Mich Ele Dion
email: michele.dion@lip.ens-lyon.fr

Cyril Randriamaro
email: cyril.randriamaro@lip.ens-lyon.fr

Yves Robert
email: yves.robert]@lip.ens-lyon.fr

How to optimize residual communications ?

Keywords: mapping, a ne loop nests, distributed memory parallel computers, minimizing communications, macro-communications placement, nids de boucles a nes, machines parall eles a m emoire distribu ee, minimisation des communications, macro-communications

Minimizing communications when mapping a ne loop nests onto distributed memory parallel computers has already drawn a lot of attention. This paper focuses on the next step: as it is generally impossible to obtain a communication-free (or local) mapping, how to optimize the residual communications? We explain how t o t a k e advantage of macro-communications such as broadcasts, scatters, gathers or reductions or how to decompose general a ne communications into simpler ones that can be performed more e ciently. We nally give a t wo-step heuristic that summarizes our approach:

rst minimize the number of nonlocal communications, then optimize residual a ne communications using macro-communications or decompositions.

Introduction

This paper deals with the problem of mapping a ne loop nests onto Distributed Memory Parallel Computers (DMPCs). Because communication is very expensive i n D M P C s , h o w to distribute data arrays and computations to processors is a key factor to performance.

The computations described in this paper are general non-perfect loop nests (or multiple loop nests) with uniform or a ne dependences. Mapping such l o o p n e s t s o n to virtual processors with the aim of \minimizing" in some sense the communication volume or number is known as the alignment problem, which has drawn a lot of attention 15, 9 , 13, 1, 4, 20, 12, 3, 6].

More precisely, given a loop nest, the goal is to assign a virtual processor, i.e. a location on a virtual processor grid, to each a r r a y element and to each computation. Arrays and computations are thus aligned and projected onto the virtual processor grid. This grid is then folded onto a physical grid, most often of much smaller size in each dimension. Languages like HPF provide BLOCK or CYCLIC distributions for such a folding.

There is a natural objective function for the mapping problem which has been extensively used in the literature: the aim is to minimize the number of non-local communications that will remain after a suitable alignment has been found. Some authors even look for a communicationfree mapping for which there remains NO nonlocal communication. In fact, it is always possible to achieve a communication-free mapping ... provided we are prepared to use a virtual grid of dimension 0, i.e. a single processor ! Obviously, the larger the dimension of the target virtual grid, the larger the number of residual nonlocal communications.

Experimental evidence shows that communication-free mappings are very unlikely to be achieved. Think of elementary kernels as simple as a matrix-matrix product or a Gaussian elimination procedure, there is no way to map such k ernels onto 2D-or even 1D-grids without residual communications. A natural question arises: is there a way to \optimize" in some sense the communications that remain ? Platono 19] gives a strong motivation to answer the question. Experimenting on a CM; 5 with 32 processors, he compared various communication times. He observed the ratios reported in Table 1. Table 1 clearly shows that the CM;5 has facilities for some usual macro-communications such as a broadcast or a reduction. Also, translations are much more e cient than general (a ne) communications.

Reduction Broadcast Translation General communication 1 1.5 2.5 90

Table 1: Comparing execution times for di erent d a t a m o vements on a CM-5

Experimenting with the Intel Paragon gives interesting results too: communication con icts are generated by serial messages on a single link at the same time. Thus a general communication cannot be e ciently executed by simply letting all processors send their messages simultaneously. Decomposing a general communication into a small sequence of communication parallel to the grid axes (horizontal and vertical) proves much faster, as illustrated in Section 4.1.

Being prepared to have some residual communications, we adopt the following strategy: 1. Zero out as many non-local communications as possible. To this purpose, we use an heuristic modi ed from Dion and Robert 6]. This heuristic is based upon the access graph and will be explained in Section 2. We w eight the edges of the access graph to take communication volume into account. 2. For remaining communications, we explore the following two possibilities (both can be implemented simultaneously): (a) try to nd a mapping such that (at least) one of the residual communications is a macrocommunication (in addition to reduction and broadcast, we could have a scatter or a gather, for instance). (b) try to nd a mapping such that (at least) one of the residual communications can be decomposed into more simple and e cient d a t a m o vements (such as horizontal and vertical communications). The paper is organized as follows: in Section 2, we i n troduce a motivating example that we will work out throughout the paper. We informally explain our modi ed heuristic to zero out as many communications as possible.

We explain how t o t a k e a d v antage of macro-communications in Section 3. We explain how t o decompose general a ne communications into simpler ones in Section 4. Altogether, our complete heuristic for the mapping problem is summarized in Section 5. Section 6 is devoted to a survey of related work in the literature, together with some discussion and comparisons. Finally, concluding remarks are stated in Section 7.

Motivating example

In this section, we informally explain our new approach on an example. First we apply an heuristic modi ed from 6] to minimize the number of nonlocal communications. Then, we try to make the residual nonlocal communications \e cient".

Example

Consider the following non-perfect a ne loop nest, where a is a 2D-array, a n d b and c are 3D-arrays:

Example

1 for i = 0 t o N do for j = 0 t o M do f Statement S 1 g b(F 1 (i j) t + c 1) = g 1 (a(F 2 (i j) t + c 2) a (F 3 (i j) t + c 3) c(F 4 (i j) t + c 4)) for k = 0 t o N + M f Statement S 2 g b(F 5 (i j k) t + c 5) = g 2 (a(F 6 (i j k) t + c 6)) f Statement S 3 g c(F 7 (i j k) t + c 7) = g 3 (a(F 8 (i j k) t + c 8))
endfor endfor endfor where Here, g 1 , g 2 and g 3 are arbitrary functions. The loop nest is an a ne loop nest because all array references are a ne functions of the loop indices. There are no data dependences in the nest (check this with Tiny 22] for instance) can be used, for example, to perform dependence analysis), all loops are DOALL loops, hence all computations can be executed at the same time-step.

F 1 = 0 B @ 1 1 0 0 0 ;1 1 C A and c 1 = 0 B @ ;2 1 3 1 C A, F 2 = 0 1 1 0 ! and c 2 = ;1 6 ! , F 3 = 1 1 ;4 ;5 ! and c 3 = 0 0 ! , F 4 = 0 B @ 1 0 0 1 1 ;1 1 C A and c 4 = 0 B @ ;1 3 0 1 C A, F 5 = 0 B @ 1 0 0 0 1 0 0 0 1 1 C A = Id
Mapping the loop nest onto a m-dimensional virtual processor space consists in determining allocation matrices for each statement and for each array. A ne allocation functions are de ned as in 1, 6]:

1. for each statement S of depth d: alloc S (I) = M S I + S , w h e r e I is the iteration vector (I = (i j) t for statement S 1 and I = (i j k) t for statements S 2 and S 3), M S is a m d matrix and S is a m-vector. 2. for each array x of dimension q x : alloc x (I) = M x I + x , where M x is a m q x matrix and x is a m-vector.

