vue de l'ecacit e, la partie critique de l'impl ementation se situe au niveau de la preuve des veri cation conditions. P our ce point particulier, et conform ement a ce qui existe dans le domaine de la preuve de circuits, le compromis entre utiliser un theorem prover de type g en eral, et d evelopper un outil de preuve s p eci que resterait a etudier. L'utilisation de cet environnement a l a v eri cation de nouveaux exemples de programme L devrait apporter des el ements de r eponse.

A terme, l'ensemble de ces perspectives devrait permettre d'envisager d'appliquer cette m ethode de preuve p o u r l a v eri cation de programmes r eels, ecrits dans des langages comme C , Mpl, o u 

  esignent respectivement les domaines des noms et des valeurs des variables des programmes L. Notons que, les variables parall eles etant d e s v ecteurs d'entiers de dimension 1, l'ensemble choisi pour V A L est l'ensemble des fonctions des entiers dans les entiers. On d esignera par env l'ensemble des environnements. { s repr esente l'activit e d e c hacun des processeurs (ou le contexte), qui est modi e l o r s d e l'ex ecution d'une instruction where. Du fait de l'imbrication possible de ces instructions, s est repr esent e par une pile de vecteurs bool eens, telle que To p (s)j u = vrai si et seulement s i l e processeur u est actif dans l' etat consid er e. On d esignera par ctxte l'ensemble des contextes.

  8x : p : (9x : (:p)) Dans la suite, on indiquera a l'aide de l'op erateur j= le fait qu'un environnement valide une formule F : j= F si et seulement s i F] ] ( ) = vrai En n, on termine en donnant l a s emantique des assertions proprement dites. S emantique d'une assertion En premier lieu, il est facile de voir que la s emantique que l'on a associ ee jusqu'ici aux langages d' etat et de contexte permet bien d'une part d'exprimer des propositions sur les valeurs des variables d'un programme et, d'autre part, de d eduire le contexte d'activit e de ses processeurs, a un instant donn e de son ex ecution. Plus pr ecis ement, on dira qu'une assertion fP Cg est valide dans un etat du programme o u l'environnement et le contexte valent respectivement et s si et seulement s i : { valide la formule P : j= P { l a v aleur de l'expression bool eenne parall ele est identique au vecteur exprimant l'activit e courante des processeurs : 8u : ( C] ] ( ))j u = vraissi actif(u) ce qui s' ecrit egalement, C] ] ( ) = To p(s) Formellement, on d e nira donc une fois encore une fonction ] ] , qui, etant d o n n ee une assertion, retourne l'ensemble des couples ( etat, contexte) pour lesquels elle est valide. D e nition 2-1 La fonction ] ] est d e nie sur l'ensemble des assertions de la mani ere suivante : ] ] : Assertion ! env ctxte avec, pour toute assertion fP Cg, fP Cg] ] = f( s ) j j= P ^ (C) = To p(s)g L a encore, l'op erateur j= pourra être utilis e pour indiquer qu'un couple ( s ) valide une assertion donn ee : ( s ) j= fP Cg si et seulement s i ( s ) 2 fP Cg] ] On d e nit une nouvelle relation entre les assertions. D e nition 2-2 Soit deux assertions fP Cg et fQ Dg, on dit que fP Cg implique fQ Dg, ce que l'on note fP Cg C ) f Q Dg, s s i o n a : (P ) Q) ^(P ) 8 u:(Cj u , Dj u ))

  A ectation : fP IF C THEN E ELSE X=X] C g X := E fP Cg Communication : fP IF C THEN Y j A ELSE X=X] C g get Y from A into X fP Cg Composition s equentielle : fP Cg S 1 fP 0 C g fP 0 C g S 2 fQ Cg fP Cg S 1 S 2 fQ Cg Conditionnement : fP C ^Bg S fQ C ^Bg fP Cg where B do S end fQ Cg It eration : fI 9 u : (Ej u ^Bj u ) E g S fI Eg fI Eg while B do S e n d fI 8 u : (Ej u ) : Bj u ) E g Dans cette r egle, l'assertion fI Eg n'est autre que l'invariant de la boucle.

