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In this paper, we deal with modular mappings as introduced by L e e a n d F ortes 14, 13, 12], and we build upon their results. Our main contribution is a characterization of one-to-one modular mappings that is valid even when the source domain and the target domain of the transformation have the same size but not the same shape. This characterization is constructive, and a procedure to test the injectivity of a given transformation is presented.

Introduction

Recently, Lee and Fortes 14, [START_REF] Hyuk | Data distribution independent parallel programs for matrix multiplication[END_REF]12] have i n troduced modular mappings in the context of systolic array design methodologies and parallelizing compilation. Their idea is to extend a ne mapping techniques by using linear transformations modulo a constant v ector. A ne mappings are timespace transformations that have been used extensively by a v ariety of researchers to derive e cient time-space transformations for loop nest programs (see 1, 17, 6 , 5 , 7 , 8 , 2 0 , 1 1 , [START_REF] Hyuk | On the injectivity of modular mappings[END_REF][START_REF] Preparata | Area-time optimal VLSI networks for multiplying matrices[END_REF][START_REF] Shang | Time optimal linear schedules for algorithms with uniform dependencies[END_REF] among others).

However, the systematic derivation of programs that can take a d v antage of wraparound connectivity in networks such as rings and 2D-or 3D-torus remains out of the scope of a ne mappings. A t ypical example is Cannon's matrix-matrix product algorithm on a 2D-torus of processors 3]: this well-known algorithm (whose counterpart in the systolic eld is the Preparata-Vuillemin 2Dsystolic array 18]) cannot be synthesized using a ne transformations, whereas Lee and Fortes 14, 1 3 ] demonstrate how t o s y n thesize it, as well as many i n teresting variants, using one-to-one modular mappings. We point out that many other BLAS3-like k ernels have been implemented onto 2D processor meshes using wraparound connections (e.g. the scienti c library of the MasPar 2, 4 ] ) . We refer to Section 2 for the automatic synthesis of Cannon's algorithm using modular mappings, thereby providing the reader with a complete example to demonstrate the usefulness of modular mappings.

This paper deals with the automatic derivation of one-to-one modular mappings. We build upon the results of Lee and Fortes, which w e summarize in Section 3. In a word, Lee and Fortes give several su cient conditions for a modular mapping to be one-to-one. Injectivity play s a k ey role as modular mappings represent a time-space transformation from an index domain (computation points) to a target domain: clearly, the number of computation points must be preserved by the mapping. There are two major limitations in the results of Lee and Fortes: Figure 1: Initial data alignement they only deal with modular transformations that map an index domain onto itself. In other words, the target domain is assumed to be the same as the index domain. Clearly, if the transformation is one-to-one, the index domain and the target domain should have the same size, but not necessarily the same shape, they only give su cient conditions for a transformation to be one-to-one. Given an arbitrary modular mapping (possibly given by the programmer), it is not always possible to decide from their results whether the transformation is one-to-one or not. Necessary and su cient conditions would be necessary. Also, a procedure to determine whether a given transformation is one-to-one would be highly desirable.

Our paper overcomes both limitations. Our main result is a necessary and su cient condition for a modular mapping to be one-to-one. The condition is rather technical, but the proof is constructive, hence a procedure to accompany the systematic derivation of one-to-one modular mappings. The condition extends to mappings for which the index domain and the target domain have the same size but not the same shape.

The rest of the paper is organized as follows: in Section 2 we detail the use of modular mappings through the matrix-matrix product example. In Section 3 we formally de ne modular mappings, and we review the results obtained by Lee and Fortes. In Section 4 we g i v e a necessary and su cient condition for a modular mapping to be one-to-one. We discuss several extensions in Section 4.2. Section 5 is devoted to some nal remarks and conclusions.

2 Why modular mappings ?

Several basic computational kernels require other type of transformations than a ne time-space mappings. A well-known example is Cannon's algorithm for matrix-matrix multiplication (see 3]):

DO i = 0 4 DO j = 0 4 DO k = 0 4 c(i j) = c(i j) + d(i k) e(k j)
CONTINUE In Cannon's algorithm, the data arrays d and e are rst aligned and multiplied (elementwise) by each other as shown in Figure 1. The result of each m utiplication is stored in c(i j). At the next step, matrix d is shifted to the left and matrix e is shifted up. Elementwise multiplication takes place and the result is added to the values of c(i j). The processus is repeated until all elements in a row o f d are multiplied by all elements in a column of e.