By this mapping, statement instance S(I) is assigned to virtual processor M S I + S and array element x(I) is stored in the local memory of processor M x I + x . F or instance, in statement S 1 , the value a(F 2 (i j) t + c 2) has to be read in the memory of the processor alloc a (F 2 (i j) t + c 2) = M a (F 2 (i j) t + c 2)I + a and sent to the processor in charge of the computation S 1 ((i j) t), namely processor alloc S1 ((i j) t) = M S1 (i j) t + S : This results in a communication of length a S1 equal to the distance between a(F 2 (i j) t + c 2) a n d S 1 (i j). We h a ve a S1 = alloc S1 ((i j) t) ; alloc a (F 2 (i j) t + c 2) a S1 = M S1 (i j) t + S1 ; (M a (F 2 (i j) t + c 2) + a) a S1 = (M S1 ; M a F 2)(i j) t ; M a c 2 + S1 ; a : The expression a S1 contains a nonlocal term (M S1 ; M a F 2)(i j) t which depends upon the iteration vector (i j) t , and a local term S1 ; M a c 2 ; a . The nonlocal term corresponds to irregular patterns of communication, whose size can grow o ver the whole processor space. It is clearly the main factor a ecting performance. On the other hand, the local term corresponds to regular xed-size communications that can be performed e ciently onto DMPCs.

Zeroing out the nonlocal term is of course the main goal of the mapping optimization process, as recognized by 1] and 20]. A communication-local mapping is a mapping where all nonlocal terms have been zeroed out. However, it is generally impossible to obtain a communication-local mapping with the required dimension for the target virtual architecture. Then, another objective o f the mapping process is to make e cient those nonlocal communications that cannot be zeroed out. We will try for example to derive macro-communications such as broadcasts, reductions, scatters, ..., or to decompose general communications into communications parallel to the axes of the target processor space. Back to our example, in statement S 1 and for array a, w e see that zeroing out the nonlocal term amounts to choose allocation matrices M S1 and M a so that the equation M S1 ; M a F 2 = 0 i s satis ed. In the same way, the value b(i + j ; 2 1 3 ; j) has to be written after the computation S 1 ((i j) t). This results in a communication: S1 b = a l l o c b (F 1 (i j) t + c 1) ; alloc S1 ((i j) t) S1 b = (M b F 1 ; M S1)(i j) t + M b c 1 + b ; S1 Again, to zero out the nonlocal term, we h a ve to ful ll equation M b F 1 ; M S1 = 0 .

More generally, if an array x is read or written in a statement S with an access matrix F, t o zero out the nonlocal part of the communication due to this access, we m ust satisfy the matrix equation M S = M x F:

There are 8 such equations in our example.

Zeroing out nonlocal communications

The primary goal is to zero out as many nonlocal terms as possible. That is to say: given M S (resp. M x) of full rank1 , w e w ant t o n d M x (resp. M S) of full rank such a s M S = M x F. H o w t o solve such an equation is explained below.

Solving M S = M x F

Consider the nonlocal term linking statement S of depth d and array x of dimension q x : the equation is M S = M x F, where M S is a m d matrix, and M x a m q x matrix. The matrix F is of dimension q x d and we consider only full rank access matrices. We target a m-dimensional processor space and we assume that m d and m q x (we h a ve c hosen to deal only with the communications such that m d and m q x as they represent the core of the computations and data elements to be distributed). As already said, we impose that the matrices M S and M x are of full rank m to fully utilize processor resources. There are several cases according to the shape of the matrix F:

q x = d (in such a case F is square).
This is clearly the simplest case when F is square and non-singular. Given M x of rank m, then M x F is of rank m and we can let M S = M x F without violating the constraint that M S is of rank m. C o n versely, given M S of rank m, M S F ;1 is of rank m, and we can let M x = M S F ;1 . q x < d (in such a case, F is at).

Assume that F is of full rank. Then, given M x of rank m, M x F is of rank2 m, and we c a n safely let M S = M x F. H o wever, given M S , nding M x of rank m such that M S = M x F is not always possible. We k n o w t h a t F admits a right pseudo-inverse3 F ;1 of size d q x and of rank q x , s u c h that FF ;1 = Id. Hence, if there exists M x such that M S = M x F, then M S F ;1 = M x FF ;1 = M x . Unfortunately, M x = M S F ;1 is not always a solution of the equation M S = M x F. w e h a ve the compatibility condition4 M S = M S F ;1 F. F urthermore, M S F ;1 can be of arbitrary rank less than m. T o summarize, given M x of rank m, i t i s a l w ays possible to determine M S of rank m (M S = M x F) while the converse is not true.

d < q x (in such a case, F is narrow).

Assume that F is of full rank d. Then, F has a left pseudo-inverse F ;1 of size q x d, of rank d, and such that F ;1 F = Id. The situation is exactly the converse of the previous one: given M S of rank m, M x = M S F ;1 is a rank-m solution 4 of the equation M S ; M x F = 0 h o wever, given M x of rank m, M x F can be of arbitrary rank less than m. Hence, given M S of rank m, it is always possible to determine M x of rank m (M x = M S F ;1) while the converse is not true.

Access graph

We recall here the de nition of a m-dimensional access graph G = (V E m) graph as stated in 6].

The access graph takes into account h o w the equation M S = M x F can be solved.

1. m is the dimension of the target virtual architecture, 2. each v ertex v 2 V represents an array v ariable or a statement, 3. consider a loop nest where an array v ariable x of dimension q x is accessed (read or written) in a statement S of depth d, through an access matrix F of rank min(q x d) greater than the dimension m of the target architecture: then if q x d we h a ve an edge from x to S, t o indicate that given M x of rank m it is always possible to nd M S of rank m such that the communication is made local, the weight of the edge is F and if d q x we h a ve an edge from S to x, to indicate that given M S of rank m it is always possible to nd M x of rank m such that the communication is made local, the weight of the edge is F ;1 . In the special case where q x = d, there is a single edge with two a r r o ws between S and x to indicate that both orientations are possible.

Figure 1 represents the access graph for our example. The communication corresponding to the access matrix F 8 is not represented because F 8 is not a full rank matrix.

Remark For a narrow q x d matrix F, the left pseudo-inverse is not the only matrix G that satis es the equation GF = I d . A n y matrix H such that H = F ;1 + M(Id ; FF ;1) where M is an arbitrary matrix of correct dimension also satis es GF = Id. Hence, in the access graph, we can choose any full rank matrix G such that GF = I d a s w eight matrix (and not necessarily the \true" left pseudo-inverse F ;1 as de ned in 14]).

