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Abstract

Minimizing communications when mapping a�ne loop nests onto distributed memory
parallel computers has already drawn a lot of attention� This paper focuses on the next
step� as it is generally impossible to obtain a communication�free �or local� mapping�
how to optimize the residual communications� We explain how to take advantage
of macro�communications such as broadcasts� scatters� gathers or reductions or how
to decompose general a�ne communications into simpler ones that can be performed
more e�ciently� We �nally give a two�step heuristic that summarizes our approach�
�rst minimize the number of nonlocal communications� then optimize residual a�ne
communications using macro�communications or decompositions�

Keywords� mapping� a�ne loop nests� distributed memory parallel computers� minimizing com�
munications� macro�communications

R�esum�e

Minimiser les communications lors du placement d	un nid de boucles a�ne sur une ma�
chine parall
ele 
a m�emoire distribu�ee a d�ej
a �et�e l	objet de beaucoup d	attention� Dans
ce rapport� nous nous int�eressons 
a l	�etape suivante � puisqu	il est en g�en�eral impos�
sible d	obtenir un placement sans communication� comment optimiser les communica�
tions r�esiduelles � Nous expliquons comment tirer avantage de macro�communications
�di�usions� distributions� rassemblements ou r�eductions� ou comment d�ecomposer des
communications a�nes en communications plus simples et plus e�caces� Nous donnons
�nalement une heuristique en  �etapes qui r�esume notre approche � d	abord minimiser le
nombre de communications non locales � puis optimiser les communications r�esiduelles
en utilisant des macro�communications ou des d�ecompositions�

Mots�cl�es� placement� nids de boucles a�nes� machines parall
eles 
a m�emoire distribu�ee� minimi�
sation des communications� macro�communications
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Abstract

Minimizing communications when mapping a�ne loop nests onto distributed memory par�
allel computers has already drawn a lot of attention� This paper focuses on the next step� as it
is generally impossible to obtain a communication�free �or local� mapping� how to optimize the
residual communications� We explain how to take advantage of macro�communications such as
broadcasts� scatters� gathers or reductions or how to decompose general a�ne communications
into simpler ones that can be performed more e�ciently� We �nally give a two�step heuristic
that summarizes our approach� �rst minimize the number of nonlocal communications� then
optimize residual a�ne communications using macro�communications or decompositions�

� Introduction

This paper deals with the problem of mapping a�ne loop nests onto Distributed Memory Parallel
Computers �DMPCs�� Because communication is very expensive in DMPCs� how to distribute data
arrays and computations to processors is a key factor to performance�

The computations described in this paper are general non�perfect loop nests �or multiple loop
nests� with uniform or a�ne dependences� Mapping such loop nests onto virtual processors with
the aim of �minimizing� in some sense the communication volume or number is known as the
alignment problem� which has drawn a lot of attention ���� �� ��� �� �� �� �� �� ���

More precisely� given a loop nest� the goal is to assign a virtual processor� i�e� a location on a
virtual processor grid� to each array element and to each computation� Arrays and computations
are thus aligned and projected onto the virtual processor grid� This grid is then folded onto a
physical grid� most often of much smaller size in each dimension� Languages like HPF provide
BLOCK or CYCLIC distributions for such a folding�

There is a natural objective function for the mapping problem which has been extensively
used in the literature� the aim is to minimize the number of non�local communications that will
remain after a suitable alignment has been found� Some authors even look for a communication�

free mapping for which there remains NO nonlocal communication� In fact� it is always possible
to achieve a communication�free mapping ��� provided we are prepared to use a virtual grid of
dimension �� i�e� a single processor � Obviously� the larger the dimension of the target virtual grid�
the larger the number of residual nonlocal communications�

�Supported by the ESPRIT Basic Research Action ���� NANA� of the European Economic Community and by
the CNRS�INRIA Project ReMaP�
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Experimental evidence shows that communication�free mappings are very unlikely to be achieved�
Think of elementary kernels as simple as a matrix�matrix product or a Gaussian elimination pro�
cedure� there is no way to map such kernels onto D� or even �D�grids without residual communi�
cations� A natural question arises� is there a way to �optimize� in some sense the communications
that remain �

Platono� ���� gives a strong motivation to answer the question� Experimenting on a CM � �
with � processors� he compared various communication times� He observed the ratios reported in
Table �� Table � clearly shows that the CM�� has facilities for some usual macro�communications
such as a broadcast or a reduction� Also� translations are much more e�cient than general �a�ne�
communications�

Reduction Broadcast Translation General communication

� ��� �� ��

Table �� Comparing execution times for di�erent data movements on a CM��

Experimenting with the Intel Paragon gives interesting results too� communication con�icts
are generated by serial messages on a single link at the same time� Thus a general communication
cannot be e�ciently executed by simply letting all processors send their messages simultaneously�
Decomposing a general communication into a small sequence of communication parallel to the grid
axes �horizontal and vertical� proves much faster� as illustrated in Section ����

Being prepared to have some residual communications� we adopt the following strategy�

�� Zero out as many non�local communications as possible� To this purpose� we use an heuristic
modi�ed from Dion and Robert ���� This heuristic is based upon the access graph and will
be explained in Section � We weight the edges of the access graph to take communication
volume into account�

� For remaining communications� we explore the following two possibilities �both can be im�
plemented simultaneously��

�a� try to �nd a mapping such that �at least� one of the residual communications is a macro�
communication �in addition to reduction and broadcast� we could have a scatter or a
gather� for instance��

�b� try to �nd a mapping such that �at least� one of the residual communications can be
decomposed into more simple and e�cient data movements �such as horizontal and
vertical communications��

The paper is organized as follows� in Section � we introduce a motivating example that we will
work out throughout the paper� We informally explain our modi�ed heuristic to zero out as many
communications as possible�

We explain how to take advantage of macro�communications in Section �� We explain how to
decompose general a�ne communications into simpler ones in Section �� Altogether� our complete
heuristic for the mapping problem is summarized in Section �� Section � is devoted to a survey of
related work in the literature� together with some discussion and comparisons� Finally� concluding
remarks are stated in Section ��





� Motivating example

In this section� we informally explain our new approach on an example� First we apply an heuristic
modi�ed from ��� to minimize the number of nonlocal communications� Then� we try to make the
residual nonlocal communications �e�cient��

��� Example

Consider the following non�perfect a�ne loop nest� where a is a D�array� and b and c are �D�arrays�

Example �

for i � � to N do
for j � � to M do

f Statement S� g b�F� � �i� j�
t� c�� � g��a�F� � �i� j�

t� c��� a�F� � �i� j�
t� c���

c�F� � �i� j�
t� c���

for k � � to N �M

f Statement S� g b�F� � �i� j� k�
t� c�� � g��a�F� � �i� j� k�

t� c���
f Statement S� g c�F� � �i� j� k�

t� c�� � g��a�F� � �i� j� k�
t� c���

endfor
endfor

endfor
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Here� g�� g� and g� are arbitrary functions� The loop nest is an a�ne loop nest because all
array references are a�ne functions of the loop indices� There are no data dependences in the nest
�check this with Tiny �� for instance� can be used� for example� to perform dependence analysis��
all loops are DOALL loops� hence all computations can be executed at the same time�step�

Mapping the loop nest onto a m�dimensional virtual processor space consists in determining
allocation matrices for each statement and for each array� A�ne allocation functions are de�ned
as in ��� ���

�� for each statement S of depth d� allocS�I� � MSI � �S � where I is the iteration vector
�I � �i� j�t for statement S� and I � �i� j� k�t for statements S� and S���MS is am�d matrix
and �S is a m�vector�

� for each array x of dimension qx� allocx�I� �MxI � �x� where Mx is a m� qx matrix and �x

is a m�vector�

�



By this mapping� statement instance S�I� is assigned to virtual processor MSI � �S and array
element x�I� is stored in the local memory of processor MxI � �x� For instance� in statement S��
the value a�F��i� j�

t� c�� has to be read in the memory of the processor

alloca�F��i� j�
t� c�� �Ma�F��i� j�

t� c��I � �a

and sent to the processor in charge of the computation S���i� j�
t�� namely processor

allocS���i� j�
t� �MS��i� j�

t� �S �

This results in a communication of length �a�S� equal to the distance between a�F��i� j�
t� c�� and

S��i� j�� We have
�a�S� � allocS���i� j�

t�� alloca�F��i� j�
t� c��

�a�S� �MS��i� j�
t� �S� � �Ma�F��i� j�

t� c�� � �a�
�a�S� � �MS� �MaF���i� j�t�Mac� � �S� � �a�

The expression �a�S� contains a nonlocal term �MS� � MaF���i� j�
t which depends upon the

iteration vector �i� j�t� and a local term �S� � Mac� � �a� The nonlocal term corresponds to
irregular patterns of communication� whose size can grow over the whole processor space� It is
clearly the main factor a�ecting performance� On the other hand� the local term corresponds to
regular �xed�size communications that can be performed e�ciently onto DMPCs�

Zeroing out the nonlocal term is of course the main goal of the mapping optimization process�
as recognized by ��� and ���� A communication�local mapping is a mapping where all nonlocal
terms have been zeroed out� However� it is generally impossible to obtain a communication�local

mapping with the required dimension for the target virtual architecture� Then� another objective of
the mapping process is to make e�cient those nonlocal communications that cannot be zeroed out�
We will try for example to derive macro�communications such as broadcasts� reductions� scatters�
���� or to decompose general communications into communications parallel to the axes of the target
processor space�

Back to our example� in statement S� and for array a� we see that zeroing out the nonlocal
term amounts to choose allocation matrices MS� and Ma so that the equation MS� �MaF� � � is
satis�ed� In the same way� the value b�i� j � � �� �� j� has to be written after the computation
S���i� j�

t�� This results in a communication�

�S��b � allocb�F��i� j�
t� c��� allocS���i� j�

t�
�S��b � �MbF� �MS���i� j�

t�Mbc� � �b � �S�

Again� to zero out the nonlocal term� we have to ful�ll equation MbF� �MS� � ��
More generally� if an array x is read or written in a statement S with an access matrix F � to

zero out the nonlocal part of the communication due to this access� we must satisfy the matrix
equation

MS �MxF�

There are � such equations in our example�

��� Zeroing out nonlocal communications

The primary goal is to zero out as many nonlocal terms as possible� That is to say� given MS

�resp� Mx� of full rank
�� we want to �nd Mx �resp� MS� of full rank such as MS � MxF � How to

solve such an equation is explained below�

�We search for full rank allocation matrices� otherwise the target m�dimensional processor space would not be
fully utilized�

�



����� Solving MS �MxF

Consider the nonlocal term linking statement S of depth d and array x of dimension qx� the equation
isMS �MxF � whereMS is a m�d matrix� and Mx a m�qx matrix� The matrix F is of dimension
qx � d and we consider only full rank access matrices� We target a m�dimensional processor space
and we assume that m � d and m � qx �we have chosen to deal only with the communications
such that m � d and m � qx as they represent the core of the computations and data elements to
be distributed�� As already said� we impose that the matrices MS and Mx are of full rank m to
fully utilize processor resources� There are several cases according to the shape of the matrix F �

qx � d �in such a case F is square��
This is clearly the simplest case when F is square and non�singular� Given Mx of rank m�
then MxF is of rank m and we can let MS � MxF without violating the constraint that
MS is of rank m� Conversely� given MS of rank m� MSF

�� is of rank m� and we can let
Mx �MSF

���

qx � d �in such a case� F is 	at��
Assume that F is of full rank� Then� given Mx of rank m� MxF is of rank � m� and we can
safely let MS � MxF � However� given MS � �nding Mx of rank m such that MS � MxF is
not always possible� We know that F admits a right pseudo�inverse� F�� of size d � qx and
of rank qx� such that FF

�� � Id� Hence� if there exists Mx such that MS � MxF � then
MSF

�� � MxFF
�� � Mx� Unfortunately� Mx � MSF

�� is not always a solution of the
equation MS � MxF � we have the compatibility condition

� MS � MSF
��F � Furthermore�

MSF
�� can be of arbitrary rank less than m� To summarize� given Mx of rank m� it is always

possible to determine MS of rank m �MS �MxF � while the converse is not true�

d � qx �in such a case� F is narrow��

Assume that F is of full rank d� Then� F has a left pseudo�inverse F�� of size qx� d� of rank
d� and such that F��F � Id� The situation is exactly the converse of the previous one� given
MS of rank m� Mx �MSF

�� is a rank�m solution� of the equation MS �MxF � �� however�
given Mx of rank m� MxF can be of arbitrary rank less than m� Hence� given MS of rank
m� it is always possible to determine Mx of rank m �Mx �MSF

��� while the converse is not
true�

����� Access graph

We recall here the de�nition of a m�dimensional access graph G � �V�E�m� graph as stated in ����
The access graph takes into account how the equation MS �MxF can be solved�

�� m is the dimension of the target virtual architecture�

� each vertex v � V represents an array variable or a statement�

�� consider a loop nest where an array variable x of dimension qx is accessed �read or written�
in a statement S of depth d� through an access matrix F of rank min�qx� d� greater than
the dimension m of the target architecture� then if qx � d we have an edge from x to S� to
indicate that given Mx of rank m it is always possible to �nd MS of rank m such that the

�See Lemma � in the appendix�
�See the appendix for background on pseudo�inverses�
�See Lemma � in the appendix�

�
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Figure � Access graph with
integer weights

communication is made local� the weight of the edge is F � and if d � qx we have an edge
from S to x� to indicate that given MS of rank m it is always possible to �nd Mx of rank m
such that the communication is made local� the weight of the edge is F��� In the special case
where qx � d� there is a single edge with two arrows between S and x to indicate that both
orientations are possible�

Figure � represents the access graph for our example� The communication corresponding to the
access matrix F� is not represented because F� is not a full rank matrix�

Remark For a narrow qx � d matrix F � the left pseudo�inverse is not the only matrix G that
satis�es the equation GF � Id� Any matrix H such that