Let us consider the following transformation T b :

T b ((i j k) t ) = ( 0 B @ ;1 ;1 1 1 0 0 0 1 0 1 C A 0 B @ i j k 1 C A) mod(5 5 5) =

B @

;i ; j + k mod 5 i mod 5 j mod 5

C A

This transformation, called modular mapping in 14, 1 3 ], transforms the previously described program into an equivalent one:

DO t = 0 4 DOALL p 1 = 0 4 DOALL p 2 = 0 4 i = p 1 j = p 2 k = ( t + p 1 + p 2 ) mod5 c(i j) = c(i j) + d(i k) e(k j) MOVE WEST(d) MOVE NORTH(e) CONTINUE
Cannon's algorithm (except data movement) can therefore be described by a modular transformation applied to the original program. We refer the reader to the original papers of Lee and Fortes 14, 13] for several interesting variants of this standard parallelization, as well as for a method to derive data communications.

3 Review of Lee and Fortes results

De nitions

In this section, we use the same de nitions and notations as in Lee and Fortes 14, 1 3 ] . Let u = ( u 1 : : : u n ) t 2 Z n be a vector with n integer components, and let m = ( m 1 : : : m n ) t 2 (N ) n be a vector with n positive i n teger components. The notation u modm denotes the vector (u 1 mod m 1 : : : u n mod m n ) t .

De nition 1 (Modular function) A m o dular function T m : Z n ;! Z n is de ned a s T m (p) = (T p ) modm for p 2 Z n , w h e r e T is a n n integer matrix (the transformation matrix) a n d m 2 (N ) n is a n-vector (the modulus vector).

De nition 2 (Modular time-space transformation of an index domain)

A modular time-space transformation, T m , i s a m o dular function that is injective when its domain is restricted to the index set J of an algorithm, i.e, T m : J ! Z n is injective.

De nition 3 (Rectangular index set and boundary vector) An index set J is rectangular and denoted J b if J = fp 2 Z n 0 p < b g, where i n e qualities between n-vectors are taken componentwise. The vector b is called t h e boundary vector of J b .

De nition 4 (Smith normal form) For every matrix A of Z n , t h e r e exist two unimodular matrices Q 1 , Q 2 and a diagonal matrix S such that: 3 S = diag(s 1 s 2 s r 0 0 0) where r is the rank of A, s 1 s 2 s r are non-zero elements of Zand s i js i+1 1 i < r . A = Q 1 SQ 2 The matrix S is then denoted b y S(A).

De nition 5 (Left Hermite form) For every non singular matrix A of Z n , there exist a unimodular matrix Q and a lower triangular matrix H such that: 8 (i j) h ij >= 0 , each non-diagonal element is lower than the diagonal element of the same row, A = HQ.

Besides, this decomposition is unique up to a permutation of the rows. In fact, the row order used to \triangularize" A into H is arbitrary, hence there are n! left Hermite forms.

An important remark Consider the modular transformation T m with transformation matrix T and modulus vector m. It is important t o p o i n t out that the coe cients of T are de ned only up to a modulus operation. More precisely, l e t T 0 be the new transformation matrix de ned by T 0 = ( t 0 ij ) where t 0 ij = t ij mod m i : then T 0 m = T m . The proof is immediate:

8(x 1 x n ) 2
Z n P j t ij x j mod m i = P j t 0 ij x j mod m i .

Similarly, the determinant o f T is de ned modulo the product d = Q n i=1 m i . In particular, we can always assume that T is non singular (add a suitable multiple of d to each diagonal element t ii , s a y, to get an equivalent non singular transformation matrix). Proof See 13]. If T b is not injective, there exist two distinct points p q 2 J b such that T b (p) = T b (q). Then r = p ; q 2 Ĵb , r 6 = 0 and T b (r) = 0 . Conversely, if there exists r 2 Ĵb , r 6 = 0 and T b (r) = 0 , l e t p be de ned as follows: p i = r i if 0 r i < b i and p i = 0 i f ;b i < r i < 0. Let q = p ; r. Then p q 2 J b , p 6 = q and T b (p) = T b (q), hence T b is not injective.