Mapping heuristic

Some nonlocal communications represented in the graph can be zeroed out, but not all. Consider a simple path in the access graph going from vertex v 1 to vertex v 2 with v 1 6 = v 2 (the path is not a cycle). Then given any allocation matrix M v1 of rank m for vertex v 1 , the existence of the path ensures that it is always possible to make local all communications represented by edges between the two v ertices. In our example, given M a of rank 2 in G = (V E 2), and following the path a ;! S 1 ;! b ;! S 2 , w e are ensured to be able to compute M S1 , M b and M S2 , all of rank 2, so that the communications corresponding to access matrices F 2 , F 1 and F 5 are made local: we successively let M S1 = M a F 2 , M b = M S1 F ;1 1 and M S2 = M b F 5 . There is another path from a to S 2 with the direct edge a ;! S 2 (access matrix F 5 for reading a in S 2). Is it possible to make local this communication in addition to the three above communications ? Using the edge a ;! S 2 we get the equation M S2 = M a F 6 while we h a

d M S2 = M b F 5 = M S1 F ;1 1 F 5 = M a F 2 F ;1 1 F 5 .
To simplify the equations, in the following we use the matrix F 0 1 = 1 0 1 0 0 ;1 ! (which satis es the equation GF 1 = Id) instead of F 1 ;1 . We derive the condition M a F 2 F 0 1 F 5 = M a F 6 . This condition is satis ed for all matrices M a of rank m i F 2 F 0 1 F 5 = F 6 . In our example, let F path = F 2 F 0 1 F 5 . W e compute F path = 0 0 ;1

1 0 1 ! 6 = F 6 .
Note that as F path ; F 6 = 0 ;1 0 0 1 0 ! is of de cient rank, according to m, i t w i l l o r n o t b e possible to nd a matrix M a such that the condition M a F 2 F ;1 1 F 4 = M a F 5 is satis ed.

In fact, this analysis can be extended in the general case: each time there are two d i s j o i n t paths p 1 and p 2 both going from a vertex v 1 to a vertex v 2 in the access graph, we c a n m a k e a l l communications on both paths local provided that the equality F p1 = F p2 holds (where F p denotes the product of the access matrices along the edges of path p). If F p1 ; F p2 is of de cient rank, according to the size of the allocation matrix, it can or not be possible to nd a matrix M such that M(F p1 ; F p2) = 0. See 6] for more details.

Besides, a similar analysis can be performed in the case of cycles. Denote by F c the product of the weight matrices along the cycle: if F c = Id (where Id is the identity matrix), all the communications can be made local along the cycle, if F c ; Id is of de cient rank, according to the size of the allocation matrix, it can or not be possible to have only local communications along the cycle.

As already said, the access graph depends upon the dimension m of the target architecture space. Given m, not all the communications are taken into account in the access graph G = (V E m). The edges in G represent only the communications with access matrix of full rank greater than m.

So, the heuristic does not try to make all the communications local but only the \most important ones". We use the following heuristic: Heuristic Given the access graph G(V E m) :

1. associate an integer weight to each edge (see below). Construct a maximum branching G 0 = (V 0 E 0 m) o f G using the algorithm due to Edmonds, 2. for each edge in E n E 0 , try to add the edge to G 0 . If the addition of the new edge creates a cycle of matrix weight the matrix identity or a new path with same source and destination vertices and same weight as an already existing path, the edge can be added in E 0 . A t this step, all the communications represented by edges in G 0 can be made local, 3. consider the multiple paths and the cycles with F p 1 ; F p 2 or F cycle ; I of de cient rank and try to nd allocation matrices that allow t o z e r o o u t e v en these communications. In step 1, the weight of a branching is de ned as the sum of the integer weights of the arcs in the branching. A maximum branching is any possible branching with the largest possible weight, Figure 2 represents the weighted access graph for our motivating example. A matrix weight (corresponding to the access matrix or its pseudo-inverse) and an integer weight (corresponding to the volume of data exchange due to the communication) are associated to each e d g e .

A possible maximum branching for our example is represented in Figure 3. It contains 5 edges out of the 7 edges of the access graph. Hence, 5 communications can be made local and 2 communications remain nonlocal communications. Note that both edges of maximum weight 3 have been zeroed out.

Optimizing residual communications

The main problem now is: what to do with the residual general communications? After the previous heuristic, the communication corresponding to the access matrix F 6 (reading a in S 1) and the one corresponding to the access matrix F 3 (reading a in S 1 too) remain nonlocal general communications.

To simplify the equations, we use the matrix F 0 1 = 1 0 1 0 0 ;1 ! (which satis es the equation GF 1 = Id) instead of F 1 ;1 and F 0 4 = 1 0 0 0 1 0 ! (which satis es GF 4 = Id) instead of F 4 ;1 (see the remark in Section 2.2.2).

Back to the branching, there is one input vertex a. H e n c e , w e c a n c hoose the allocation matrix M a and deduce the other allocation matrices from M a in order to make the communications local:

M S1 = M a F 2 , M b = M S1 F 0 1 , M c = M S1 F 0 4 , M S2 = M b F 5 and M S3 = M c F 7 . Choose, for example, M a = 1 0 0 1 ! . W e h a ve M S1 = M a F 2 = 0 1 1 0 ! , M b = M a F 2 F 0 1 = 0 0 ;1 1 0 1 ! , M S2 = M a F 2 F 0 1 F 5 = 0 0 ;1 1 0 1 ! , M c = M a F 2 F 0 4 = 0 1 0 1 0 0 ! , a n d M S3 = M a F 2 F 0 4 F 7 = 0 1 0 1 1 1 ! :
We c heck that the two communications corresponding to the two edges of the access graph that do not belong to the selected branching remain nonlocal communications:

M a F 6 = 0 1 ;1 1 ;1 1 ! 6 = M S2 and M a F 3 = 1 1 ;4 ;5 ! 6 = M S1 :
Remark If we left-multiply M a by a unimodular matrix U of M n (Z) (M n (Z) denotes the set of n n matrices over Zand the unimodular matrices of M n (Z) are those of determinant 1), all the allocation matrices deduced from M a will be left-multiplied by the same unimodular matrix.

Inside each connected component of the branching, the alignment matrices are computed up to a multiplication by an unimodular matrix.

How to optimize the two residual communications? 1. Detecting macro-communications

For the rst communication concerning the access matrix F 6 (a(F 6 (i j) t + c 6) r e a d i n S 2), we can notice that F 6 has a non null kernel: ker F 6 is the subset generated by the vector v = (0 1 1) t . Let I 1 and I 2 two points of the index set of S 2 such that I 2 ; I 1 2 ker F 6 , i.e I 2 ; I 1 = kv, k 2 Z: w e h a ve F 6 I 1 = F 6 I 2 . Besides, M S2 v = (;1 1) t , h e n c e M S2 I 1 6 = M S2 I 2 .

The same value of array a, a(F 6 I 1 + c 6) (o r a(F 6 I 2 + c 6)), located in the memory of processor M a (a(F 6 I 1 + c 6)) + a , m ust be read by distinct processors M S2 I 1 + S2 and M S2 I 2 + S2 = M S2 (I 1 + kv) + S2 . Hence, the communication can be viewed as a partial broadcast along one direction of the processor space.