Lemme 2- 1

 1 Soit le triplet fP Cg S fQ Dg tel que V a r (C) \ Change(S) = . S i j= fP Cg S fQ Dg alors j= fP Cg S fQ Cg Preuve : j= fP Cg S fQ Dg signi e que l'on a : 8( s ) 2 fP Cg] ] : S] ] ( s ) = f( 0 s 0 )g fQ Dg] ] or d'apr es la s emantique op erationnel on a s 0 = s, d o n c : 8( s ) 2 fP Cg] ] : S] ] ( s ) = f( 0 s )g fQ Dg] ] comme V a r (C) \ Change(S) = , on a par induction sur la structure syntaxique de S : (C) = 0 (C) c.-a-d. : 8u: (C)j u = 0 (C)j u = To p (s)j u donc ( 0 s ) j= fQ Cg, on obtient nalement : j= fP Cg S fQ Cg On a le lemme sym etrique suivant : Lemme 2-2 Soit le triplet fP Cg S fQ Dg tel que V a r (D) \ Change(S) = . S i j= fP Cg S fQ Dg alors j= fP Dg S fQ Dg Preuve :La preuve est similaire a l a p r ec edente. Ces deux lemmes justi ent aussi la restriction des programmes consid er es, c.-a-d. qu'ils soient a contexte xe et que pour tous triplets fP Cg S fQ Dg on doit avoir : (V a r (C) V a r (D)) \ Change(S) = 3 La s emantique axiomatique comme outil de programmation Nous allons nous int eresser ici a l'emploi de notre syst eme de preuve comme outil de programmation. Dans un premier temps nous exhiberons la preuve c o m p l ete d'un programme donn e. Dans un deuxi eme temps, nous verrons comment la conception d'un programme peut être dirig ee par sa preuve.

  Fig. 1 -Programme myst ere M

  Ainsi, on peut formuler l'invariant d e l a b o u c l e d e l a m a n i ere suivante : I 8 u:(1 u j ) Sj u = i=u X i=1 Tj i ) ^(j < u N ) Sj u = i=u X i=u;j+1 Tj i ) On v eri e imm ediatement si celui-ci est su sant p o u r p r o u v er la post-condition nale de notre programme. En e et la r egle de la boucle while indique que l'on a comme post-condition : f8u:(1 u j ) Sj u = i=u X i=1 Tj i ) ^(j < u N ) Sj u = i=u X i=u;j+1 Tj i ) ^(j N) t r u e g celle-ci implique e ectivement la post-condition nale de notre sp eci cation : f8u:1 u N ) Sj u = i=u X i=1 Tj i t r u e g Pour montrer qu'il est correct, regardons le programme M annot e par sa preuve d e l a g u r e 3, o u toutes les assertions interm ediaires ont et e g en er ees en appliquant les axiomes d'a ectation et de communication. On peut remarquer d'ailleurs que les assertions du where sont simples car l'invariant a et e e x p r i m e en tenant c o m p t e d u c o n texte.

Fig. 4 -

 4 Fig. 4 -Quadtree et r ecursivit e du maillage carr e

Fig. 5 -

 5 Fig. 5 -Sp eci cation du programme de quadtree Qt

Fig. 7 -

 7 Fig. 7 -Rang des n uds et evaluation du test d'homog en eit e

Fig. 8 -Fig. 9 -

 89 Fig. 8 -Extrait du programme S pour le calcul de H

  x = k 2 j+1 et 9l: y = l 2 j+1 1 si :9k: x = k 2 j+1 et 9l: y = l 2 j+1 2 si 9k: x = k 2 j+1 et :9l: y = l 2 j+1 3 si :9k: x = k 2 j+1 et :9l: y = l 2 j+1 Remarquons qu'un p ere et son ls de Rang = 0 se situent sur le même processeur, d'o u l ' economie d'une communication sur le programme nal de la gure 10. Dans cette version les variables Cl, H et H 0 sont des variables tableaux, x et y sont des constantes indiquant les coordonn es de chaque pixel.
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 11 Fig. 11 -Architecture d'un outil d'aide a la preuve 4.2 Calcul des plus faibles pr econditions La fonction wp permet de calculer la plus faible pr econdition associ ee a un fragment d e p r ogramme S et une postcondition fQ Dg donn es, c.-a-d. l'ensemble des etats pour lesquels une ex ecution termin ee de S m ene a u n etat qui satisfait fQ Dg. Formellement, cette fonction peut donc être d e nie de la mani ere suivante : Rappelons que l'ensemble Pg mdes programmes consid er es, sont les programmes a contexte xe. D e nition 4-1 Soit wp la fonction d e nie par :wp : Pg m 2 env ctxte ! 2 env ctxte telle que :