Then, Lee and Fortes deal with generator matrices. They consider the set of integer points that are equivalent to zero, i.e, the equivalence class S 0 = fp 2 Z n T b (p) = 0 g: They prove that S 0 is a module, and that there exists a n n integer matrix G that generates S 0 : this means that every element o f S 0 can be represented as an integer linear combination of the columns of G. Of course, there are several matrices that generate S 0 , but they all are right equivalent. Indeed, let G be a generator matrix, then a matrix G 0 will generate S 0 if and only if there exists a n n unimodular matrix U such that G 0 = GU.

The main contribution of 14, 1 3 ] on generators is a su cient condition on the generators of S 0 that guarantees the injectivity of the transformation:

Lemma 2 Let J b be a r ectangular index set with boundary vector b. L et T b be a m o dular mapping and let G be a generator of S 0 . L et be an arbitrary order on the set f1 2 n g. T b is injective if G satis es the following equations:

1. g ii = b ii , 2. g ij = 0 if i j.

From this su cient condition on generators, Lee and Fortes investigate the relationship between generator matrices G and transformation matrices T. They deduce the following su cient conditions for a modular mapping T b to be injective:

Theorem 1 Let J b be a r ectangular index set with boundary vector b. L et T b be a m o dular mapping.

Let be an arbitrary order on the set f1 2 n g. T b : J b ;! Z n is injective if the matrix T satis es to the following equations:

1. t ii ^bi = 1 1 2. t ij = 0 if i j
We restate Theorem 1 as follows: if T is triangular up to a permutation, and if its i-th diagonal entry is relatively prime with b i for all 1 i n, then T b is a time-space transformation of J b .

It turns out that Theorem 1 can be proven without making use of generators, as shown by the following direct proof.

Another proof of Theorem 1 Let T be upper triangular (without loss of generality). We s o l v e the system Tx= 0 mod b for x 2 Ĵb , where T is upper triangular. The last equation is t nn x n = 0 mod b n hence b n divides t nn x n . Since b n is relatively prime with t nn , b n divides x n , w h i c h implies x n = 0 as x 2 Ĵb . The (n ; 1)-th equation gives t n;1 n;1 x n;1 + t n;1 n 0 = 0 m o d b n;1 hence x n;1 = 0 just as before, and continuing the process we nd x = 0 . Therefore we do not need to make use of generator matrices to prove Theorem 1. However, generator matrices will enable us to characterize one-to-one modular mappings, i.e. to give a necessary and su cient condition for injectivity, a s w e s h o w b e l o w in Section 4.

Finally, Lee and Fortes give a necessary and su cient condition in the case where all entries of the boundary vector b have the same value : in this particular case, they show that T b is injective on J b if and only if the determinant o f T and are relatively prime. We extend this result in Section 4.2.1.

4 New results

Characterization when m = b

In this section, we consider as Lee and Fortes that m = b (the modulus vector is equal to the boundary vector). For the general case, see Section 4.2.

As we h a ve seen in Lemma 2, Lee and Fortes 14] exhibit su cient conditions on generator matrices G to obtain one-to-one modular mappings. We p r o ve here that these conditions are also su cient, and we give a constructive m e t h o d t o c heck the injectivity of a given modular mapping.

In the following, we denote by t h e m a t r i x diag(b 1 b n ).

Lemma 3 If G is a generator matrix of S 0 , then det(G) divides det( ) = b 1 b 2 b n .

Proof We are going to exhibit a generator matrix for S 0 . Let us consider a point p 2 S 0 : 9k 2 Z n such that Tp= k. Let = diag( i ) be the comatrix of and d = det = Q n i=1 b i ( is de ned such that = d I n where I n is the identity matrix of order n, i = Q j6 =i b j ). We h a ve:

Tp = k Tp = dk Q 1 S( T)Q 2 p = dk
where Q 1 , Q 2 are two unimodular matrices and S( T) is the Smith normal form of matrix T.

