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Abstract

In this paper� we deal with modular mappings as introduced by Lee and Fortes ����
��� ���� and we build upon their results� Our main contribution is a characterization
of one�to�one modular mappings that is valid even when the source domain and the
target domain of the transformation have the same size but not the same shape� This
characterization is constructive� and a procedure to test the injectivity of a given trans�
formation is presented�

Keywords� automatic parallelization� loop nests� time�space transformation� modular mapping�
injectivity� characterization

R�esum�e

Nous 	etudions dans ce rapport les placements modulaires tels qu
ils ont 	et	e introduits
par Lee et Fortes ���� ��� ���� et nous d	eveloppons les r	esultats qu
ils ont obtenus� Notre
apport principal consiste en une caract	erisation des placements modulaires bijectifs qui
reste valide m�eme lorsque les domaines source et cible de la transformation contien�
nent le m�eme nombre de points mais n
ont pas la m�eme forme� La caract	erisation est
constructive et nous pr	esentons une proc	edure qui permet de tester l
injectivit	e d
une
transformation�

Mots�cl�es� parall	elisation automatique� nids de boucles� transformation temps�espace� placement
modulaire� injectivit	e� caract	erisation
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Abstract

In this paper� we deal with modular mappings as introduced by Lee and Fortes ���� ��� ����
and we build upon their results� Our main contribution is a characterization of one�to�one
modular mappings that is valid even when the source domain and the target domain of the
transformation have the same size but not the same shape� This characterization is constructive�
and a procedure to test the injectivity of a given transformation is presented�

� Introduction

Recently� Lee and Fortes ���� ��� ��� have introduced modular mappings in the context of systolic
array design methodologies and parallelizing compilation� Their idea is to extend a�ne mapping
techniques by using linear transformations modulo a constant vector� A�ne mappings are time�
space transformations that have been used extensively by a variety of researchers to derive e�cient
time�space transformations for loop nest programs see ��� ��� �� �� �� �� ��� ��� ��� ��� ��� among
others��

However� the systematic derivation of programs that can take advantage of wraparound connec�
tivity in networks such as rings and �D� or �D�torus remains out of the scope of a�ne mappings�
A typical example is Cannon
s matrix�matrix product algorithm on a �D�torus of processors ����
this well�known algorithm whose counterpart in the systolic �eld is the Preparata�Vuillemin �D�
systolic array ����� cannot be synthesized using a�ne transformations� whereas Lee and Fortes
���� ��� demonstrate how to synthesize it� as well as many interesting variants� using one�to�one
modular mappings� We point out that many other BLAS��like kernels have been implemented onto
�D processor meshes using wraparound connections e�g� the scienti�c library of the MasPar ��� ����
We refer to Section � for the automatic synthesis of Cannon
s algorithm using modular mappings�
thereby providing the reader with a complete example to demonstrate the usefulness of modular
mappings�

This paper deals with the automatic derivation of one�to�one modular mappings� We build upon
the results of Lee and Fortes� which we summarize in Section �� In a word� Lee and Fortes give
several su�cient conditions for a modular mapping to be one�to�one� Injectivity plays a key role
as modular mappings represent a time�space transformation from an index domain computation
points� to a target domain� clearly� the number of computation points must be preserved by the
mapping� There are two major limitations in the results of Lee and Fortes�
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� they only deal with modular transformations that map an index domain onto itself� In other
words� the target domain is assumed to be the same as the index domain� Clearly� if the
transformation is one�to�one� the index domain and the target domain should have the same
size� but not necessarily the same shape�

� they only give su�cient conditions for a transformation to be one�to�one� Given an arbitrary
modular mapping possibly given by the programmer�� it is not always possible to decide
from their results whether the transformation is one�to�one or not� Necessary and su�cient
conditions would be necessary� Also� a procedure to determine whether a given transformation
is one�to�one would be highly desirable�

Our paper overcomes both limitations� Our main result is a necessary and su�cient condition
for a modular mapping to be one�to�one� The condition is rather technical� but the proof is
constructive� hence a procedure to accompany the systematic derivation of one�to�one modular
mappings� The condition extends to mappings for which the index domain and the target domain
have the same size but not the same shape�

The rest of the paper is organized as follows� in Section � we detail the use of modular mappings
through the matrix�matrix product example� In Section � we formally de�ne modular mappings�
and we review the results obtained by Lee and Fortes� In Section � we give a necessary and su�cient
condition for a modular mapping to be one�to�one� We discuss several extensions in Section ����
Section � is devoted to some �nal remarks and conclusions�

� Why modular mappings �

Several basic computational kernels require other type of transformations than a�ne time�space
mappings� A well�known example is Cannon
s algorithm for matrix�matrix multiplication see �����

DO i � �� �
DO j � �� �

DO k � �� �
ci� j� � ci� j� � di� k�� ek� j�

CONTINUE

In Cannon
s algorithm� the data arrays d and e are �rst aligned and multiplied elementwise�
by each other as shown in Figure �� The result of each mutiplication is stored in ci� j�� At the next
step� matrix d is shifted to the left and matrix e is shifted up� Elementwise multiplication takes
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place and the result is added to the values of ci� j�� The processus is repeated until all elements
in a row of d are multiplied by all elements in a column of e�

Let us consider the following transformation Tb�

Tbi� j� k�
t
� � 

�
B� �� �� �

� � �
� � �

�
CA
�
B� i

j
k

�
CA�mod������� �

�
B� �i� j � k mod �

i mod �
j mod �

�
CA

This transformation� called modular mapping in ���� ���� transforms the previously described
program into an equivalent one�

DO t � �� �
DOALL p� � �� �

DOALL p� � �� �
i � p�
j � p�
k � t� p� � p��mod�
ci� j� � ci� j� � di� k�� ek� j�
MOVE WESTd�
MOVE NORTHe�

CONTINUE

Cannon
s algorithm except data movement� can therefore be described by a modular transfor�
mation applied to the original program� We refer the reader to the original papers of Lee and Fortes
���� ��� for several interesting variants of this standard parallelization� as well as for a method to
derive data communications�

� Review of Lee and Fortes results

��� De�nitions

In this section� we use the same de�nitions and notations as in Lee and Fortes ���� ���� Let
u � u�� � � � � un�

t � Zn be a vector with n integer components� and let m � m�� � � � � mn�
t �

N��n be a vector with n positive integer components� The notation umodm denotes the vector
u� mod m�� � � � � un mod mn�

t�

De�nition � Modular function� A modular function Tm � Zn �� Zn is de�ned as Tmp� �
Tp�modm for p �Zn� where T is a n�n integer matrix �the transformation matrix� and m � N��n

is a n�vector �the modulus vector��

De�nition � Modular time�space transformation of an index domain� A modular time�space
transformation� Tm� is a modular function that is injective when its domain is restricted to the
index set J of an algorithm� i�e� Tm � J �Z

n is injective�

De�nition � Rectangular index set and boundary vector� An index set J is rectangular and de�
noted Jb if J � fp �Zn� � � p � bg� where inequalities between n�vectors are taken componentwise�
The vector b is called the boundary vector of Jb�

De�nition � Smith normal form� For every matrix A of Zn� there exist two unimodular matrices
Q�� Q� and a diagonal matrix S such that�
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� S � diags�� s�� � � � � sr� �� �� � � � � ��

where r is the rank of A� s�� s�� � � � � sr are non�zero elements of Zand sijsi��� � � i � r�

� A � Q�SQ�

The matrix S is then denoted by SA��

De�nition � Left Hermite form� For every non singular matrix A ofZn� there exist a unimodular
matrix Q and a lower triangular matrix H such that�

� �i� j�� hij �� ��

� each non�diagonal element is lower than the diagonal element of the same row�

� A � HQ�

Besides� this decomposition is unique up to a permutation of the rows� In fact� the row order used
to �triangularize� A into H is arbitrary� hence there are n� left Hermite forms�

An important remark Consider the modular transformation Tm with transformation matrix
T and modulus vector m� It is important to point out that the coe�cients of T are de�ned only
up to a modulus operation� More precisely� let T � be the new transformation matrix de�ned by
T � � t�ij� where t�ij � tij modmi� then T �

m � Tm� The proof is immediate� �x�� � � � � xn� �
Zn�

P
j tijxj modmi �

P
j t

�
ijxj mod mi�

Similarly� the determinant of T is de�ned modulo the product d �
Qn

i	�mi� In particular� we
can always assume that T is non singular add a suitable multiple of d to each diagonal element
tii� say� to get an equivalent non singular transformation matrix��

��� Main results of Lee and Fortes

In ���� ���� Lee and Fortes restrict themselves to the study of modular mappings for which the
modulus vector is equal to the boundary vector� i�e� m � b� The case where m � b is very important
in practice� as the matrix�matrix product example demonstrates�

Lee and Fortes start with the following lemma�

Lemma � Let Jb � fp �Zn� � � j � bg be a rectangular domain and de�ne �Jb � fp � Zn� �b �
p � bg� A modular function Tb � Jb ��Zn is injective if and only if Tbp� �� � for all p � �Jb except
p � ��

Proof See ����� If Tb is not injective� there exist two distinct points p� q � Jb such that Tbp� �
Tbq�� Then r � p� q � �Jb� r �� � and Tbr� � ��

Conversely� if there exists r � �Jb� r �� � and Tbr� � �� let p be de�ned as follows� pi � ri if
� � ri � bi and pi � � if �bi � ri � �� Let q � p � r� Then p� q � Jb� p �� q and Tbp� � Tbq��
hence Tb is not injective�

Then� Lee and Fortes deal with generator matrices� They consider the set of integer points that
are equivalent to zero� i�e� the equivalence class

S� � fp �Zn� Tbp� � �g�
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They prove that S� is a module� and that there exists a n � n integer matrix G that generates
S�� this means that every element of S� can be represented as an integer linear combination of
the columns of G� Of course� there are several matrices that generate S�� but they all are right
equivalent� Indeed� let G be a generator matrix� then a matrix G� will generate S� if and only if
there exists a n� n unimodular matrix U such that G� � GU �

The main contribution of ���� ��� on generators is a su�cient condition on the generators of S�

that guarantees the injectivity of the transformation�

Lemma � Let Jb be a rectangular index set with boundary vector b� Let Tb be a modular mapping
and let G be a generator of S�� Let 	 be an arbitrary order on the set f�� �� � � � � ng� Tb is injective
if G satis�es the following equations�

�� gii � bii�

�� gij � � if i 	 j�

From this su�cient condition on generators� Lee and Fortes investigate the relationship be�
tween generator matrices G and transformation matrices T � They deduce the following su�cient
conditions for a modular mapping Tb to be injective�

Theorem � Let Jb be a rectangular index set with boundary vector b� Let Tb be a modular mapping�
Let 	 be an arbitrary order on the set f�� �� � � � � ng� Tb � Jb �� Zn is injective if the matrix T

satis�es to the following equations�

�� tii 
 bi � � �

�� tij � � if i 	 j

We restate Theorem � as follows� if T is triangular up to a permutation� and if its i�th diagonal
entry is relatively prime with bi for all � � i � n� then Tb is a time�space transformation of Jb�
It turns out that Theorem � can be proven without making use of generators� as shown by the
following direct proof�

Another proof of Theorem � Let T be upper triangular without loss of generality�� We solve
the system Tx � � mod b for x � �Jb� where T is upper triangular� The last equation is

tnn � xn � � mod bn�

hence bn divides tnnxn� Since bn is relatively prime with tnn� bn divides xn� which implies xn � �
as x � �Jb� The n � ���th equation gives

tn���n�� � xn�� � tn���n � � � � mod bn���

hence xn�� � � just as before� and continuing the process we �nd x � ��

Therefore we do not need to make use of generator matrices to prove Theorem �� However�
generator matrices will enable us to characterize one�to�one modular mappings� i�e� to give a
necessary and su�cient condition for injectivity� as we show below in Section ��

Finally� Lee and Fortes give a necessary and su�cient condition in the case where all entries of
the boundary vector b have the same value �� in this particular case� they show that Tb is injective
on Jb if and only if the determinant of T and � are relatively prime� We extend this result in
Section ������

�We write gcd�u� v� � u � v

�



� New results

��� Characterization when m  b

In this section� we consider as Lee and Fortes that m � b the modulus vector is equal to the
boundary vector�� For the general case� see Section ����

As we have seen in Lemma �� Lee and Fortes ���� exhibit su�cient conditions on generator
matrices G to obtain one�to�one modular mappings� We prove here that these conditions are also
su�cient� and we give a constructive method to check the injectivity of a given modular mapping�
In the following� we denote by � the matrix diagb�� � � � � bn��

Lemma � If G is a generator matrix of S�� then detG� divides det�� � b�b� � � �bn�

Proof We are going to exhibit a generator matrix for S�� Let us consider a point p � S� � �k �Zn

such that Tp � �k� Let � � diag�i� be the comatrix of � and d � det� �
Qn

i	� bi � is de�ned
such that �� � d� In where In is the identity matrix of order n� �i �

Q
j �	i bj�� We have�

�Tp � ��k
�Tp � dk

Q�S�T �Q�p � dk

where Q�� Q� are two unimodular matrices and S�T � is the Smith normal form of matrix �T �

S�T �Q�p � dQ�
��k

S�T �Q�p � dk�

where k� �Zn Q� is unimodular��
Let S�T � � diagsi� �

siQ�p�i � dk�i

We want only integer values for the components of p� therefore

Q�p�i �
d

gcdd� si�
k��i

where k�� �Zn�
p � Q�

��S�k��

where S� � diag d

gcd�d�si�
�� The matrix Q�

��S� generates S��

Besides� if we let S�� � diag��
i� and S�� � diag�

�

i�� we know that �
�

i�
�
n�i�� � d see ����

p���� and that �
�

i divides si if A and B are two nonsingular integer n� n matrices� then the k�th
element skAB� of the Smith normal form of AB is divisible by skA� and skB�� see ���� p�����

�
�

i divides si and d� so gcdd� si� � �
�

iui where ui �Zand s�i �
d



�

iui
� Therefore

detS�� �
Q

d



�

iui

detS�� � d
n

det�
�
Q

ui

Besides� det�� � dn��� Thus�

�



detS�� �
dQ
ui

Since all generator matrices are right equivalent� they all have the same determinant as Q�
��S��

hence as S��

Lemma � Let G be a �nite abelian group� Let �g�q be the subset f�� g� � � � � q � ��gg with g � G
and � � q � orderg�� Let S�� � � � � Sk be k subsets of G� G is said to be the direct sum of the Si�
which we denote as G � S��� � ��Sk� if the mapping g�� � � � � gk� � g�� � � �� gk from S��� � ��Sk

to G is one�to�one� If G � �g��k� � � � � � �gr�kr then at least one of the �gi�ki is a subgroup of G�

Proof This result has been proved by Haj	os in its works on one of the Minkowski
s conjecture�
see ����

Lemma � If Tb is a one�to�one modular mapping on Jb� then �x �Z
n� there exists x�� x�� � S��Jb

such that x � x� � x�� and this decomposition is unique�

Proof We �rst prove the existence of such a decomposition and then its uniqueness�

Existence Let us consider the �nite abelian group A �Zn�S�� The matrix Q�
��S� generates S�

see Lemma ��� so the number of elements of A is detQ�
��S�� � detS��� For x � Zn� we denote

by x the canonical image of x in A�
Let us consider two distinct elements of Jb� x and y� then x �� y� Indeed� x � y � �Jb� if x � y�

x� y � S� and Tb would be not injective see Lemma ��� All elements of Jb have distinct canonical
images in A�

The number of elements in Jb is det��� there are more elements in Jb than in A detS�� �
det��� see Lemma ��� So� for all x � A� there exists y � Jb such that x is the canonical image of y
otherwise� two elements in Jb would have the same canonical image in A� and this is impossible��
Besides� this also means that if Tb is injective� we have detS� � det��

Consider x � Zn� x is the canonical image of x in A� there exists x� � Jb such that x� � x�
x� x� � S�� So� there exists x�� x�� � S� � Jb such that x � x� � x��

Uniqueness If there exists x�� x�� and x��� x
�
�� in S�� Jb such that x � x�� x� � x��� x�� then�

x� � x�� � x� � x�� � S�� x� � x�� �
�Jb and Tb is injective� so x� � x�� and x� � x���

Lemma 	 If Tb is a one�to�one modular transformation then there exists i� � � i � n� such that
O � bi�ei � S� �where ei is the i�th vector of the canonical basis of Zn��

Proof Let f�� f�� ���� fn be the canonical images of O��e�� O��e�� � � � � O��en in A� If Tb is injective�
for all x �Zn� there exist a � S� and integers �i� � � �i � bi� such that x � a� ���e� � � � �� �n�en
and this decomposition is unique� see lemma �� This means exactly that A � �f��b� � � � � � �fn�bn�
Lemma � shows that one of the fi satis�es bifi � �� i�e� � � bi�ei � S��

Theorem � A transformation Tb is one�to�one if and only if there exists a left Hermite form of a
generator matrix G of S� with diagonal b�� b�� ���� bn�

�



Proof The su�cient condition has already been proved in ����� see Lemma ��

Necessary condition Let us consider a one�to�one modular mapping Tb� Lemma � gives an
index i such that O � bi�ei � S��

Let us consider �fi�bi� subgroup of A� Let B be the �nite abelian group B � A��fi�bi� We
also know that A � �f��b� � � � � � �fn�bn � Let f

�
�� f

�
�� � � � � f

�
i��� f

�
i��� � � � � f

�
n be the canonical images of

f�� f�� � � � � fi��� fi��� � � � � fn in B the canonical image of fi in B is ���
Let us consider x � B� there exists y � A such that x is the canonical image of y in B� Besides�

y � m�f�� � � ��mnfn and this decomposition is unique� So� x � m�f
�
�� � � ��mi��f

�
i���mi��f

�
i���

� � ��mnf
�
n and the decomposition is also unique� This means that B � �f ���b� � � � � � �f �i���bi�� �

�f �i���bi�� � � � � � �f �n�bn� There exists j �� i such that bjf
�
j � �� i�e� there exists t� � � t � bi such

that � � bj �ej � t�ei � S��
By repeating this process� we obtain n vectors in S� and the matrix H formed by these vectors

is upper triangular with diagonal b�� b�� � � � � bn up to a permutation of indices��
Furthermore� these vectors form a basis of the module generated by G� By adding suitable com�

binations of the vector columns ofH to any vector x � S�� we get x � H��a where �ai� � � ai � bi�
Because there is only one element of S� in Jb which is ��� we have a � � and thus� x is a linear
combination of the column vectors of H � Furthermore� this decomposition is unique because H
is non�singular� So� H is the matrix of a basis of S�� this means that there exists a unimodular
matrix Q such that G � HQ� and this completes the proof�

Given a transformation matrix T and a modulus vector b� Theorem � gives a constructive
method to check whether Tb is a time�space transformation or not� We sketch the procedure and
run it on an example�

Procedure From Theorem �� a procedure to know whether a modular transformation is injective
or not can be deduced�

�� Calculate the Smith normal form �T and then deduce the matrix Q��
� S� that generates S�

we use the same notations as in lemma ���

�� Calculate the n� left Hermite normal forms by permuting the rows� of Q��
� S��

�� If there exists a left Hermite normal form of Q��
� S� with diagonal b�� b�� � � � � bn� the transfor�

mation Tb is injective�

Example Let us consider the matrix T �

�
B� � � �

� � �
� � �

�
CA and the vector b �

�
B� �

�
�

�
CA�

We calculate the Smith normal form of �T and we deduce the two matrices S� and Q��
� �

S� �

�
B� �� � �

� � �
� � �

�
CA and Q��

� �

�
B� � ��� ����

� � �
� �� ����

�
CA� Q��

� S� �

�
B� ��� ��� ����

� � �
�� ��� ����

�
CA�

We calculate the � left Hermite forms of Q��
� S� by permuting the rows� The left Hermite form

of

�
B� �� ��� ����

��� ��� ����
� � �

�
CA is

�
B� � � �

� � �
� � �

�
CA� Tb is injective�
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��� Extensions

In this section� we start by proving a useful property that allows to restrict the search of one�to�one
modular mappings to a more restricted set� we show that a transformation T�b is injective on J�b
if and only if Tb in injective on Jb and detT �
 � � �� Then� we consider the particular case where
�i� j�� bi
bj � �� In this particular case� we have a necessary and su�cient condition directly with
the transformation matrix� Finally� we extend the results given in Section � to a more general case�
m �� b� but

Q
mi �

Q
bi�

�
�
� Injectivity of T�b

In this section� let T be a transformation matrix and b a modulus vector� We still assume that
the source domain and the target domain are the same� We will prove a �scalability property��
Beforehand� we prove the following lemma as a prerequisite for Theorem ��

Lemma � detT � 
 � �� �� T�b is not injective on J�b�

Proof We use the notations of lemma �� Let d � det� �
Qn

i	� bi� S�T � � diagsi�� S�� �
diag��

i� and S�� � diag��
i�� Let Q� and S� be the matrices such that Q�

��S� generates the
module S� for Tb� Q

�
� and S�� the matrices such that Q�

�
��
S�� generates the module S� for T�b Q��

S�� Q�
� and S�� are calculated as in the proof of lemma ���

Let S� � diags�i� and S�� � diags��i �� S�
n���T � � �n��S�T �� so we have�

s��i �
�nd

gcd�nd� �n��si�

s��i �
�d

gcd�d� si�

We have seen in the proof of lemma � that �
�

i divides si� So� we can write si � �
�

ixi withQ
xi � detT � 

Q
si � det�T � � dn�� � detT � �

Q
�

�

i

Q
xi � dn��

Q
xi��

Besides� ��
i �

d


�
n�i��

� Thus�

s��i �
�d

�
�

i gcd��
�
n�i��� xi�

There exists i such that gcd�� xi� �� � 
Q
xi � detT � and detT � 
 � �� ��� Thus�

Q
s��i �Q

�b



�

i

� �nd� Hence� T�b cannot be injective we see in the proof of Lemma � that if T�b is injective�

we must have detS��� � det��� � �nd��

Theorem � Let � � N� The modular mapping T�b is a time�space transformation of J�b if and
only if Tb is a time�space transformation of Jb and detT �
 � � ��

�



Proof Assume that T�b is injective� Let p � �Jb such that Tbp� � �� Equivalently� Tp � �k for
some k � Zn� Then T�p � ��k and �p � �J�b� As T�p is injective� Lemma � implies that p � ��
Hence� Tb is injective� Besides� we know from Lemma � that detT �
 � � ��

Conversely� assume now that Tb is injective and detT � 
 � � �� If detT � � �� the proof is
immediate detT � � � and detT � 
 � � �� � � ��� Consider now the case detT � �� ��

Let p in �J�b such that
Tp � ��k� k �Zn

Let U be the comatrix of T UT � detT �In�� We have�

detT �p � �U�k

detT �pi � �U�k�i

So� � divides detT �pi� But� we also have detT � 
 � � �� Hence� � divides pi� Let us consider
q such that pi � �qi�

detT ��q � �U�k

detT �q � U�k

So� detT �Tq � detT ��k and Tq � �k� Besides� ��b � p � �b implies �b � q � b� Tb is
injective� thus q � � and p � ��

Remark The previous theorem leads to another proof of the following result of Lee and Fortes�
in the case where all entries of the boundary vector b have the same value �� Tb is injective on Jb if
and only if the determinant of T and � are relatively prime� Indeed� if b � �� � � � � ��t� Jb contains
only the point �� � � � � �� and Tb is always injective� Therefore T�b is injective i� detT � 
 � � ��

�
�
� When �i� j�� bi 
 bj � �

We know see Section ���� that for any transformation Tm� there exists an equivalent transformation
denoted as T �

m and such that �i� j�� � � t�ij � bi� We still assume m � b here� We prove that if
�i� j�� bi 
 bj � �� then Tb is one�to�one i� T is triangular up to a permutation� with �good�
diagonal coe�cients� in this particular case� the characterization of one�to�one mappings is quite
simple�

Theorem � If �i� j�� bi
 bj � �� then Tb is injective on Jb if and only if T �
b is an upper triangular

matrix �up to a permutation on row and column indices� with �i� tii 
 bi � � �

Proof The su�cient condition has been proved in ���� see Theorem �� �

Necessary condition Assume that the transformation Tb is injective� The proof uses the same
lemma as Theorem �� Let us consider t�j � � � j � n� the columns of T � and let A be the group
Z�b�Z�Z�b�Z� � � ��Z�bnZ� The restriction of Tb to Jb de�nes an injective application� The two
sets have the same number of elements� so it is also bijective� i�e� �x � A� ��y � Jb � x � Tby� �
Ty�modb� This means exactly that A � �t���b� �b �t