Proposition 4- 1

 1 Soit fQ Dg une assertion. Pour chaque instruction S de L tel que V a r (D) \ Change(S) = , l a fonction wp(S fQ Dg) v eri e les conditions suivantes : a ectation :wp(( (X := E) ) fQ Dg) = fQ IF D THEN E ELSE X=X] D g]] communication : wp(( (get Y from A into X) ) fQ Dg) = fQ IF D THEN Y j A ELSE X=X] D g]]composition s equentielle : wp(( (S 1 S 2 )) fQ Dg) = wp(( (S 1 ) ) w p (( (S 2 ) ) fQ Dg)) conditionnement : f( s ) j ( Push(To p (s) ^ (B) s )) 2 wp(( (S) ) fQ D ^Bg) ^T o p (s) = (D)g wp(( (where B do S end)) fQ Dg) it eration : on a les deux propositions suivantes : 1. wp(( (while B do S end)) fQ Dg) \ f8u:(Dj u ) : Bj u ) D g]] fQ Dg] ] 2. wp(( (while B do S end)) fQ Dg) \ f9u:(Dj u ^Bj u ) D g]] wp(( (S)) w p (( (while B do S end)) fQ Dg)) Preuve :on montre que, pour chaque instruction, l'expression propos ee se d eduit bien de la d e nition g en erale de la fonction wp (d e nition 4-1).

  A ectation : wp(( (X := E) ) fQ Dg) = f( s ) j X := E] ] ( s ) = f( 0 s )g fQ Dg] ] g 0 (D ^B) = To p (s) ^ (B) (D) = To p (s) et d'autre part comme V a r (D) \ Change(S) = on a (D) = 0 (D), donc : ( 0 s ) 2 fQ Dg] ] Il faut de plus v eri er si : ( 0 s ) 2 where B do S end]] ( s ) Ce qui est vrai, car :

  (while B do S end)) fQ Dg) \ f8u:(Dj u ) : Bj u ) D g]] = f( s ) j ( s ) 2 f8u:(Dj u ) : Bj u ) D g]] ^ while B do S end]] ( s ) fQ Dg] ] g on a : f8u:(Dj u ) : Bj u ) D g]] (8u:(actif(u) ) : Bj u )) d'o u par d e nition de la s emantique op erationnel du while on a : ( s ) 2 f8u:(Dj u ) : Bj u ) D g]] ) ((while B do S end))]] ( s ) = ( s ) par cons equent : ( s ) 2 fQ Dg] ] 2.