S( T)Q

2 p = dQ 1 ;1 k S( T)Q 2 p = dk 0 where k 0 2 Z n (Q 1 is unimodular). Let S( T) = diag(s i ) : s i (Q 2 p) i = dk 0 i
We w ant o n l y i n teger values for the components of p, therefore

(Q 2 p) i = d gcd(d s i ) k 00 i
where k 00 2 Z n . p = Q 2 ;1 S 0 k 00 where S 0 = diag( d gcd(d si) ). The matrix Q 2 ;1 S 0 generates S 0 . Besides, if we l e t S( ) = diag( 0 i ) and S( ) = diag( 0 i ), we know that 0 d,s o g c d ( d s 

i ) = 0 i u i where u i 2 Zand s 0 i = d 0 i ui . Therefore det(S 0 ) = Q d 0 i ui det(S 0 ) = d n det( ) Q ui Besides, det( ) = d n;1 . T h us,
Proof The su cient condition has already been proved in 14], see Lemma 2.

Necessary condition Let us consider a one-to-one modular mapping T b . Lemma 6 gives an index i such that O + b i ẽi 2 S 0 . Let us consider f i ] bi , subgroup of A. Let B be the nite abelian group B = A= f i ] bi . We also know that A = f 1 ] b1

f n ] bn . Let f 0 1 f 0 2 f 0 i;1 f 0 i+1 f 0 n be the canonical images of f 1 f 2 f i;1 f i+1 f n in B (the canonical image of f i in B is 0). Let us consider x 2 B, there exists y 2 A such that x is the canonical image of y in B. Besides, y = m 1 f 1 + +m n f n and this decomposition is unique. So, x = m 1 f 0 1 + +m i;1 f 0 i;1 +m i+1 f 0 i+1 + + m n f 0 n and the decomposition is also unique. This means that B = f 0 1 ] b1 f 0 i;1 ] bi;1 f 0 i+1 ] bi+1 f 0 n ] bn . There exists j 6 = i such that b j f 0 j = 0, i.e, there exists t, 0 t < b i such that 0 + b j ẽj + tẽ i 2 S 0 .

By repeating this process, we obtain n vectors in S 0 and the matrix H formed by these vectors is upper triangular with diagonal b 1 b 2 b n (up to a permutation of indices). Furthermore, these vectors form a basis of the module generated by G. By adding suitable combinations of the vector columns of H to any v ector x 2 S 0 , w e g e t x = H +a where 8a i 0 a i < b i . Because there is only one element o f S 0 in J b (which is 0), we h a ve a = 0 and thus, x is a linear combination of the column vectors of H. F urthermore, this decomposition is unique because H is non-singular. So, H is the matrix of a basis of S 0 , this means that there exists a unimodular matrix Q such that G = HQ, and this completes the proof.

Given a transformation matrix T and a modulus vector b, Theorem 2 gives a constructive method to check whether T b is a time-space transformation or not. We s k etch the procedure and run it on an example. Procedure From Theorem 2, a procedure to know whether a modular transformation is injective or not can be deduced:

1. Calculate the Smith normal form T and then deduce the matrix Q ;1 2 S 0 that generates S 0 (we use the same notations as in lemma 3). 

Extensions

In this section, we start by p r o ving a useful property that allows to restrict the search of one-to-one modular mappings to a more restricted set: we s h o w that a transformation T b is injective o n J b if and only if T b in injective o n J b and det(T) ^ = 1. Then, we consider the particular case where 8(i j) b i ^bj = 1. In this particular case, we h a ve a necessary and su cient condition directly with the transformation matrix. Finally, w e extend the results given in Section 4 to a more general case:

m 6 = b, but Q m i = Q b i .

Injectivity o f T b

In this section, let T be a transformation matrix and b a modulus vector. We still assume that the source domain and the target domain are the same. We will prove a \scalability property". Beforehand, we prove the following lemma as a prerequisite for Theorem 3.

Lemma 7 det(T) ^ 6 = 1 ) T b is not injective on J b .