�
��b� �b � � � �b �t

�
n�bn�

��



Lemma � shows that there exists j such that �t�j�bj is a subgroup of A� There exists j such
that t�jbj � �modb� i�e �i� t�ijbj � � mod bi� So� we must have �i �� j� t�ij � � since bi 
 bj � � and
t�jj 
 bj � � otherwise the transformation would not be injective��

Up to a permutation on rows and columns� the matrix T � is now�

�
BBB�

t�jj u

�
� T ��

�

�
CCCA where

u is a row vector of n � � elements�� Consider the new modular transformation T ��
b�� where b� �

b�� � � � � bj��� bj��� � � � � bn�
t� Let us prove that T ��

b� is an injective modular transformation on Jb� �
Let us consider x � x�� � � � � xj��� xj��� � � � � xn� � �Jb� such that T ��x � �modb� �
The element t�jj has an inverse in Z�bjZt�jj 
 bj � ��� Let � � Z�bjZbe the value �t�jj

��
u�x�

where t�jj
�� is the inverse of t�jj in Z�bjZ� We have t�jj� � u�x � � mod bj� So� the vector

x�� � � � � xj��� �� xj��� � � � � xn� � S� and we have �i �� j� xi � � Tb is injective��
We have just proved that T ��

b� is injective� So� in the same way� there exists k such that T �� ��
BBB�

t�kk � � �

�
� T ���

�

�
CCCA with t�kk 
 bk � �� up to a permutation�

By repeating this process� we obtain that T � is triangular up to a permutation� and each element
t�ii on the diagonal satis�es t�ii 
 bi � ��

�
�
� Extension to the general case� m �� b

In this section� we consider a modular transformation Tm and a rectangular index set Jb and we
prove that general results can be easily derived from the particular case m � b�

First� Lemma � remains satis�ed in the general case�

Lemma � A modular function Tm � Jb �� Zn is injective if and only if Tmp� �� � for all p � �Jb
except p � ��

Proof The proof is immediate from the proof of Lemma ��

Besides� if we consider the set of integer points that are equivalent to zero� S� � fp �
Zn� Tmp� � �g� we can �nd in the same way a generator matrix for S�� Let � � diagmi��
As in Section � and with the notations of lemma �� we obtain a matrix Q�

��S� that generates S�

and that satis�es detQ��
� S��j det�� simply replace b by m in Lemma ���

Lemma  If
Qn

i	�mi �
Qn

i	� bi� then Theorem � remains valid� a transformation Tm is one�to�one
if and only if there exists a left Hermite form of a generator G of S� with diagonal b�� � � � � bn�

Proof The proof is immediate from the proof of lemma �� The condition that
Qn

i	�mi �
Qn

i	� bi
is needed to prove that the sum of subsets used in Lemma � is a direct sum� Of course� if Tm is
one�to�one from Jb onto Jm� both domains must have the same number of integer points�

In ����� Lee and Fortes dealt with the particular case when the modulus vector results from a
permutation of the entries of the boundary vector� Lemma � is an extension of this particular case�

��



Example Let us consider the matrix transformation T �

�
� �
� �

�
and the modulus vector

m �

�
�
�

�
� We have Q�

��S� �

�
� �
� �

�
� Thus� Tm is injective on the rectangular index set

J�����t but is not injective on J�����t�
Lemma � is very useful as it enables to check injectivity for transformations that map a given

rectangular domain onto a domain of di�erent shape but of the same size��

� Conclusion

In this paper� we have considered modular mappings as introduced by Lee and Fortes ���� ��� ����
Our main contribution is a characterization of one�to�one modular mappings that is valid even
when the source domain and the target domain of the transformation have the same size but not
the same shape� This characterization is constructive� and a procedure to test the injectivity of a
given transformation has been presented�

We believe the study of modular mappings to be very promising in the context of automatic
parallelization techniques� Indeed� mapping techniques usually proceed in two steps� �rst the
input domain computation points� is mapped onto a time�space domain where a virtual processor
is assigned to each computation� Then virtual processors are mapped onto physical processors�
most often using a block�cyclic allocation 	a la HPF ����� Characterizing valid modular mappings
from input domains onto target domains of larger dimension would enable to fully automatize the
mapping procedure�
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