Macro-communications such as broadcasts are e ciently implemented on modern DMPCs. On a CM-5, the ratio between the communication time for a general communication and a broadcast is 60 (see Table 1 in section 1). The broadcast can be total (the value is sent to the whole processor space) or partial (the value is sent in only some directions of the processor space). To be most e cient a partial broadcast must be performed along the directions of the processor space. To optimize the rst residual communications, we c hoose the allocation matrices so as to have a partial broadcast along one axis of the processor space.

In our example, the value a(F 6 I 1 + c 6) in the memory of the processor M a (a(F 6 I 1 + c 6)) + a is sent t o p r o c e s s o r s M S2 (I 1 + kv) + S2 , k 2 Z. The communication can be decomposed in a translation and a partial broadcast along the direction given by the vector M S2 v. H o wever,

M S2 v = 0 0 ;1 1 0 1 ! 0 B @ 0 1 1 1 C A = ;1 1 ! :
With such a mapping, the broadcast is not parallel to an axis. We rotate the mapping by left multiplying M a (and therefore all the other allocation matrices) by a suitable unimodular matrix. Let V = 1 1

0 1 ! . W e h a ve V M S2 v = 0 1 !
. By left-multiplying all the allocations matrices by the unimodular matrix V , the communication corresponding to the access matrix F 6 becomes a macro-communication that can be performed e ciently 5 .

Decomposing the last residual communication

For the second communication concerning the access matrix F 3 (a(F 3 (i j) t + c 3) r e a d i n S 1),

we try to decompose it into more simple and e cient d a t a m o vements such as horizontal or vertical ones.

In our example, the processor P = V M a F 3 I sends its data to the processor Q = V M S1 I (up to a translation). Let T be the data ow matrix: a processor P sends data to processor Q = TP. W e h a ve TVM a F 3 = V M S1 . So, T = V M S1 (M a F 3) ;1 V ;1 . Besides V M S1 (M a F 3) ;1 V ;1 = 1 ;1 5 ;4 ! :

We can decompose V M S1 (M a F 3) ;1 V ;1 into two elementary matrices that correspond to horizont a l o r v ertical communications (see Section 4):

V M S1 (M a F 3) ;1 V ;1 = 1 0 5 1 ! 1 ;1 0 1 ! :
To summarize, in our example, we nally obtain on the access graph 5 local communications, one broadcast and one residual communication that can be decomposed into two elementary communications.

Macro-communications

In this Section we derive formal conditions for detecting and implementing macro-communications such as broadcasts, scatters, gathers, and reductions. We also address the message vectorization problem.

Broadcast

Broadcasts occur when the same data item is accessed at same time-step by s e v eral virtual processors. Consider the following loop nest:

Example 2 for I do : : : S(I) : : : = a(F a I + c a) : : :

endfor 5 We point out that the rank-de cient communication corresponding to F8 also becomes a broadcast parallel to one direction of the processor space: ker F8 is the subset generated by t h e v ectors v1 = (0 1 ;1) t and v2 = (1 0 ;1) t .

We h a ve V M Let M S I+ S and M a I+ a be the a ne allocation functions for statement S and for array a. W e assume that the computation time steps for S(I) a r e g i v en by a linear multi-dimensional schedule. Let S be the multi-dimensional scheduling application for statement S, the computation of S(I) is scheduled at time-step t = S (I) (see 8]) on the processor M S I + S and the data accessed is a(F a I + c a) which is located in the processor M a (F a I + c a) + a .

The same index x from array a is read at same time-step by s e v eral processors if there exist two indices I 1 I 2 of the iteration space such t h a t :

1. t = S I 1 = S I 2 , 2. x = F a I 1 + c a = F a I 2 + c a , 3. M S I 1 + S 6 = M S I 2 + S . This implies that I 1 ; I 2 2 ker(S) \ ker(F a)n ker(M S). Let IS be the index set for statement S. Let I 0 2 IS, let p the dimension of ker(S) \ ker(F a)n ker(M S) and (v 1 v 2 : : : v p) v ectors that generate ker(S) \ ker(F a)n ker(M S). Let v 2 ker(S) \ ker(F a)n ker(M S), the computations of S(I 0) a n d S(I 0 + v) are scheduled at the same time-step and the same element a(F a I 0 + c a) of the array a is read. The (value of the) data item a(F a I 0 + c a) i s s e n t to both processors M S I 0 + S and M S (I 0 + v) + S . Hence, the necessary communications for the set of computations fS(I) j I = I 0 + v v 2 ker(S) \ ker(F a)n ker(M S)g can be regrouped into two c o m m unications: rst a translation of the data item a(F a I 0 + c a) f r o m M a (F a I 0 + c a) + a to M S I 0 + S , then a broadcast of this item along the vectors M S v 1 M S v 2 : : : M S v p .

Let m be the dimension of the target virtual processor space. If p = m, the broadcast is total. If 0 < p < m , the broadcast is partial. See Figures 4 and5 for examples with m = 2 and p = 2 or p = 1 . I f p = 0, the broadcast is hidden by the mapping and we h a ve o n l y a p o i n t t o p o i n t communication. In the case of a partial broadcast, as Platono in 19], we impose to broadcast in directions parallel to some axis of the processor space. In Figure 5, the direction of the broadcast M S v 1 is parallel to one axis.

Partial broadcast conditions Let D be the m p matrix h M S v 1 M S v 2 : : : M S v p i . I n t h e case of partial broadcast, 0 < p < m , D is a narrow rectangular matrix. Partial broadcasts correspond to e cient s c hemes of communications i there are along some dimensions of the processor space, i.e, D = " D 1 0 # (up to a row permutation), where D 1 is n p full rank matrix (n p) a n d 0 i s a (m ; n) p null matrix.

If D is not of the previous form, we use the right Hermite form of D 6 to nd a new allocation matrix M S such that the broadcast is made parallel to some axis: we decompose D as D

= Q " H 0 #
where Q is a unimodular matrix and H is n n lower triangular matrix. Hence,

h Q ;1 M S v 1 Q ;1 M S v 2 : : :Q ;1 M S v p i = " H 0 #
. If we l e f t m ultiply M S by the unimodular matrix Q ;1 , the partial broadcast becomes parallel to the axis.

Scatter

A scatter occurs when several data located in the same processor must be sent at same time-step to several processors. The only di erence between broadcast and scatter is that di erent d a t a i s to be sent to the receiving processors. Consider again Example 2, the conditions to have a scatter are the following:

1. t = S I 1 = S I 2 , 2. p = M a (F a I 1 + c a) + a = M a (F a I 2 + c a) + a , 3. M S I 1 + S 6 = M S I 2 + S , 4. F a I 1 + c a 6 = F a I 2 + c a . This implies that I 1 ; I 2 2 (ker S \ ker M a F a)n(ker M S \ kerF a). We h a ve similar conditions for a scatter as for a broadcast.