Proof We use the notations of lemma 3. Let d = d e t = Q n i=1 b i , S( T) = diag(s i ), S( ) = diag( 0 i ) a n d S( ) = diag( 0 i ). Let Q 2 and S 0 be the matrices such that Q 2 ;1 S 0 generates the module S 0 for T b , Q 0 2 and S 00 the matrices such that Q 0 2 ;1 S 00 generates the module S 0 for T b (Q 2 , S 0 , Q 0 2 and S 00 are calculated as in the proof of lemma 3).

Let S 0 = diag(s 0 i ) and S 00 = diag(s 00 i ). S( n;1 T) = n;1 S( T), so we h a ve:

s 00 i = n d gcd( n d n;1 s i ) s 00 i = d gcd( d s i )
We h a ve seen in the proof of lemma 3 that 0 i divides s i . S o , w e can write s i = 0 i x i with

Q x i = det(T) ( Q s i = det( T) = d n;1 det(T) = Q 0 i Q x i = d n;1 Q x i ).
Besides, 0 i = d 0 n;i+1 . T h us, s 00 i = d 0 i gcd( 0 n;i+1 x i )

There exists i such that gcd( x i ) 6 = 1 ( Q x i = det(T) and det(T) ^ 6 = 1 ) . T h us, Q s 00 i < Q b 0 i = n d. Hence, T b cannot be injective ( w e see in the proof of Lemma 5 that if T b is injective, we m ust have det(S 00 ) = det( ) = n d). . W e h a ve Q 2 ;1 S 0 = 6 1 0 1 ! . T h us, T m is injective on the rectangular index set J (6 1) t but is not injective o n J (2 3) t . Lemma 9 is very useful as it enables to check injectivity for transformations that map a given rectangular domain onto a domain of di erent shape (but of the same size).

Conclusion

In this paper, we h a ve considered modular mappings as introduced by Lee and Fortes 14, 1 3 , 1 2 ] . Our main contribution is a characterization of one-to-one modular mappings that is valid even when the source domain and the target domain of the transformation have the same size but not the same shape. This characterization is constructive, and a procedure to test the injectivity o f a given transformation has been presented.

We believe the study of modular mappings to be very promising in the context of automatic parallelization techniques. Indeed, mapping techniques usually proceed in two steps: rst the input domain (computation points) is mapped onto a time-space domain where a virtual processor is assigned to each computation. Then virtual processors are mapped onto physical processors, most often using a block-cyclic allocation a l a HPF 10]. Characterizing valid modular mappings from input domains onto target domains of larger dimension would enable to fully automatize the mapping procedure.
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 2 Main results of Lee and FortesIn 14, 1 3 ], Lee and Fortes restrict themselves to the study of modular mappings for which the modulus vector is equal to the boundary vector, i . e . m = b. The case where m = b is very important in practice, as the matrix-matrix product example demonstrates.Lee and Fortes start with the following lemma:Lemma 1 Let J b = fp 2 Z n 0 j < b g be a r ectangular domain and de ne Ĵb = fp 2 Z n ;b < p < b g. A m o dular function T b : J b ;! Z n is injective if and only if T b (p) 6 = 0 for all p 2 Ĵb except p = 0 .

  = d (see[START_REF] Moldovan | Partitioning and mapping algorithms into xed-size systolic arrays[END_REF] p.40) and that 0 i divides s i (if A and B are two nonsingular integer n n matrices, then the k-th element s k (AB) of the Smith normal form of AB is divisible by s k (A) a n d s k (B), see 16] p.33). 0 i divides s i and

2.

  Calculate the n! left Hermite normal forms (by p e r m uting the rows) of Q ;1 2 S 0 . 3. If there exists a left Hermite normal form of Q ;1 2 S 0 with diagonal b 1 b 2 b n , the transformation T b is injective.Example Let us consider the matrix T Smith normal form of T and we deduce the two matrices S 0 and Q ;1 2 : 6 left Hermite forms of Q ;1 2 S 0 by permuting the rows. The left Hermite form

Theorem 3

 3 Let 2 N. T h e m o dular mapping T b is a time-space t r ansformation of J b if and only if T b is a time-space t r ansformation of J b and det(T) ^ = 1 . Example Let us consider the matrix transformation T =

We write gcd(u v) = u ^v

det(S 0 ) = d Q u i Since all generator matrices are right equivalent, they all have the same determinant a s Q 2 ;1 S 0 , hence as S 0 .