H � F�� �M�Id � FF���

where M is an arbitrary matrix of correct dimension also satis�es GF � Id� Hence� in the access
graph� we can choose any full rank matrix G such that GF � Id as weight matrix �and not
necessarily the �true� left pseudo�inverse F�� as de�ned in ������

����
 Mapping heuristic

Some nonlocal communications represented in the graph can be zeroed out� but not all� Consider
a simple path in the access graph going from vertex v� to vertex v� with v� �� v� �the path is not
a cycle�� Then given any allocation matrix Mv� of rank m for vertex v�� the existence of the path
ensures that it is always possible to make local all communications represented by edges between
the two vertices� In our example� given Ma of rank  in G � �V�E� �� and following the path
a �� S� �� b �� S�� we are ensured to be able to compute MS� � Mb and MS� � all of rank �
so that the communications corresponding to access matrices F�� F� and F� are made local� we
successively let MS� �MaF�� Mb �MS�F

��

� and MS� �MbF��
There is another path from a to S� with the direct edge a �� S� �access matrix F� for read�

ing a in S��� Is it possible to make local this communication in addition to the three above
communications � Using the edge a �� S� we get the equation MS� � MaF� while we had
MS� �MbF� �MS�F

��

� F� �MaF�F
��

� F��

�



To simplify the equations� in the following we use the matrix F �

�
�

�
� � �
� � ��

�
�which

satis�es the equation GF� � Id� instead of F�

��� We derive the condition MaF�F
�

�
F� � MaF��

This condition is satis�ed for all matrices Ma of rank m i� F�F
�

�
F� � F�� In our example� let

Fpath � F�F
�

�
F�� We compute Fpath �

�
� � ��
� � �

�
�� F��

Note that as Fpath � F� �

�
� �� �
� � �

�
is of de�cient rank� according to m� it will or not be

possible to �nd a matrix Ma such that the condition MaF�F
��

�
F� �MaF� is satis�ed�

In fact� this analysis can be extended in the general case� each time there are two disjoint
paths p� and p� both going from a vertex v� to a vertex v� in the access graph� we can make all
communications on both paths local provided that the equality Fp� � Fp� holds �where Fp denotes
the product of the access matrices along the edges of path p�� If Fp� � Fp� is of de�cient rank�
according to the size of the allocation matrix� it can or not be possible to �nd a matrix M such
that M�Fp� � Fp�� � �� See ��� for more details�

Besides� a similar analysis can be performed in the case of cycles� Denote by Fc the product of
the weight matrices along the cycle� if Fc � Id �where Id is the identity matrix�� all the commu�
nications can be made local along the cycle� if Fc � Id is of de�cient rank� according to the size of
the allocation matrix� it can or not be possible to have only local communications along the cycle�

As already said� the access graph depends upon the dimensionm of the target architecture space�
Given m� not all the communications are taken into account in the access graph G � �V�E�m��
The edges in G represent only the communications with access matrix of full rank greater than m�
So� the heuristic does not try to make all the communications local but only the �most important
ones�� We use the following heuristic�

Heuristic Given the access graph G�V�E�m� �

�� associate an integer weight to each edge �see below�� Construct a maximum branching G� �
�V �� E�� m� of G using the algorithm due to Edmonds�

� for each edge in E nE�� try to add the edge to G�� If the addition of the new edge creates a
cycle of matrix weight the matrix identity or a new path with same source and destination
vertices and same weight as an already existing path� the edge can be added in E�� At this
step� all the communications represented by edges in G� can be made local�

�� consider the multiple paths and the cycles with Fp�
� Fp�

or Fcycle � I of de�cient rank and
try to �nd allocation matrices that allow to zero out even these communications�

In step �� the weight of a branching is de�ned as the sum of the integer weights of the arcs in
the branching� A maximum branching is any possible branching with the largest possible weight�
see ���� The simplest weight function is to assign the same value � to all edges of G� But we can
give priority to edges that involve a large volume of communication� We do not need to precisely
know the volume of data exchanged� a consistent estimate is su�cient� Consider the following loop
nest�

for I do
� � �
f Statement S g a�FaI � ca� � � � � b�FbI � cb� � � �

endfor

�
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Figure �� A possible branching

We propose to use the dimension of the set fJ j �I� J � FaI�cag �resp fJ j �I� J � FbI�cbg� to
estimate the volume of data exchanged for the communication corresponding to the access matrix
Fa �resp� Fb�� Hence� in the access graph� an integer weight corresponding to the rank of the access
matrix is associated to each edge� In this way� communications inducing the largest tra�c are
zeroed out in priority� Note that in the heuristic proposed by Feautrier ���� the volume of data
exchanged induced by a communication is taken into account in a similar way�

Figure  represents the weighted access graph for our motivating example� A matrix weight
�corresponding to the access matrix or its pseudo�inverse� and an integer weight �corresponding to
the volume of data exchange due to the communication� are associated to each edge�

A possible maximum branching for our example is represented in Figure �� It contains �
edges out of the � edges of the access graph� Hence� � communications can be made local and
 communications remain nonlocal communications� Note that both edges of maximum weight �
have been zeroed out�

��� Optimizing residual communications

The main problem now is� what to do with the residual general communications� After the
previous heuristic� the communication corresponding to the access matrix F� �reading a in S��
and the one corresponding to the access matrix F� �reading a in S� too� remain nonlocal general
communications�

To simplify the equations� we use the matrix F �

�
�

�
� � �
� � ��

�
�which satis�es the equation

GF� � Id� instead of F�

�� and F �

�
�

�
� � �
� � �

�
�which satis�es GF� � Id� instead of F�

�� �see

the remark in Section ����
Back to the branching� there is one input vertex a� Hence� we can choose the allocation matrix

Ma and deduce the other allocation matrices from Ma in order to make the communications local�
MS� �MaF�� Mb �MS�F

�

�
� Mc �MS�F

�

�
� MS� �MbF� and MS� �McF��

Choose� for example� Ma �

�
� �
� �

�
� We have MS� � MaF� �

�
� �
� �

�
� Mb � MaF�F

�

�
��

� � ��
� � �

�
� MS� � MaF�F

�

�
F� �

�
� � ��
� � �

�
� Mc � MaF�F

�

�
�

�
� � �
� � �

�
� and MS� �

�



MaF�F
�

�
F� �

�
� � �
� � �

�
�

We check that the two communications corresponding to the two edges of the access graph that
do not belong to the selected branching remain nonlocal communications�

MaF� �

�
� � ��
� �� �

�
��MS� and MaF� �

�
� �
�� ��

�
��MS� �

Remark If we left�multiply Ma by a unimodular matrix U of Mn�Z� �Mn�Z� denotes the set of
n � n matrices over Zand the unimodular matrices of Mn�Z� are those of determinant ���� all
the allocation matrices deduced from Ma will be left�multiplied by the same unimodular matrix�
Inside each connected component of the branching� the alignment matrices are computed up to a
multiplication by an unimodular matrix�

How to optimize the two residual communications�

�� Detecting macro�communications
For the �rst communication concerning the access matrix F� �a�F��i� j�t � c�� read in S���
we can notice that F� has a non null kernel� kerF� is the subset generated by the vector
v � ��� �� ��t�

Let I� and I� two points of the index set of S� such that I� � I� � kerF�� i�e I� � I� � kv�
k �Z� we have F�I� � F�I�� Besides� MS�v � ���� ��

t� hence MS�I� ��MS�I��

The same value of array a� a�F�I�� c�� �or a�F�I�� c���� located in the memory of processor
Ma�a�F�I� � c��� � �a� must be read by distinct processors MS�I� � �S� and MS�I� � �S� �
MS��I� � kv� � �S� � Hence� the communication can be viewed as a partial broadcast along
one direction of the processor space�

Macro�communications such as broadcasts are e�ciently implemented on modern DMPCs�
On a CM��� the ratio between the communication time for a general communication and a
broadcast is �� �see Table � in section ��� The broadcast can be total �the value is sent to the
whole processor space� or partial �the value is sent in only some directions of the processor
space�� To be most e�cient a partial broadcast must be performed along the directions of
the processor space� To optimize the �rst residual communications� we choose the allocation
matrices so as to have a partial broadcast along one axis of the processor space�

In our example� the value a�F�I�� c�� in the memory of the processor Ma�a�F�I�� c���� �a

is sent to processors MS��I�� kv�� �S� � k �Z� The communication can be decomposed in a
translation and a partial broadcast along the direction given by the vector MS�v� However�

MS�v �

�
� � ��
� � �

��B� �
�
�

�
CA �

�
��
�

�
�

With such a mapping� the broadcast is not parallel to an axis� We rotate the mapping by
left multiplying Ma �and therefore all the other allocation matrices� by a suitable unimodular

matrix� Let V �

�
� �
� �

�
� We have VMS�v �

�
�
�

�
� By left�multiplying all the allocations

�



matrices by the unimodular matrix V � the communication corresponding to the access matrix
F� becomes a macro�communication that can be performed e�ciently��

� Decomposing the last residual communication
For the second communication concerning the access matrix F� �a�F��i� j�t� c�� read in S���
we try to decompose it into more simple and e�cient data movements such as horizontal or
vertical ones�

In our example� the processor P � VMaF�I sends its data to the processor Q � VMS�I

�up to a translation�� Let T be the data �ow matrix� a processor P sends data to processor
Q � TP � We have TVMaF� � VMS� � So� T � VMS��MaF����V ��� Besides

VMS��MaF��
��V �� �

�
� ��
� ��

�
�

We can decompose VMS��MaF��
��V �� into two elementary matrices that correspond to

horizontal or vertical communications �see Section ���

VMS��MaF��
��V �� �

�
� �
� �

��
� ��
� �

�
�

To summarize� in our example� we �nally obtain on the access graph � local communications�
one broadcast and one residual communication that can be decomposed into two elementary com�
munications�

� Macro�communications

In this Section we derive formal conditions for detecting and implementing macro�communications
such as broadcasts� scatters� gathers� and reductions� We also address the message vectorization
problem�

��� Broadcast

Broadcasts occur when the same data item is accessed at same time�step by several virtual proces�
sors� Consider the following loop nest�

Example �

for I do
� � �

S�I� � � � � a�FaI � ca�
� � �

endfor

�We point out that the rank�de�cient communication corresponding to F� also becomes a broadcast parallel to one
direction of the processor space� kerF� is the subset generated by the vectors v� � 	
� �����t and v� � 	�� 
����t�

We have V MS�
�v� v� �

�
� 


 


�
� Of course this is a lucky coincidence �

��



Ma�FaI� � ca� � �a

MSI� � �S

Figure �� Complete broadcast� m � � p � 

MSI� � �S

MSv�

Ma�FaI� � ca� � �a

Figure �� Partial broadcast� m � � p � �

LetMSI��S andMaI��a be the a�ne allocation functions for statement S and for array a� We
assume that the computation time steps for S�I� are given by a linear multi�dimensional schedule�
Let  S be the multi�dimensional scheduling application for statement S� the computation of S�I�
is scheduled at time�step t �  S�I� �see ���� on the processor MSI � �S and the data accessed is
a�FaI � ca� which is located in the processor Ma�FaI � ca� � �a�

The same index x from array a is read at same time�step by several processors if there exist
two indices I�� I� of the iteration space such that�

�� t �  SI� �  SI��

� x � FaI� � ca � FaI� � ca�

�� MSI� � �S ��MSI� � �S �

This implies that I� � I� � ker� S� 	 ker�Fa�n ker�MS�� Let IS be the index set for statement
S� Let I� � IS� let p the dimension of ker� S� 	 ker�Fa�n ker�MS� and �v�� v�� � � � � vp� vectors
that generate ker� S� 	 ker�Fa�n ker�MS�� Let v � ker� S� 	 ker�Fa�n ker�MS�� the computations
of S�I�� and S�I� � v� are scheduled at the same time�step and the same element a�FaI� � ca�
of the array a is read� The �value of the� data item a�FaI� � ca� is sent to both processors
MSI���S and MS�I�� v���S � Hence� the necessary communications for the set of computations
fS�I� j I � I� � v� v � ker� S� 	 ker�Fa�n ker�MS�g can be regrouped into two communications�
�rst a translation of the data item a�FaI� � ca� from Ma�FaI� � ca� � �a to MSI� � �S � then a
broadcast of this item along the vectors MSv��MSv�� � � � �MSvp�

Let m be the dimension of the target virtual processor space� If p � m� the broadcast is total�
If � � p � m� the broadcast is partial� See Figures � and � for examples with m �  and p � 
or p � �� If p � �� the broadcast is hidden by the mapping and we have only a point to point
communication� In the case of a partial broadcast� as Platono� in ����� we impose to broadcast in
directions parallel to some axis of the processor space� In Figure �� the direction of the broadcast
MSv� is parallel to one axis�

Partial broadcast conditions Let D be the m�p matrix
h
MSv� MSv� � � � MSvp

i
� In the

case of partial broadcast� � � p � m� D is a narrow rectangular matrix� Partial broadcasts corre�
spond to e�cient schemes of communications i� there are along some dimensions of the processor

space� i�e� D �

�
D�

�

�
�up to a row permutation�� where D� is n� p full rank matrix �n � p� and

� is a �m� n�� p null matrix�

��



If D is not of the previous form� we use the right Hermite form of D � to �nd a new allo�
cation matrix MS such that the broadcast is made parallel to some axis� we decompose D as

D � Q

�
H

�

�
where Q is a unimodular matrix and H is n � n lower triangular matrix� Hence�

h
Q��MSv� Q��MSv� � � � Q��MSvp

i
�

�
H

�

�
� If we left multiply MS by the unimodular

matrix Q��� the partial broadcast becomes parallel to the axis�

��� Scatter

A scatter occurs when several data located in the same processor must be sent at same time�step
to several processors� The only di�erence between broadcast and scatter is that di�erent data is
to be sent to the receiving processors� Consider again Example � the conditions to have a scatter
are the following�

�� t �  SI� �  SI��

� p �Ma�FaI� � ca� � �a �Ma�FaI� � ca� � �a�

�� MSI� � �S ��MSI� � �S �

�� FaI� � ca �� FaI� � ca�

This implies that I� � I� � �ker S 	 kerMaFa�n�kerMS 	 kerFa�� We have similar conditions
for a scatter as for a broadcast�

��� Gather

A gather is the �inverse� operation to a scatter� Several data located in di�erent processor are sent
at same time�step to the same processor� Consider the following loop nest�

Example 


for I do
� � �
S�I� a�FaI � ca� � � � �

� � �
endfor

Again� the conditions for a gather are close to that for scatters�

�� t �  SI� �  SI��

� p �Ma�FaI� � ca� � �a �Ma�FaI� � ca� � �a�

�� MSI� � �S ��MSI� � �S �

�� FaI� � ca �� FaI� � ca�

This implies that I� � I� � �ker S 	 kerMaFa�n�kerMS 	 kerFa�� A gather can be partial or
total and we have similar conditions on partial gathers as previously�

�See De�nition � in the appendix

�



��� Reduction

A reduction is similar to a gather but the di�erent values sent to the same processor are used
to compute one single value� Reductions occur when� at same time�step� a single processor uses
values computed by di�erent instances of the same instruction on di�erent processors� A reduction
is usually associated with a commutative and associative function ���min� � � �� that computes a
resulting value from many input values� Consider the following loop nest� where s represents an
array element�

Example �

for I do
� � �

S�I� s � s � b�FbI � cb�
� � �

endfor

The conditions to have a reduction are�

�� t �  SI� �  SI��

� Mb�FbI� � cb� � �b ��Mb�FbI� � cb� � �b�

�� MSI� �MSI��

This implies that I� � I� � ker S 	 kerMSn kerMbFb�

��� Message vectorization

Message vectorization can take place when a processor accesses data from another processor that
remains unchanged for several consecutive time steps� data items to be sent can be regrouped
into packets that are sent just in time to reach their destination� The communications can be
extracted out of a loop and performed before the computations� The idea is to replace a set of
small�size communications by a single large message� so as to reduce overhead due to start�up and
latency ���� �� ���

Consider again Example � The space�time transformation is given by��
t
p

�
�

�
 S

MS

�
I �

�
�
�S

�
�

where p is the processor responsible at time�step t �the schedule can be multi�dimensional� for the

computation S�I�� Let !S �

�
 S

MS

�
� Hence� we have I � !S��

�
t

p� �S

�
� For the computation

S�I�� processor p reads data from processor Ma�FaI � ca� � �a� This expression does not depend
on t when MaFa

!S�� � ��� X� where � is a m � p null matrix and X is a m � m matrix� This
condition is equivalent to MaFa � ��� X�!S � XMS and therefore to kerMS 
 ker�MaFa��

��



� Communication decomposition

In this Section we explain how to decompose general a�ne communications into elementary �hor�
izontal or vertical� ones� We provide analytical conditions for such a decomposition to exist� In
Section ��� we report experimental communication times on the Intel Paragon that demonstrate
the usefulness of communication decomposition�

��� Communication decomposition� why

Consider a general a�ne communication occurring for statement S�I� � ��� � ���a�FaI � ca�� Using
notations of Section � the virtual processor precv �MS �I��S �whereMS is of size m�d� receives
a data item from the virtual processor psend � Ma��Fa�I � ca� � �a �where Ma is of size m � qa��
Assume for simplicity that MS � Ma and Fa are nonsingular square matrices of size m�m �hence
m � d � qa�� We have the following equations�

M��

a �psend � �a� � FaI � ca

F��

a �M��

a �psend � �a�� ca� � I

precv �MSF
��

a �M��

a �psend � �a�� ca� � �S

Hence precv � MSF
��

a M��

a psend � const� Let T � MSF
��

a M��

a � Ms�Ma�Fa�
�� be the data�ow

matrix�
The idea is to decompose T into the product of several elementary matrices that will generate

communications parallel to one axis of the virtual processor space� We mainly discuss the case
where the determinant of T is equal to �� detT � �� We brie�y mention how to deal with
arbitrary determinants in Section ���� Assume m �  for example� we aim at decomposing T into

the product of matrices Li �

�
� �
li �

�
�horizontal communications� or Ui �

�
� ki
� �

�
�vertical

communications�� We would have similar elementary matrices for larger dimensions� an elementary
matrix would look like

Li �

�
BBBBBBB�

� �

�
� � �

���k � � � � � � � �n�k
� � � �

� �

�
CCCCCCCA

�and similarly for Ui�� Some current�generation machines have a D�topology �Intel Paragon� or
�D�topology �Cray T�D�� hence the case m �  and m � � are of particular practical interest�
Due to space limitation we detail only the case m �  hereafter� but the ideas can be obviously
extended to higher dimensions�

To give a concrete motivation� consider the following data�ow matrix T �

�
� �
 �

�
� The

communication is to be implemented on a Paragon machine con�gured as a ��� grid of processors�
Table  reports communication ratios when implementing T directly� or when decomposing it as

T � LU � where L �

�
� �
 �

�
and U �

�
� �
� �

�
�

Table  shows that decomposing the communication gives better results �intuitively� better have
several simple communications than a complicated one�� The cost for U is higher than for L because

��



Communication Not decomposed L U L�U

Execution ratio �� ��� ��� ���

Table � Decomposing versus not decomposing a general a�ne communication on the Intel Paragon

of the larger grid dimension� Data was distributed using a standard CYCLIC distribution� We come
back to distribution techniques in Section ��� where we introduce a new data distribution scheme
that enables to implement elementary communications even more e�ciently�

Anyway� the gain obtained by decomposing communication is machine� and compiler�dependent�
Table  is only intended to give experimental evidence that communication decomposition can prove
e�cient� To be conservative� we look to decomposing general communications into a small �say
l � �� number of elementary ones�

��� Communication decomposition� how

����� Direct decomposition

Let T �

�
a b
c d

�
with det�T � � ad � bc � �� We derive conditions to know whether T can be

decomposed into the product or less than or equal to four elementary matrices Li and Ui�

The product of two elementary matrices is

LU �

�
� �
� �

�
�

�
� �
� �

�
�

�
� �
� � � ���

�
� or UL �

�
� �
� �

�
�

�
� �
� �

�
�

�
� � ��� �

� �

�

hence the necessary and su�cient condition to have such a decomposition is� a � � or d � ��
We see that the conditions on �a� b� c� d� to have a decomposition beginning with a U are the

same as the conditions on �d� c� b� a� for a decomposition beginning with a L� Thus we can restrict
ourselves to decompositions beginning with a U �

The equation for a decomposition into the product of three elementary matrices �beginning with
a U matrix� is��

a b
c d

�
�

�
� �
� �

�
�

�
� �
� �

�
�

�
� �
� �

�
�

�
� � ��� �� ��� � ����

� � � ���

�

So a � ������ b � �� ���� ����� c � �� and d � �� ���� We have � � b� ��d � b� c�d� and
a � � � ��� � �b� c�d��c� Thus c needs to divide a� �� As det�T � � �� this condition is su�cient
too� To summarize� the necessary and su�cient condition for T to be equal to the product of three
elementary matrices is� c divides a� � or b divides d� ��

The equation for a decomposition into the product of four elementary matrices �beginning with
a U matrix� is��
� �

� �

�
�

�
� �
� �

�
�

�
� �

� �

�
�

�
� �
� �

�
�

�
�� � ������� � ���� � ��� �� � ������ � �

���� � ���� � � � � ���

�

��



Thus � � ��� � d� Then

�� � ������ � b � ���� � ���� � b� so ��� � � � b� � � b� ��d ���

���� � ���� � � � c � ���� � ���� � � � c� so ��d� � � c� � � c� ��d ��

�� � ������ � ���� � ��� � a is always true� Indeed

�� � ������ � ���� � ��� � �� ��� � ��� � �������� ��� ���

� �� ���c� ��d� � �b� ��d��� � ����d� �� � ��� ���

� �� ��c� ��b� ����d � a ���

As d � � � ��� � � � �c � ��d���b � ��d�� Thus d � � � b�c � ��d�b � ��d�c � ����d�� with
bc � ad � � because det�T � � �� So the equation can be divided by d� � � a � ��c � ��b � ����d
so a � � � ��c � ���b � ��d�� Accordingly an integer � needs to exist such that b � ��d divides
a� �� ��c�

Given r � b� ��d� then r divides a � �� ��c� or

a� �� ��c � a� �� c��b� r��d ���

� �a�d� d� b�c� r�c��d ���

� ��� d� r�c��d ���

But r�d � �� �indeed if pjr and pjd then pjb� and so p � � because b�d � ��� Thus� rj���d�rc�� so
rj��� d�� Therefore� the necessary and su�cient condition for a matrix to be equal to the product
of four elementary matrices is� ��� b� ��djd� � or ��� c� ��aja� ��

We could go further and look for a decomposition into �ve or more elementary matrices� But
an exhaustive search shows that every � matrix T with det�T � � � and whose coe�cients are all
lower than or equal to �� in absolute value� is equal to the product of � � or � elementary matrices�
In practice� larger coe�cients are unlikely to be encountered in loop nests �

����� With left�multiplication by a unimodular matrix

As outlined in Section ��� alignment matrices are computed up to a multiplication by an unimod�
ular matrix� If we left�multiply MS and Ma by a unimodular matrix M � then the data�ow matrix
T � Ms�Ma�Fa�

�� is transformed into MTM��� Therefore� rather than decomposing T into the
product of elementary matrices� we can search for a unimodular matrix M such that MTM��� a
matrix similar to T � can be decomposed into such a product�

Consider again the case m �  and det�T � � �� The best would be to show that T is similar
to a product LU of two elementary matrices� so as to decompose MTM�� into one horizontal
communication followed by one vertical communication� The problem amounts to show that every

integer matrix T �

�
a b
c d

�
with ad� bc � � is similar overZto a matrix LU �

�
� �
� � � ��

�
�

The problem is surprisingly di�cult� and the answer depends upon the coe�cients of T �
Let P �X� �� X�� �a�d�X�� be irreducible over Q� it is the case if

p
Tr�T �� � � �� Q� which

reduces to Tr�T � �� �� Then there is a one�to�one correspondence between similarity classes over
Zwith the ideal classes in the ring Z���� where � is a root of P �X�� this is Latimer and MacDu�ee	s
theorem ���� page ���� In turn� the number of ideal classes is in one�to�one correspondence with the

�gcd	a� b� is written a � b

��



number of equivalence classes of the quadratic forms with discriminant " � Tr�T �� � � ���� page
���� This number is �nite �it is called the genus� and can be calculated with complex analytic
methods� as explained in �� page �����

The answer to our problem is negative in the following case� if Tr�T � �  � a � d �  � ��
is a prime number� there are only � possibilities for �� � � �� or � � �Tr�T � � � Therefore
the product of two elementary matrices belong to at most � di�erent similarity classes� There are
in�nitely many values of " � Tr�T ���� whose genus is greater than �� hence in�nitely many cases
where the answer is negative� an arbitrary integer matrix T with det�T � � � is not always similar
to the product of two elementary matrices�

To be more concrete� let us give an example where the answer is negative� Consider the following

example where Tr�T � � � � T �

�
� �
�� ��

�
� This case is simple because P �X� � X��X��

is not irreducible over Q� Since Tr�A� � �� we have �� � ��� Assume there exists a unimodular

matrix M �

�
u v

w x

�
� with det�M� � ux � vw � ��� such that MTM�� �

�
� �

� � � ��

�
�

Equating coe�cients� we obtain � � ���x� � ��xw � �w��� So � needs to divide �� and it is
impossible�

However� a simple su�cient condition for T to be similar to a product LU or UL can be

determined as follows� Let T �

�
a b

c d

�
to be similar to

�
� �

� � � ���

�
� Let e� �

�
�
�

�
and

f�e�� �

�
a
c

�
� So f�e��� e� �

�
a� �
c

�
� If cja� �� i�e� a � � � 	�c� choose e� �

�
	
�

�
� Then

�e�� e�� is a unimodular basis of determinant � and f�e�� � e� � 	�e�� In the new basis �e�� e���

T �

�
� a

c 	

�
� Hence T is similar to the product of two elementary matrices� Our su�cient

condition is the same as the necessary and su�cient condition for T to be decomposed into the
product of three elementary matrices� Either strategy could be more interesting� depending upon
the target machine� Note that all integer matrices T with det�T � � � and whose coe�cients are all
lower than or equal to � are similar to a product of  elementary matrices�

��� A new data distribution scheme

We have dealt with virtual processors so far� In this Section we make a short digression to introduce
a new data distribution scheme called grouped partition� the grouped partition is well�suited to
implementing horizontal#vertical communications on the Paragon� The grouped partition leads to
smaller communication times than the standard CYCLIC or CYCLIC�BLOCK� distributions�

Grouped partition Consider a horizontal communication of data�ow matrix U �

�
� k

� �

�
�

Virtual processor �i� j� sends data to processor �i�kj� j�� So processor ��� j� sends to �kj� j� which
in turn sends to ��k� j� and so on� The communication is thus subdivided into k independent
communications� Let � � c � k design a class de�ned as follows� virtual processor �c� �k�j� j�� �
belong to class c� There is no communication between classes� communication occurs only within
classes�

Targeting a d�grid of P � Q processors� we have P physical processors per row and Q per
column� As P is not expected to be equal to k� physical processors are partitioned into blocks� and