Gather

A gather is the \inverse" operation to a scatter. Several data located in di erent processor are sent at same time-step to the same processor. Consider the following loop nest: Example 3 for I do : : : S(I) a(F a I + c a) = : : : : : : endfor Again, the conditions for a gather are close to that for scatters:

1. t = S I 1 = S I 2 , 2. p = M a (F a I 1 + c a) + a = M a (F a I 2 + c a) + a , 3. M S I 1 + S 6 = M S I 2 + S , 4. F a I 1 + c a 6 = F a I 2 + c a . This implies that I 1 ; I 2 2 (ker S \ ker M a F a)n(ker M S \ kerF a). A gather can be partial or total and we h a ve similar conditions on partial gathers as previously.

Reduction

A reduction is similar to a gather but the di erent v alues sent to the same processor are used to compute one single value. Reductions occur when, at same time-step, a single processor uses values computed by d i e r e n t instances of the same instruction on di erent processors. A reduction is usually associated with a commutative and associative function (+ min : : :) that computes a resulting value from many input values. Consider the following loop nest, where s represents an This implies that I 1 ; I 2 2 ker S \ ker M S n ker M b F b .

Message vectorization

Message vectorization can take place when a processor accesses data from another processor that remains unchanged for several consecutive time steps: data items to be sent can be regrouped into packets that are sent just in time to reach their destination. The communications can be extracted out of a loop and performed before the computations. The idea is to replace a set of small-size communications by a single large message, so as to reduce overhead due to start-up and latency 10, 2 1 , 5] .

Consider again Example 2. The space-time transformation is given by:

t p ! = S M S ! I + 0 S !
where p is the processor responsible at time-step t (the schedule can be multi-dimensional) for the computation S(I). Let S = S M S ! . Hence, we h a ve I = S;1 t p ; S ! . F or the computation S(I), processor p reads data from processor M a (F a I + c a) + a . This expression does not depend on t when M a F a S;1 = (0 X) where 0 is a m p null matrix and X is a m m matrix. This condition is equivalent t o M a F a = (0 X) S = XM S and therefore to ker M S ker(M a F a).

Communication decomposition

In this Section we explain how to decompose general a ne communications into elementary (horizontal or vertical) ones. We p r o vide analytical conditions for such a decomposition to exist. In Section 4.1 we report experimental communication times on the Intel Paragon that demonstrate the usefulness of communication decomposition.

Communication decomposition: why

Consider a general a ne communication occurring for statement S(I) : ::: = :::a(F a I + c a). Using notations of Section 2, the virtual processor p recv = M S :I + S (where M S is of size m d) receives a data item from the virtual processor p send = M a :(F a :I + c a) + a (where M a is of size m q a). Assume for simplicity that M S , M a and F a are nonsingular square matrices of size m m (hence m = d = q a). We h a ve the following equations: The idea is to decompose T into the product of several elementary matrices that will generate communications parallel to one axis of the virtual processor space. We mainly discuss the case where the determinant o f T is equal to 1: det T = 1 . We brie y mention how to deal with arbitrary determinants in Section 4.5. Assume m = 2 for example: we aim at decomposing T into the product of matrices L i = 1 0 l i 1 ! (horizontal communications) or U i = 1 k i 0 1 ! (vertical communications). We w ould have similar elementary matrices for larger dimensions: an elementary matrix would look like Due to space limitation we detail only the case m = 2 hereafter, but the ideas can be obviously extended to higher dimensions.

To g i v e a concrete motivation, consider the following data ow matrix T = 1 3 2 7

!

. The communication is to be implemented on a Paragon machine con gured as a 3 8 grid of processors.

Table 2 reports communication ratios when implementing T directly, or when decomposing it as T = LU, where L = 1 0 2 1 ! and U = 1 3 0 1 ! . Table 2 shows that decomposing the communication gives better results (intuitively, better have several simple communications than a complicated one). The cost for U is higher than for L because Communication Not decomposed L U L:U Execution ratio 10 1:5 3:9 5:4

Table 2: Decomposing versus not decomposing a general a ne communication on the Intel Paragon of the larger grid dimension. Data was distributed using a standard CYCLIC distribution. We come back to distribution techniques in Section 4.3 where we i n troduce a new data distribution scheme that enables to implement elementary communications even more e ciently. Anyway, the gain obtained by decomposing communication is machine-and compiler-dependent. Table 2 is only intended to give experimental evidence that communication decomposition can prove e cient. To be conservative, we look to decomposing general communications into a small (say l 4) number of elementary ones.

Communication decomposition: how 4.2.1 Direct decomposition

Let T = a b c d ! with det(T) = ad ; bc = 1 . W e d e r i v e conditions to know whether T can be decomposed into the product or less than or equal to four elementary matrices L i and U i .

The product of two elementary matrices is

LU = 1 0 1 ! 1 0 1 ! = 1 1 + : ! , o r UL= 1 0 1 ! 1 0 1 ! = 1 + : 1 !
hence the necessary and su cient condition to have such a decomposition is: a = 1 o r d = 1 .

We see that the conditions on (a b c d) t o h a ve a decomposition beginning with a U are the same as the conditions on (d c b a) for a decomposition beginning with a L. T h us we can restrict ourselves to decompositions beginning with a U. The equation for a decomposition into the product of four elementary matrices (beginning with a U matrix) is:

1 0 1 ! 1 0 1 ! 1 0 1 ! 1 0 1 ! = (
(1 + :)(1 + :) + : = a is always true. Indeed

(1 + :)(1 + :) + : = 1 + : + : + : : : + :

(

But r^d = 17 (indeed if pjr and pjd then pjb, and so p = 1 because b^d = 1) . T h us, rj(1;d+rc), so rj(1 ; d). Therefore, the necessary and su cient condition for a matrix to be equal to the product of four elementary matrices is: 9 b ; :djd ; 1 o r 9 c ; :aja ; 1.

We could go further and look for a decomposition into ve or more elementary matrices. But an exhaustive s e a r c h s h o ws that every 2 2 matrix T with det(T) = 1 and whose coe cients are all lower than or equal to 14 in absolute value, is equal to the product of 2, 3 or 4 elementary matrices.

In practice, larger coe cients are unlikely to be encountered in loop nests !

With left-multiplication by a unimodular matrix

As outlined in Section 2.3, alignment matrices are computed up to a multiplication by an unimodular matrix. If we l e f t -m ultiply M S and M a by a unimodular matrix M, then the data ow matrix T = M s (M a :F a) ;1 is transformed into MTM ;1 . Therefore, rather than decomposing T into the product of elementary matrices, we can search for a unimodular matrix M such that MTM ;1 , a matrix similar to T, can be decomposed into such a product. Consider again the case m = 2 and det(T) = 1. The best would be to show that T is similar to a product LU of two elementary matrices, so as to decompose MTM ;1 into one horizontal communication followed by one vertical communication. The problem amounts to show that every integer matrix T = a b c d ! with ad;bc = 1 is similar over Zto a matrix LU = 1

1 + ! .
The problem is surprisingly di cult, and the answer depends upon the coe cients of T.