Lemma 4 Let G be a nite abelian group. Let g] q be the subset f0 g : : : (q ; 1)gg with g 2 G and 1 < q order(g). L et S 1 : : : S k be k subsets of G. G is said to be the direct sum of the S i , which we denote as G = S 1 S k , if the mapping (g 1 : : : g k ) 7 ! g 1 + + g k from S 1 S k to G is one-to-one. If G = g 1 ] k1

g r ] kr then at least one of the g i ] ki is a subgroup of G.

Proof This result has been proved by H a j os in its works on one of the Minkowski's conjecture, see 9].

Lemma 5 If T b is a one-to-one modular on J b , then 8x 2 Z n , t h e r e exists (x 1 x 2 ) 2 S 0 J b such that x = x 1 + x 2 , and this decomposition is unique.

Proof We rst prove the existence of such a decomposition and then its uniqueness.

Existence Let us consider the nite abelian group A = Z n =S 0 . The matrix Q 2 ;1 S 0 generates S 0 (see Lemma 3), so the number of elements of A is det(Q 2 ;1 S 0 ) = det(S 0 ). For x 2 Z n , w e d e n o t e by x the canonical image of x in A.

Let us consider two distinct elements of J b , x and y, then x 6 = y. Indeed, x ; y 2 Ĵb , i f x = y, x ; y 2 S 0 and T b would be not injective (see Lemma 1). All elements of J b have distinct canonical images in A.

The number of elements in J b is det( ), there are more elements in J b than in A (det(S 0 ) det( ), see Lemma 3). So, for all x 2 A, there exists y 2 J b such that x is the canonical image of y (otherwise, two elements in J b would have the same canonical image in A, and this is impossible). Besides, this also means that if T b is injective, we h a ve d e t S 0 = det . Consider x 2 Z n . x is the canonical image of x in A there exists x 2 2 J b such that x 2 = x, x ; x 2 2 S 0 . So, there exists (x 1 x 2 ) 2 S 0 J b such that x = x 1 + x 2 .

Uniqueness If there exists (x 1 x 2 ) and (x 0 1 x 0 2 ) i n S 0 J b such that x = x 1 + x 2 = x 0 1 + x 0 2 then, x 2 ; x 0 2 = x 1 ; x 0 1 2 S 0 . x 2 ; x 0 2 2 Ĵb and T b is injective, so x 2 = x 0 2 and x 1 = x 0 1 . Lemma 6 If T b is a one-to-one modular transformation then there exists i, 1 i n, such that O + b i ẽi 2 S 0 (where e i is the i-th vector of the canonical basis of Z n ).

Proof Let f 1 f 2 : : : f n be the canonical images of O+ẽ 1 O +ẽ 2 : : : O +ẽ n in A. I f T b is injective, for all x 2 Z n , there exist a 2 S 0 and integers i , 0 i < b i , such that x = a + 1 ẽ1 + + n ẽn and this decomposition is unique, see lemma 5. This means exactly that A = f 1 ] b1

f n ] bn . Lemma 4 shows that one of the f i satis es b i f i = 0, i.e, 0 + b i ẽi 2 S 0 .

Theorem 2 A t r ansformation T b is one-to-one if and only if there exists a left Hermite form of a generator matrix G of S 0 with diagonal b 1 b 2 ::: b n .

Proof Assume that T b is injective. Let p 2 Ĵb such that T b (p) = 0. Equivalently, Tp= k for some k 2 Z n . Then T p= k and p 2 Ĵ b . A s T p is injective, Lemma 1 implies that p = 0 . Hence, T b is injective. Besides, we k n o w from Lemma 7 that det(T) ^ = 1 .

Conversely, assume now that T b is injective and det(T) ^ = 1. If det(T) = 0, the proof is immediate (det(T) = 0 and det(T) ^ = 1 ) = 1). Consider now the case det(T) 6 = 0 .