  pre (( (S 1 S 2 )) fQ Dg) = pre (S 1 p r e (S 2 fQ Dg)) V C g e n (( (S 1 S 2 )) fQ Dg) = V C g e n (S 2 fQ Dg) V C g e n (S 1 p r e (S 2 fQ Dg))Composition s equentielle :Par d e nition de V C g e n , o n a :V C g e n (( (S 1 S 2 ) ) fQ Dg) ) (V C g e n (S 2 fQ Dg) ^V C g e n (S 1 p r e (S 2 fQ Dg))) Par hypoth ese d'induction sur S 1 et S 2 , o n e n d eduit : pre (S 2 fQ Dg)] ] wp(( (S 2 ) ) fQ Dg) et pre (S 1 p r e (S 2 fQ Dg))] ] wp(( (S 1 ) ) p r e (S 2 fQ Dg)) En appliquant alors le lemme 4-1, on obtient b i e n : pre (S 1 p r e (S 2 fQ Dg))] ] wp(( (S 1 ) ) w p (( (S 2 )) fQ Dg)) Conditionnement : Par d e nition de V C g e n , o n a : V C g e n (( (where B do S end)) fQ Dg) ) V C g e n (S fQ D ^Bg) Par hypoth ese d'induction, on en d eduit :pre (S fQ D ^Bg)]] wp(( (S) ) fQ D ^Bg) on a : V a r (D ^B) \ Change(S) = donc pre (S fQ D ^Bg) est de la forme fP D ^Bg et on a : fP D ^Bg]] wp(( (S) ) fQ D ^Bg) donc comme : f( s ) j ( P u s h (T o p (s) ^ (B) s )) 2 wp(( (S) ) fQ D ^Bg) ^T o p (s) = (D)g wp(( (where B do S end)) fQ Dg) on a : f( s ) j ( Push(To p (s) ^ (B) s )) 2 fP D ^Bg]] ^T o p (s) = (D)g wp(( (where B do S end)) fQ Dg) Par d e nition on a : f( s ) j ( Push(To p (s) ^ (B) s )) 2 fP D ^Bg]] ^T o p (s) = (D)g = f( s ) j ( j= P) ^( (D ^B) = To p (s) ^ (B)) ^( (D) = To p (s))g comme (D ^B) = (D) ^ (B) o n a d o n c l ' egalit e suivante : f( s ) j ( Push(To p (s) ^ (B) s )) 2 fP D ^Bg]] ^T o p (s) = (D)g = f( s ) j ( j= P) ^( (D) = To p (s))g or on a : f( s ) j ( j= P) ^( (D) = To p (s))g = fP Dg] ] = fpre e (( (S ) ) fQ D ^Bg) D g]] donc on obtient nalement : fpre e (( (S )) fQ D ^Bg) D g]] wp(( (where B do S end)) fQ Dg) It eration : Par d e nition de V C g e n , l'hypoth ese V C g e n (( (while B do inv fI Eg S end)) fQ Dg)implique les trois propositions suivantes : (i) V C g e n (S fI Eg) (ii) fI 8 u : (Ej u ) : Bj u ) E g C ) f Q Dg (iii) fI 9 u : (Ej u ^Bj u ) E g C ) pre (S fI Eg) De (i), o n d eduit par induction sur S pre (S fI Eg)] ] wp(( (S ) ) fI Eg) donc, par transitivit e, (iii) devient : fI 9 u : (Ej u ^Bj u ) E g]] wp(( (S) ) fI Eg) D'autre part : fI Eg] ] wp(( (while B do S end)) fQ Dg) revient a montrer que : 8( s ) 2 fI Eg] ] soit while B do S end]] ( s ) fQ Dg] ] Par l'absurde, supposons : 9( s ) 2 fI Eg] ] tel que while B do S end]] ( s ) * fQ Dg] ] En particulier, comme nous nous int eressons seulement a la correction partielle des programmes, c.-a-d. en ne consid erant que les propri et es obtenues a p a r t i r d ' etat qui ne provoquent pas la divergence des programmes, ( s ) sera tel que : while B do S end]] ( s ) 6 = Soit ( 0 s 0 ) tel que : ( 0 s 0 ) 2 while B do S end]] ( s ) d'apr es la s emantique op erationnelle du while, et de par la cons equence des propri et es (i) et (iii) enonc ees auparavant o n a ( 0 s 0 ) 2 fI Eg] ]. D'autre part, toujours d'apr es la s emantique op erationnelle du while on a : 8u:actif (u) ) : 0 (B)j u c.-a-d. :

Corollaire 4- 1

 1 Pour tout programme annot e S , et pour toutes assertions fP Cg et fQ Dg tels que : Change (S ) \ V a r (D) = on a : (V C g e n (S fQ Dg) ^(fP Cg C ) pre (S fQ Dg))) ) j = fP Cg S fQ Dg Preuve :D'apr es la proposition 4-2, on a : V C g e n (S fQ Dg) ) ( pre (S fQ Dg)] ] wp(( (S)) fQ Dg)) Par d e nition, fP Cg C ) pre (S fQ Dg) implique : fP Cg] ] pre (S fQ Dg)] ] donc par transitivit e : fP Cg] ] wp(( (S) ) fQ Dg) par d e nition même de la fonction wp, o n o b t i e n t bien : j= fP Cg S fQ Dg Ce dernier corollaire exprime la correction de la m ethode de veri cation condition que nous avons d e nie pour le langage L. C'est a dire que si nous validons un triplet fP Cg S fQ Dg par cette m ethode, alors toutes ex ecutions termin ees de S a partir d'un etat v eri ant fP Cg, termineront d a n s u n etat v eri ant fQ Dg. Nous allons voir maintenant une m ecanisation possible de cette m ethode dans l'atelier logiciel Centaur.
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 12 Fig. 12 -Architecture de l'environnement d'aide a la preuve
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  Dans le domaine du calcul intensif, le grand d e de cette n de si ecle est d'atteindre et d'exploiter des puissances de calculs de l'ordre du Tera ops
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  Toutefois, dans le cas d'un programme data-parall ele, la di cult e principale vient du fait que le comportement du programme se d eduit non seulement des valeurs successives prises par ses variables, mais egalement d e s c hangements d'activit es des processeurs de la machine sous-jacente. Pour r esoudre ce probl eme, la solution propos ee dans 23] consiste a d e nir les assertions comme etant des couples constitu es de deux composantes distinctes : { une partie etat, repr esent ee par une proposition logique sur les valeurs des variables du pro-Cg S fQ Dg o u S est un fragment de programme et fP Cg et fQ Dg des assertions (P et Q d ecrivant d e s etats, C et D des contextes).