Let P(X) = = X 2 ;(a+d)X +1 be irreducible over Q: it is the case if p Tr (T) 2 ; 4 6 2 Q, which reduces to Tr (T) 6 = 2. Then there is a one-to-one correspondence between similarity classes over Zwith the ideal classes in the ring Z], where is a root of P(X): this is Latimer and MacDu ee's theorem 18, page 53]. In turn, the number of ideal classes is in one-to-one correspondence with the number of equivalence classes of the quadratic forms with discriminant = Tr (T) 2 ; 4 11, p a g e 192]. This number is nite (it is called the genus) and can be calculated with complex analytic methods, as explained in 2, page 371].

The answer to our problem is negative in the following case: if Tr (T) ; 2 = a + d ; 2 = is a prime number, there are only 4 possibilities for : = 1 o r = Tr (T) ; 2. Therefore the product of two elementary matrices belong to at most 4 di erent similarity classes. There are in nitely many v alues of = Tr (T) 2 ;4 whose genus is greater than 4, hence in nitely many cases where the answer is negative: an arbitrary integer matrix T with det(T) = 1 is not always similar to the product of two elementary matrices.

To be more concrete, let us give an example where the answer is negative. Consider the following example where Tr (T) = ;2 : T = 6 7 ;7 ;8 ! . This case is simple because P(X) = X 2 + 2 X + 1 is not irreducible over Q. Since Tr (A) = ;2, we h a ve = ;4. Assume there exists a unimodular matrix M = u v w x ! , with det(M) = ux ; vw = 1, such that MTM ;1 = 1

1 + ! .
Equating coe cients, we obtain = (7x 2 ; 14xw + 7 w 2). So 7 needs to divide , and it is impossible.

However, a simple su cient condition for T to be similar to a product LU or ULcan be determined as follows. (e 1 e 2) is a unimodular basis of determinant 1 a n d f(e 1) ; e 1 = :e 2 . In the new basis (e 1 e 2), T = 1 a c ! . Hence T is similar to the product of two elementary matrices. Our su cient condition is the same as the necessary and su cient condition for T to be decomposed into the product of three elementary matrices. Either strategy could be more interesting, depending upon the target machine. Note that all integer matrices T with det(T) = 1 and whose coe cients are all lower than or equal to 5 are similar to a product of 2 elementary matrices.

A new data distribution scheme

We h a ve dealt with virtual processors so far. In this Section we m a k e a short digression to introduce a new data distribution scheme called grouped p artition: the grouped partition is well-suited to implementing horizontal/vertical communications on the Paragon. The grouped partition leads to smaller communication times than the standard CYCLIC or CYCLIC(BLOCK) distributions.

Grouped partition Consider a horizontal communication of data ow

matrix U = 1 k 0 1 ! .
Virtual processor (i j) sends data to processor (i + kj j). So processor (0 j) sends to (kj j) which in turn sends to (2:k j) and so on. The communication is thus subdivided into k independent communications. Let 0 c < k design a class de ned as follows: virtual processor (c + k:j j) 8 belong to class c. There is no communication between classes, communication occurs only within classes.

Targeting a 2d-grid of P Q processors, we h a ve P physical processors per row and Q per column. As P is not expected to be equal to k, p h ysical processors are partitioned into blocks, and 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 0,2 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 0,0 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 0,3 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 0,4 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 0,1 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 0,5 3,1 6,1 9,1 1,1 4,1 7,1 2,1 5,1 8,1 0,1 3,0 6,0 9,0 1,0 4,0 7,0 2,0 5,0 8,0 0,0 3,3 6,3 9,3 1,3 4,3 7,3 2,3 5,3 8,3 0,3 3,4 6,4 9,4 1,4 4,4 7,4 2,4 5,4 8,4 0,4 3,5 6,5 9,5 1,5 4,5 7,5 2,5 5,5 8,5 0,5 3,2 6,2 9,2 1,2 4,2 7,2 2,2 5,2 8,2 0,2

then : i' = i + 3.j j' = j { = 1 3 0 1 () = L.U 1 2 3 7 () 1 0 2 1 () Matrix T = i" = i' j" = j' + 2i
{ which implies : distribution schemes over the time using the grouped partition scheme. For each graph, the dotted line is the ratio of the CYCLIC [START_REF] Platono | Contribution a la Distribution Automatique des Donn ees pour Machines Massivement Parall eles[END_REF] distribution over the grouped partition, the dashed line is the ratio of the full BLOCK distribution over the grouped partition, the solid line is the ratio of the CYCLIC distribution over the grouped partition.

Extensions

We h a ve only dealt with data ow matrices of determinant 1 . T o generalize to arbitrary matrices, we use a decomposition into \uni-row" or \uni-column" matrices like ii. In each connected component, consider the multiple paths and the cycles with F p 1 ; F p 2 or F cycle ; I of de cient rank and try to nd allocation matrices that allow t o zero out even these communications.

Optimize residual communications

For each connected component of the graph obtained after step 1:

(a) Macro communications Detect the possible macro-communications and compute the conditions on allocation matrices to have e cient communications after mapping on the virtual processor space. If the conditions are not satis ed, it is possible in each connected component t o l e f tmultiply all the allocation matrices by a unimodular matrix (see Section 3). The data alignment problem has motivated a vast amount of research. A brief review of some related work is presented here. The review contains only short abstracts of the presented papers and is by no mean intended to be comprehensive.

Knobe, Lukas and Steele

In 13], the authors discuss techniques for automatic layouts of arrays in a compiler targeted to SIMD architectures. The approach to data locality is to consider each occurrence of a datum as a separately allocated object and to mark preferences among certain occurrences to indicate that they should be allocated together. This approach is extended in 17] to MIMD systems. [START_REF] Li | The data alignment phase in compiling programs for distributed memory machines[END_REF], Lukas shows that same data optimization alignment techniques can be used in both distributed and shared memory systems. For shared memory systems, when alignment preferences can be satis ed, synchronization requirements are eliminated.

Huang and Sadayappan [START_REF] Anderson | Global optimizations for parallelism and locality on scalable parallel machines[END_REF], the authors consider the issue of communication-free hyperplane partitioning. By modeling the iteration and data spaces and the relation that maps one to another, necessary and su cient conditions for the feasibility o f c o m m unication-free partitioning along hyperplanes are characterized.

Li and Chen

In 15] the authors formulate the problem of index domain alignment as nding suitable alignment functions that embed the index domains of the arrays into a common index domain. The paper contains an NP-completeness result: minimizing the cost of data movement i s shown to be an NP-complete problem. Besides, a greedy heuristic algorithm is given at the end of the paper.

Anderson and Lam

In 1], the authors propose an algorithm and heuristics that determine alignment for both data and computations (extension of the owner computes rule). The algorithm is based on the mathematical model of decompositions as a ne functions and is structured into three components: partition, orientation and displacement. The only parallelism exploited is forall parallelism or doacross parallelism using tiling.