Let p in Ĵ b such t h a t Tp= k k 2 Z n Let U be the comatrix of T (UT= d e t ( T)I n ). We h a ve: det(T)p = U k det(T)p i = (U k) i So, divides det(T)p i . But, we also have d e t ( T) ^ = 1. Hence, divides p i . Let us consider q such that p i = q i . det(T) q = U k det(T)q = U k So, det(T)T q= det(T) k and Tq= k. Besides, ; b < p < b implies ;b < q < b . T b is injective, thus q = 0 a n d p = 0 .

Remark The previous theorem leads to another proof of the following result of Lee and Fortes: 

When 8(i j) b i ^bj = 1

We know (see Section 3.1) that for any transformation T m , there exists an equivalent transformation denoted as T 0 m and such that 8(i j) 0 t 0 ij < b i . W e still assume m = b here. We prove that if 8(i j) b i ^bj = 1, then T b is one-to-one i T is triangular (up to a permutation) with \good" diagonal coe cients: in this particular case, the characterization of one-to-one mappings is quite simple. Theorem 4 If 8(i j) b i ^bj = 1 , t h e n T b is injective on J b if and only if T 0 b is an upper triangular matrix (up to a permutation on row and column indices) with 8i t ii ^bi = 1 .

Proof The su cient condition has been proved in 13] (see Theorem 1) .

Necessary condition Assume that the transformation T b is injective. The proof uses the same lemma as Theorem 2. Let us consider t 0 j 1 j n, the columns of T 0 and let A be the group Z=b 1 Z Z=b 2 Z Z=b n Z. The restriction of T b to J b de nes an injective application. The two sets have the same numb e r o f e l e m e n ts, so it is also bijective, i.e, 8x 2 A 9!y 2 J b = x = T b (y) = (T y ) modb . This means exactly that A = t 0 1 ] b1 b t 0 2 ] b2 b b t 0 n ] bn .

Lemma 4 shows that there exists j such that t 0 j ] bj is a subgroup of A. There exists j such that t 0 j b j = 0 modb , i.e 8i t 0 ij b j = 0 mod b i . So, we m ust have 8i 6 = j t 0 ij = 0 s i n c e b i ^bj = 1 a n d t 0 jj ^bj = 1 (otherwise the transformation would not be injective).

Up to a permutation on rows and columns, the matrix T 0 is now: 

Let us prove that T 00 b 0 is an injective modular transformation on J b 0 . Let us consider x = ( x 1

x j;1 x j+1 x n ) 2 Ĵb 0 such that T 00 x = 0 modb 0 . The element t 0 jj has an inverse in Z=b j Z(t 0 jj ^bj = 1). Let 2 Z=b j Zbe the value ;t 0 jj ;1 u:x, where t 0 jj ;1 is the inverse of t 0 jj in Z=b j Z. We h a ve t 0 jj + u:x = 0 m o d b j . So, the vector (x 1

x j;1 x j+1 x n ) 2 S 0 and we h a ve 8i 6 = j x i = 0 ( T b is injective). We h a ve just proved that T 00 b 0 is injective. So, in the same way, there exists k such that T 00 = 0 B B B @ t 0 kk : : : 0 : T 000 0 1 C C C A with t 0 kk ^bk = 1 , u p t o a p e r m utation.

By repeating this process, we obtain that T 0 is triangular up to a permutation, and each element t 0 ii on the diagonal satis es t 0 ii ^bi = 1 .

Extension to the general case: m 6 = b

In this section, we consider a modular transformation T m and a rectangular index set J b and we prove that general results can be easily derived from the particular case m = b. Besides, if we consider the set of integer points that are equivalent to zero, S 0 = fp 2 Z n T m (p) = 0 g, w e can nd in the same way a generator matrix for S 0 . Let = diag(m i ). As in Section 4 and with the notations of lemma 1, we obtain a matrix Q 2 ;1 S 0 that generates S 0 and that satis es det(Q ;1 2 S 0 )j det( ) (simply replace b by m in Lemma 3). Proof The proof is immediate from the proof of lemma 2. The condition that Q n i=1 m i = Q n i=1 b i is needed to prove that the sum of subsets used in Lemma 5 is a direct sum. Of course, if T m is one-to-one from J b onto J m , both domains must have the same number of integer points.

In 13], Lee and Fortes dealt with the particular case when the modulus vector results from a permutation of the entries of the boundary vector. Lemma 9 is an extension of this particular case.