		Sbool ::= true
		false
		V boolj Sarith
		: Sbool
		Sarith Rel Sarith
	gramme	Sbool Connect Sbool
	{ une partie contexte, repr esent ee par expression bool eenne parall ele qui permet de d eduire V arith ::= C l'activit e des processeurs. X Cette forme d'assertions en deux parties est aussi employ ee dans les travaux de Gabarr o e t G a -V arithj V a r i t h vald a 1 1 ], mais la partie contexte est alors un ensemble d'entiers d enotant explicitement les pro-V arith Binop V arith cesseurs actifs. Par suite, les propri et es d e nies par notre syst eme de preuve seront de la forme : IF V bool THEN V arith ELSE V a r i t h
		V bool ::= TRUE
		FALSE
	: V bool Nous pr esentons plus en d etails les deux langages qui d e nissent ces assertions, puis nous don-V arith Rel V arith nons le syst eme de preuve a s s o c i e au sous-ensemble du langage L que nous consid erons dans la V bool Connect V bool suite. dans lesquelles : 2.1 Langage d'assertion { c (resp. C) d enote une constante enti ere scalaire (resp. parall ele dont Th i s ) On note Etat et Contexte les langages d edi es respectivement aux parties etat et contexte des { x (resp. X) d enote une variable enti ere scalaire (resp. parall ele) assertions. On d ecrit successivement l a s y n taxe et la s emantique de ces deux langages. Syntaxe { V arithj Sarith (resp. V boolj Sarith ) repr esente la composante d'indice Sarith de l'expression parall ele V a r i t h (resp. V bool)
	On d e nit tout d'abord quatre types d'expressions sur lesquels seront construits les langages Etat et Contexte, et qui sont respectivement : { Binop est un ensemble d'op erateurs arithm etiques :
	{ les expressions arithm etiques et logiques scalaires, not ees Sarithet Sbool
	{ les expressions arithm etiques et logiques vectorielles, not ees V arith et V b o o l .
	Concr etement, le langage Etatsera d e ni comme un ensemble de formules quanti ees construites sur Sbool, et le langage Contexte sera constitu e des expressions V b o o l . Les expressions Sarith, Sbool, V arith et V bool sont d ecrites par la grammaire suivante :
		Sarith ::= c
		x
		V arithj Sarith
		Sarith Binop Sarith
		if Sbool then Sarith else Sarith

fP

  n ud de l'arbre est projet e dans le pixel sup erieur gauche du pav e qu'il d ecrit. Ainsi le

	fI ^j < N ; 1 t r u e g where Ni ve a u= j do H := Feuille where Rang pair do Get H from fr ere de Rang + 1into H 0 Get Cl from fr ere de Rang + 1into Cl 0
	end H := (H ^H0 ) ^(Cl= Cl 0 ) where Rang = 0 do Get H from fr ere de Rang + 2into H 0 Get Cl from fr ere de Rang + 2into Cl 0
	end H := (H ^H0 ) ^(Cl= Cl 0 )
	end where Ni ve a u= j + 1do Get H from ls de Rang 0 into H
	pixel de coordonn ees nulles d ecrit N n uds, qui correspondent a ceux rencontr es lors d'un parcours des branches de l'arbre les plus a g a u c he. Il su t juste alors de savoir pour chaque pixel quel est le niveau maximum des n uds d ecrits qui sont encore des feuilles du quadtree. Nous introduisons

end fI 8 n:(Ni ve a u j n = j + 1 ) (Hj n , homog ene(n))) t r u e g

  Notons que dans les deux propositions pr ec edentes, nous avons fait l'hypoth ese qu'il existe une assertion qui d enote enti erement l ' e n s e m ble des etats d'une pr econdition la plus faible. Cette hypoth ese sous-entend que notre langage d'assertion soit ( (assez expressif) ) pour d ecrire de tels ensembles dans tous les cas. C'est un point t r es d elicat a v eri er qui n'est pas li e a u s y s t eme d'inf erence, mais au langage de sp eci cation choisi. Il est par contre n ecessaire pour prouver la compl etude du syst eme de preuve. Mais ce n'est pas notre propos ici, nous ne ferons donc pas appel a cette notion d'expressivit e, et c'est pour cela que la fonction wp d enote des ensembles d' etats plutôt que des assertions comme c'est souvent le cas dans la litt erature. Pour plus d'informations sur ces probl emes le lecteur peut se r ef erer a 8 ] e t 1 ].