Darte and Robert In 4, 5], the authors introduce a communication graph that contains all the information to align data and computations. They formulate ways to reduce the amount o f communications (communication rank minimization, broadcasting, message vectorization...). But, the main result is a NP-completeness result. Darte and Robert restrict themselves to a simple case -perfect loop nest in which all access functions are translations -and they show that, even in this case, the alignment problem is NP-complete. They give s e v eral heuristics.

Feautrier [START_REF] Feautrier | Some e cient solutions to the a ne scheduling problem, part II, multidimensional time[END_REF], Feautrier proposes a greedy algorithm analogous to Gaussian elimination to determine a placement function. Data and computations are aligned in such a w ay that the owner computes rule is respected. The main idea is to zero out edges corresponding to the most important communication volume. An heuristic is given to estimate the communication volume associated to an edge.

Platono Platono 19] has rst raised the following question: as it is usually impossible to zero out (or to make local) all communications, how to e ciently implement the communications that cannot be zeroed out? Platono proposed an heuristic based on the greedy heuristic given by Feautrier 9], enlarged by a detection of macro-communications (broadcasts and reductions), whose cost is an order of magnitude smaller than for a general communication (see Table 1).

Platono 's algorithm is divided on 4 steps: 1. The rank of the mapping function is de ned for each instruction 8 . Then a prototype mapping can be written for each instruction. The prototype mapping is an a ne function depending on the the loop indices and the structure parameters 9 . 2. Broadcasts are located in the initial code. To nd them, Platono uses the data ow g r a p h , de ned by F eautrier. A broadcast exists if several processors read the same variable at the same time. This means that in a parallel loop, several executions need the same variable. This corresponds to non-zero kernels for data ow graph transformations. A broadcast can be total (one processor sends its data to every other processors) or partial (the data is sent to a subset of the processors). 3. Broadcasts are processed. Broadcast directions are identi ed in the initial program. The conditions for the prototype mapping are rewritten so that the projection onto the virtual processor space is not along the broadcast directions.

(a) Total broadcast conditions: Platono rst tries to preserve total broadcasts when projecting onto the virtual processor space.

(b) Partial broadcast conditions: if a total broadcast is not possible (because it is not compatible with the mapping function rank calculated in the rst step), the prototype mapping is augmented with the constraints for a partial broadcast. Another type of constraint i s added: to be e cient, partial broadcasts have to be parallel to the axes.

4. The volume of remaining communications is minimized with the greedy heuristic of Feautrier.

Discussion

Many authors have proposed heuristics to nd a communication-free mapping or to the minimize the number ofcommunications. NP-completeness results show that the problem is di cult 15, 4 , 6] .

A communication-free mapping algorithm usually leads to a trivial mapping (all the computations and the data are regrouped on the same processor) and, therefore, all the parallelism present inside the initial code is lost. We compare our heuristic with the strategy developed by Platono on a small example. Consider the following loop nest: Let fẽ i g i=1 4 be the canonical basis of the iteration space. We assume here that the loop nest is scheduled by a linear scheduling vector = ẽ1 . The outer loop is sequential and the inner loops on i, j ,and k are parallel. The arrays a and b can be accessed before and after the parallel loop, inside the sequential loop. We also assume that we w ant to map computations and data onto a 2-dimensional processor space: m = 2. The access matrix for array b is F b = 0 B @ 1 0 0 0 0 1 0 0 0 0 1 0 1 C A.

A necessary condition to have a broadcast is ker(t) \ ker(F b) 6 = 0 . In our example, we h a ve ker(t) \ ker(F b) = ẽ4 . According to the allocation matrices, the broadcast can be kept or masked.

Platono 's strategy consists in:

1. detecting all the macro-communications possibly present in the initial program, 2. writing the conditions to preserve these macro-communications, 3. making local (or zeroing out) as many remaining communications as possible, by taking into account the conditions previously found in his prototype mapping function.

To k eep the partial broadcast, Platono would choose M S = M a = 0 1 0 0 0 0 0 1 ! and M b = 0 1 0 0 0 1 ! . With this mapping, each processor sends a value to a column of processors. At each time-step, n 2 broadcasts of one element along one dimension of the processor space are necessary. The loop nest is computable with n 3 macro-communications.

However, we easily see that, with our strategy, the loop nest can be computed without any . We rst try to make local as many c o m m unications as possible and then we try to extract macro-communications from the residual communications, whereas Platono rst detects the macro-communications and then try to zero out the remaining communications.

Conclusion

Many authors have proposed heuristics to minimize the communication volume or number when mapping data and computations of an a ne loop nests onto DMPCs. It is generally impossible to obtain a communication-free mapping and another goal in the mapping process is to \optimize" in some sense the residual communications.

We h a ve designed an e cient t wo-step heuristic 1. based upon the access graph to zero out as many c o m m unications as possible, with priority given to communications of largest volume 2. enlarged with the processing of residual communications, either through the extraction of macro-communications of through the decomposition of complex communications into simpler ones

Figure 2 :

 2 Figure 1: Access graph (m = 1 o r m = 2)

see 7]Figure 3 :

 73 Figure 3: A possible branching

Figure 5 :

 5 Figure 4: Complete broadcast, m = 2 , p = 2

 s = s + b(F b I + c b) : : : endfor The conditions to have a reduction are: 1. t = S I 1 = S I 2 , 2. M b (F b I 1 + c b) + b 6 = M b (F b I 2 + c b) + b , 3. M S I 1 = M S I 2 .

 ; a) ; c a] + S Hence p recv = M S F ;1 a M ;1 a p send + const. Let T = M S F ;1 a M ;1 a = M s (M a :F a) ;1 be the data ow matrix.

 for U i). Some current-generation machines have a 2D-topology (Intel Paragon) or 3D-topology (Cray T3D), hence the case m = 2 a n d m = 3 are of particular practical interest.

 The equation for a decomposition into the product of three elementary matrices (beginning with a U matrix) is: 1 + : , b = + (1 + :), c = , a n d d = 1 + : . W e h a ve = b ; :d= b ; c:d, a n d a = 1 + : = (b ; c:d):c. T h us c needs to divide a ; 1. As det(T) = 1, this condition is su cient too. To summarize, the necessary and su cient condition for T to be equal to the product of three elementary matrices is: c divides a ; 1 o r b divides d ; 1.

 1 + :):(1 + :) + : (1 + : :): = b) :(1 + :) = b, s o : + = b, = b ; :d (1) :(1 + :) + = c) :(1 + :) + = c, s o :d + = c, = c ; :d

= 1 +

 1 :(c ; :d) + (b ; :d): + : (d ; 1) + : 1 + : = 1 + (c ; :d):(b ; :d). Thus d ; 1 = b:c ; :d:b ; :d:c + : :d 2 , w i t h bc = ad ; 1 because det(T) = 1. So the equation can be divided by d: 1 = a ; :c ; :b + : :d so a ; 1 ; :c = :(b ; :d). Accordingly an integer needs to exist such that b ; :d divides a ; 1 ; :c. Given r = b ; :d, then r divides a ; 1 ; :c, o r a ; 1 ; :c = a ; 1 ; c:(b ; r)=d (6) = (a:d ; d ; b:c ; r:c)=d (7) = (1 ; d + r:c)=d

 f(e 1) ; e 1 = a ; 1 c ! . I f cja ; 1, i.e. a ; 1 = :c, c hoose e 2 = 1 ! . Then

Figure 7 :Figure 8 :

 78 Figure 7: A 10 6 grid of virtual processors is mapped onto a 2 2 g r i d o f p h ysical processors.The data ow matrix is T = L:U. Processor (0 0) is shaded to show the distribution over physical processors.

 grouped partition can be used to implement s u c h c o m m unications very e ciently.5 SummarySummarizing previous Sections, we can sketch our complete heuristic.1. Zero out non local communications (a) Access graphConstruct the access graph G = (V E m) associated to the loop nest.(b) BranchingExtract a maximum branching G 0 = (V 0 E 0 m) from the access graph.(c) Multiple paths, cycles i. For each edge in E n E 0 , try to add the edge to G 0 . If the addition of the new edge creates a cycle of matrix weight the matrix identity or a new path with same source and destination vertices and same weight as an already existing path, the edge can be added in E 0 . A t this step, all the communications represented by edges in G 0 can be made local.

(b)

 b Decompose residual general communicationsDecompose the residual general communications in more simple and e cient ones. If the allocation matrices are not yet xed in a connected component, to obtain a better decomposition, again left-multiply the allocation matrices by a unimodular matrix (see Section 4). In the next Section, we present a short review of related work. Then we compare our heuristic to that ofPlatono 19

 communication! For example, we can choose M b = 0

Supported by the ESPRIT Basic Research Action 6632 NANA2 of the European Economic Community a n d b y the CNRS-INRIA Project ReMaP.

We search for full rank allocation matrices: otherwise the target m-dimensional processor space would not be fully utilized.

See Lemma 1 in the appendix.

See the appendix for background on pseudo-inverses.

See Lemma 3 in the appendix.

See De nition 1 in the appendix

gcd(a b) is written a ^b

The rank is equal the depth of the instruction in the loop nest minus the scheduling dimension.

The structure parameters are integer variables de ned outside the loop by an assignment, or by an I/O instruction.

blocks are assigned to a class, as illustrated in Figure 6.

Partitioning with a data ow matrix L is similar in the vertical dimension. This we obtain a two dimensional partition as shown in Figure 7 that is well-suited to implement a product LU or UL(note that communication L and U are performed one after the other, not in parallel).

Comparison

Experiments have been done on the Intel Paragon in order to compare communication time for the grouped partition with the standard CYCLIC and CYCLIC(BLOCK) distributions. Figure 8 show the results obtained on a Paragon.

We see that the grouped partition is always more e cient than a standard BLOCK or CYCLIC(BLOCK) distribution. The CYCLIC distribution performs well, because it amounts to the grouped partition with k = 1 .

We point out that the performance of a general a ne communication (not decomposed) is not a ected by the new data distribution scheme. Running several experiments with several grid sizes, we observe less than 5% di erence between the grouped partition and the CYCLIC distribution. Therefore, our new data distribution scheme can be seen as an interesting alternative to standard schemes in the context of loop nest parallelization.

We h a ve provided a detailed analysis of macro-communications (broadcasts, scatters, gathers, reductions) and of message vectorization), together with criteria for their e cient mapping.

Finally we h a ve g i v en analytical formulae to decompose complex communications, and we h a ve shown that such a decomposition improves communication performance on the Paragon. De nition 1 (Right Hermite form) For every non singular matrix A of M n (Z), t h e r e exist a unimodular matrix Q 2 M n (Z) and a lower triangular matrix H 2 M n (Z) such that:

8 (i j) h ij 0, each non-diagonal element is smaller than the diagonal element of the same row,

This decomposition is called Hermite form decomposition. F urthermore, if det(A) 6 = 0 , Q and H are unique.

Left Hermite can also be de ned in the same way. Besides, Hermite forms also exist for rectangular matrices. Let A be a (n + t) n matrix, we can decompose A in the following way:

, where 0 is t n null matrix and H is a n n matrix of the previous form.

Pseudo-inverses

Let X be a rectangular u v integer matrix, and assume that X is of full rank min(u v). If u = v, then X is nonsingular and its inverse matrix X ;1 is such that XX ;1 = X ;1 X = Id u , where Id u denotes the identity matrix of order u.

If u 6 = v, w e can de ne a pseudo-inverse (still denoted as X ;1) as follows: if u v (X is at), then XX t is a square nonsingular u u matrix whose (ordinary) inverse matrix is (XX t) ;1 . Then we de ne the pseudo-inverse (or right-inverse) of X as X ;1 = X t (XX t) ;1 : X ;1 is a v u matrix of rank u such that XX ;1 = Id u . Note that X ;1 X 6 = Id v if u 6 = v. if u v (X is narrow), then X t X is a square nonsingular v v matrix whose (ordinary) inverse matrix is (X t X) ;1 . Then we de ne the pseudo-inverse (or left-inverse) of X as X ;1 = (X t X) ;1 X t : X ;1 is a v u matrix of rank v such that X ;1 X = Id v . Note that in general XX ;1 6 = Id u if u 6 = v.

Note that for square non singular matrices, the pseudo-inverse matrix coincides with the (usual) inverse matrix. For more details, see 14].

Matrix equations

Lemma 1 Let A be a m a matrix of rank m and F be a a d matrix of rank a, w h e r e m a d.

Then AF is of rank m.

Proof We use the Hermite normal form of F: F = H 0]Q, w h e r e H is a a a upper triangular matrix of rank a, and Q is a unimodular d d matrix. Since Q is nonsingular, the rank of AF is that of A H 0], hence that of AH, hence nally that of A, a s H is nonsingular too.

Lemma 1 was used in Section 2 to prove t h a t w e can safely let M S = M x F when M x is a m q x matrix of rank m and F a q x d matrix of rank q x , where m q x d. N o w for the case where m d q x , w e n e e d t o s o l v e the equation M S = M x F, where M S of rank m and F of rank d are given. We use the following result from 14]:

Lemma 2 Let S be a m d matrix of rank m and F be a a d matrix of rank d. Then the equation XF= S admits a solution if and only if the compatibility condition SF ;1 F = S is satis ed. In such a case, all solutions are given by the expression X = SF ;1 + Y (Id a ; FF ;1), where Y is an arbitrary m a matrix. Lemma 3 Let S be a m d matrix of rank m and F be a a d matrix of rank d, w h e r e m d a.

Then the equation XF= S admits the rank-m solution A = SF ;1 .

Proof The compatibility condition is veri ed because F ;1 F = Id d with our hypothesis. Hence A = SF ;1 is a solution of the equation. Finally, w e apply Lemma 1 to prove that its rank is indeed m.

Lemma 3 was used in Section 2 to orient some arrows from statements to arrays in the access graph.