  etement, Hol est construit a partir du langage ML, qui est egalement disponible au niveau de l'utilisateur pour toutes les interactions avec le syst eme : preuve d e t h eor emes, d e nition de nouvelles tactiques, extension d'une th eorie existante. Par ailleurs, les caract eristiques de ce langage, et notamment l e c o n trôle strict du type des expressions manipul ees, garantissent que le syst eme Hol est sûr : t o u t t h eor eme prouv e est obtenu par une suite d'applications des 8 r egles d'inf erence et des 5 axiomes qui constituent le moteur de preuve d e Hol. Un certain nombre d'arguments ont motiv es le choix de ce prover dans notre environnement pour impl ementer la preuve d e s veri cation conditions. { En premier lieu, il s'agit d'un syst eme relativement ancien, autour duquel une importante communaut e existe. Par suite, il a et e largement utilis e, notamment pour la preuve de circuits, et une large biblioth eque d'exemples et d'outils lui est associ ee, ainsi qu'une documentation cons equente. { D' autre part, il existe un nombre assez important d e t h eor emes relatifs a l'arithm etique dePeano qui sont d ej a prouv es au sein de ce syst eme, ce qui le rend assez performant pour e ectuer des preuves dans ce domaine (ce qui n'est pas le cas de tous les theorem provers). { En n, une interface entre Hol et Centaur ayant d ej a et e r ealis ee, il nous a paru pr ef erable de choisir ce syst eme, et economiser ainsi l'e ort de d evelopper int egralement une nouvelle interface. Notons egalement que s'il s'av erait en pratique que Hol soit peu adapt e a l a p r e u v e d e s veri cation conditions, l'architecture modulaire de notre environnement o re la possibilit e de remplacer facilement ce composant par un autre theorem prover.

: F 1 ] ] ( ) = F 2 ] ] ( )

: E 1 ] ] ( ) = E 2 ] ] ( ) ) E 1 E 2Propri et es de la substitution On termine en donnant alors une proposition qui montre que, du point de vue de l' evaluation, substituer une variable parall ele dans une expression ou dans l'environnement dans lequel cette expression est evalu ee, conduit a u n r esultat identique. Cette proposition etant assez intuitive, et ne d ependant en fait pas des caract eristiques particuli eres des langages que l'on consid ere ici pour d ecrire les expressions, sa preuve ne sera pas d etaill ee. Notons que l'on trouve une proposition similaire dans 1].Proposition 2-2 P] ] ( X E] ] ( )]) = P E=X]] ] ( )Preuve :Par induction sur la structure de P.En choisissant alors pour E l'expression ((IF C THEN E 1 ELSE E 2 )), il est possible d'en d eduire le corollaire suivant :

par scalaire nous entendons une variable parall ele dont les composantes ont toutes la même valeur a c haque pas d'ex ecution du programme.

Jusqu' a p r esent nous avons consid er e q u e L manipulait des vecteurs, c.-a-d. des tableaux de dimension un, ici nous consid erons que L peut manipuler des matrices. On peut se ramener bien sûr a des vecteurs en y plongeant c e s derni eres, mais cela alourdirait inutilement les notations.

avec : 0 = X V ] o u V est d e ni comme suit :

V j u = (E)j u si actif(u) V j u = (X)j u si :actif (u)

Or actif(u) = (D)j u , donc par d e nition : V = IF D THEN E ELSE X] ] ( ) Or :

X IF D THEN E ELSE X] ] ( )] j= Q Donc d'apr es le corollaire 2-1, on a : Or, f( s ) j S 2 ] ] ( S 1 ] ] ( s )) fQ Dg] ] g = f( s ) j S 1 ] ] ( s ) f ( 0 s 0 ) j S 2 ] ] ( 0 s 0 ) fQ Dg] ] gg d'o u, toujours d'apr es la d e nition de la fonction wp, wp(( (S 1 S 2 )) fQ Dg) = f( s ) j S 1 ] ] ( s ) 2 f ( 0 s 0 ) j S 2 ] ] ( 0 s 0 ) fQ Dg] ] gg = f( s ) j S 1 ] ] ( s ) wp(( (S 2 ) ) fQ Dg)g = wp(( (S 1 ) ) w p (( (S 2 ) ) fQ Dg))

Conditionnement : Consid erons l' etat ( s ) t e l q u e :

Cela signi e que l'on a d'une part :