��



Matrix   U =  1 3
0 1(       ) i’ = i + 3.j

j’ = j{
0 1 2 3 4 5 6 7 8 9 10 11

0 3 6 9 1 4 7 10 2 5 8 11

0 3 6 9 1 4 7 10 2 5 8 11

Virtual processors are grouped

Partitionning by block

Initial
Indices

Distribution
by group

Mapping over
Physical
Processors

Figure �� U is the communication matrix� The � virtual processors on each row are grouped into
� classes and mapped onto P � � physical processors�

blocks are assigned to a class� as illustrated in Figure ��
Partitioning with a data�ow matrix L is similar in the vertical dimension� This we obtain a

two dimensional partition as shown in Figure � that is well�suited to implement a product LU or
UL �note that communication L and U are performed one after the other� not in parallel��

��� Comparison

Experiments have been done on the Intel Paragon in order to compare communication time for the
grouped partition with the standard CYCLIC and CYCLIC�BLOCK� distributions� Figure � show the
results obtained on a Paragon�

We see that the grouped partition is always more e�cient than a standard BLOCK or CYCLIC�BLOCK�
distribution� The CYCLIC distribution performs well� because it amounts to the grouped partition
with k � ��

We point out that the performance of a general a�ne communication �not decomposed� is not
a�ected by the new data distribution scheme� Running several experiments with several grid sizes�
we observe less than �$ di�erence between the grouped partition and the CYCLIC distribution�
Therefore� our new data distribution scheme can be seen as an interesting alternative to standard
schemes in the context of loop nest parallelization�
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1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,00,0

1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,30,3

1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,40,4

1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,10,1

1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,50,5

3,1 6,1 9,1 1,1 4,1 7,1 2,1 5,1 8,10,1

3,0 6,0 9,0 1,0 4,0 7,0 2,0 5,0 8,00,0

3,3 6,3 9,3 1,3 4,3 7,3 2,3 5,3 8,30,3

3,4 6,4 9,4 1,4 4,4 7,4 2,4 5,4 8,40,4

3,5 6,5 9,5 1,5 4,5 7,5 2,5 5,5 8,50,5

3,2 6,2 9,2 1,2 4,2 7,2 2,2 5,2 8,20,2

then : i’ = i + 3.j
j’ = j{ =  1 3

0 1(       ) = L.U 1 2
3 7(       ) 1 0

2 1(       )Matrix   T =  i" = i’
j" = j’ + 2i{which implies : 

Figure �� A �� � � grid of virtual processors is mapped onto a  �  grid of physical processors�
The data�ow matrix is T � L�U � Processor ��� �� is shaded to show the distribution over physical
processors�
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Figure �� These graphs represent the ratio of the communication time for a U matrix with standard
distribution schemes over the time using the grouped partition scheme� For each graph� the dotted
line is the ratio of the CYCLIC���� distribution over the grouped partition� the dashed line is the
ratio of the full BLOCK distribution over the grouped partition� the solid line is the ratio of the
CYCLIC distribution over the grouped partition�
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��� Extensions

We have only dealt with data�ow matrices of determinant �� To generalize to arbitrary matrices�
we use a decomposition into �uni�row� or �uni�column� matrices like�

BBBBBBB�

� �

�
�� �

���k � � � �i�k � � � �n�k
� � � �

� �

�
CCCCCCCA

Note that the grouped partition can be used to implement such communications very e�ciently�

� Summary

Summarizing previous Sections� we can sketch our complete heuristic�

�� Zero out non local communications

�a� Access graph
Construct the access graph G � �V�E�m� associated to the loop nest�

�b� Branching
Extract a maximum branching G� � �V �� E�� m� from the access graph�

�c� Multiple paths� cycles

i� For each edge in E nE�� try to add the edge to G�� If the addition of the new edge
creates a cycle of matrix weight the matrix identity or a new path with same source
and destination vertices and same weight as an already existing path� the edge can
be added in E�� At this step� all the communications represented by edges in G� can
be made local�

ii� In each connected component� consider the multiple paths and the cycles with Fp�
�

Fp�
or Fcycle � I of de�cient rank and try to �nd allocation matrices that allow to

zero out even these communications�

� Optimize residual communications
For each connected component of the graph obtained after step ��

�a� Macro communications
Detect the possible macro�communications and compute the conditions on allocation
matrices to have e�cient communications after mapping on the virtual processor space�
If the conditions are not satis�ed� it is possible in each connected component to left�
multiply all the allocation matrices by a unimodular matrix �see Section ���

�b� Decompose residual general communications

Decompose the residual general communications in more simple and e�cient ones� If
the allocation matrices are not yet �xed in a connected component� to obtain a better
decomposition� again left�multiply the allocation matrices by a unimodular matrix �see
Section ���

In the next Section� we present a short review of related work� Then we compare our heuristic
to that of Platono� ����
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� Related work

��� Literature overview

The data alignment problem has motivated a vast amount of research� A brief review of some
related work is presented here� The review contains only short abstracts of the presented papers
and is by no mean intended to be comprehensive�

Knobe� Lukas and Steele In ����� the authors discuss techniques for automatic layouts of arrays
in a compiler targeted to SIMD architectures� The approach to data locality is to consider each
occurrence of a datum as a separately allocated object and to mark preferences among certain
occurrences to indicate that they should be allocated together� This approach is extended in ����
to MIMD systems� In ����� Lukas shows that same data optimization alignment techniques can be
used in both distributed and shared memory systems� For shared memory systems� when alignment
preferences can be satis�ed� synchronization requirements are eliminated�

Huang and Sadayappan In ���� the authors consider the issue of communication�free hyper�
plane partitioning� By modeling the iteration and data spaces and the relation that maps one to
another� necessary and su�cient conditions for the feasibility of communication�free partitioning
along hyperplanes are characterized�

Li and Chen In ���� the authors formulate the problem of index domain alignment as �nding
suitable alignment functions that embed the index domains of the arrays into a common index
domain� The paper contains an NP�completeness result� minimizing the cost of data movement is
shown to be an NP�complete problem� Besides� a greedy heuristic algorithm is given at the end of
the paper�

Anderson and Lam In ���� the authors propose an algorithm and heuristics that determine
alignment for both data and computations �extension of the owner computes rule�� The algorithm
is based on the mathematical model of decompositions as a�ne functions and is structured into
three components� partition� orientation and displacement� The only parallelism exploited is forall
parallelism or doacross parallelism using tiling�

Darte and Robert In ��� ��� the authors introduce a communication graph that contains all
the information to align data and computations� They formulate ways to reduce the amount of
communications �communication rank minimization� broadcasting� message vectorization����� But�
the main result is a NP�completeness result� Darte and Robert restrict themselves to a simple case
� perfect loop nest in which all access functions are translations � and they show that� even in this
case� the alignment problem is NP�complete� They give several heuristics�

Feautrier In ���� Feautrier proposes a greedy algorithm analogous to Gaussian elimination to
determine a placement function� Data and computations are aligned in such a way that the owner
computes rule is respected� The main idea is to zero out edges corresponding to the most important
communication volume� An heuristic is given to estimate the communication volume associated to
an edge�

�



Platono Platono� ���� has �rst raised the following question� as it is usually impossible to
zero out �or to make local� all communications� how to e�ciently implement the communications
that cannot be zeroed out� Platono� proposed an heuristic based on the greedy heuristic given by
Feautrier ���� enlarged by a detection of macro�communications �broadcasts and reductions�� whose
cost is an order of magnitude smaller than for a general communication �see Table ���

Platono�	s algorithm is divided on � steps�

�� The rank of the mapping function is de�ned for each instruction �� Then a prototype mapping
can be written for each instruction� The prototype mapping is an a�ne function depending
on the the loop indices and the structure parameters	�

� Broadcasts are located in the initial code� To �nd them� Platono� uses the data �ow graph�
de�ned by Feautrier� A broadcast exists if several processors read the same variable at the
same time� This means that in a parallel loop� several executions need the same variable�
This corresponds to non�zero kernels for data �ow graph transformations� A broadcast can
be total �one processor sends its data to every other processors� or partial �the data is sent
to a subset of the processors��

�� Broadcasts are processed� Broadcast directions are identi�ed in the initial program� The
conditions for the prototype mapping are rewritten so that the projection onto the virtual
processor space is not along the broadcast directions�

�a� Total broadcast conditions� Platono� �rst tries to preserve total broadcasts when pro�
jecting onto the virtual processor space�

�b� Partial broadcast conditions� if a total broadcast is not possible �because it is not compat�
ible with the mapping function rank calculated in the �rst step�� the prototype mapping
is augmented with the constraints for a partial broadcast� Another type of constraint is
added� to be e�cient� partial broadcasts have to be parallel to the axes�

�� The volume of remaining communications is minimized with the greedy heuristic of Feautrier�

��� Discussion

Many authors have proposed heuristics to �nd a communication�free mapping or to the minimize
the number of communications� NP�completeness results show that the problem is di�cult ���� �� ���
A communication�free mapping algorithm usually leads to a trivial mapping �all the computations
and the data are regrouped on the same processor� and� therefore� all the parallelism present inside
the initial code is lost�

We compare our heuristic with the strategy developed by Platono� on a small example� Consider
the following loop nest�

Example �

for t � �� n do
� � �
for i� j� k � �� n do

S�I� � a�t� i� j� k� � b�t� i� j�

�The rank is equal the depth of the instruction in the loop nest minus the scheduling dimension�
�The structure parameters are integer variables de�ned outside the loop by an assignment� or by an I�O instruction�





endfor
� � �

endfor

Let f
eigi
��� be the canonical basis of the iteration space� We assume here that the loop nest
is scheduled by a linear scheduling vector � � 
e�� The outer loop is sequential and the inner loops
on i� j �and k are parallel� The arrays a and b can be accessed before and after the parallel loop�
inside the sequential loop� We also assume that we want to map computations and data onto a

�dimensional processor space� m � � The access matrix for array b is Fb �

�
B� � � � �
� � � �
� � � �

�
CA�

A necessary condition to have a broadcast is ker��t� 	 ker�Fb� �� �� In our example� we have
ker��t�	 ker�Fb� � 
e�� According to the allocation matrices� the broadcast can be kept or masked�
Platono�	s strategy consists in�

�� detecting all the macro�communications possibly present in the initial program�

� writing the conditions to preserve these macro�communications�

�� making local �or zeroing out� as many remaining communications as possible� by taking into
account the conditions previously found in his prototype mapping function�

To keep the partial broadcast� Platono� would choose MS �Ma �

�
� � � �
� � � �

�
and Mb ��

� � �
� � �

�
� With this mapping� each processor sends a value to a column of processors� At each

time�step� n� broadcasts of one element along one dimension of the processor space are necessary�
The loop nest is computable with n� macro�communications�

However� we easily see that� with our strategy� the loop nest can be computed without any

communication� For example� we can choose Mb �

�
� � �
� � �

�
and MS � Ma � MbFb ��

� � � �
� � � �

�
� We �rst try to make local as many communications as possible and then we

try to extract macro�communications from the residual communications� whereas Platono� �rst
detects the macro�communications and then try to zero out the remaining communications�

� Conclusion

Many authors have proposed heuristics to minimize the communication volume or number when
mapping data and computations of an a�ne loop nests onto DMPCs� It is generally impossible to
obtain a communication�free mapping and another goal in the mapping process is to �optimize� in
some sense the residual communications�

We have designed an e�cient two�step heuristic

�� based upon the access graph to zero out as many communications as possible� with priority
given to communications of largest volume

� enlarged with the processing of residual communications� either through the extraction of
macro�communications of through the decomposition of complex communications into simpler
ones

�



We have provided a detailed analysis of macro�communications �broadcasts� scatters� gathers�
reductions� and of message vectorization�� together with criteria for their e�cient mapping�

Finally we have given analytical formulae to decompose complex communications� and we have
shown that such a decomposition improves communication performance on the Paragon�

� Appendix

��� Hermite form

Mn�Z� denotes the set of n � n matrices over Z� The unimodular matrices of Mn�Z� are those of
determinant ���

De�nition � �Right Hermite form� For every non singular matrix A of Mn�Z�� there exist a

unimodular matrix Q �Mn�Z� and a lower triangular matrix H �Mn�Z� such that�

� �i� j�� hij � ��

� each non�diagonal element is smaller than the diagonal element of the same row�

� A � QH�

This decomposition is called Hermite form decomposition� Furthermore� if det�A� �� �� Q and

H are unique�

Left Hermite can also be de�ned in the same way� Besides� Hermite forms also exist for rect�
angular matrices� Let A be a �n � t� � n matrix� we can decompose A in the following way�

A � Q

�
H
�

�
� where � is t � n null matrix and H is a n� n matrix of the previous form�

��� Pseudo	inverses

Let X be a rectangular u� v integer matrix� and assume that X is of full rank min�u� v�� If u � v�
then X is nonsingular and its inverse matrix X�� is such that XX�� � X��X � Idu� where Idu
denotes the identity matrix of order u�

If u �� v� we can de�ne a pseudo�inverse �still denoted as X��� as follows�

� if u � v �X is �at�� then XX t is a square nonsingular u � u matrix whose �ordinary�
inverse matrix is �XX t���� Then we de�ne the pseudo�inverse �or right�inverse� of X as
X�� � X t�XX t���� X�� is a v � u matrix of rank u such that XX�� � Idu� Note that
X��X �� Idv if u �� v�

� if u � v �X is narrow�� then X tX is a square nonsingular v � v matrix whose �ordinary�
inverse matrix is �X tX���� Then we de�ne the pseudo�inverse �or left�inverse� of X as X�� �
�X tX���X t� X�� is a v � u matrix of rank v such that X��X � Idv� Note that in general
XX�� �� Idu if u �� v�

Note that for square non singular matrices� the pseudo�inverse matrix coincides with the �usual�
inverse matrix� For more details� see �����
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��� Matrix equations

Lemma � Let A be a m�a matrix of rank m and F be a a�d matrix of rank a� where m � a � d�

Then AF is of rank m�

Proof We use the Hermite normal form of F � F � �H� ��Q� where H is a a� a upper triangular
matrix of rank a� and Q is a unimodular d� d matrix� Since Q is nonsingular� the rank of AF is
that of A�H� ��� hence that of AH � hence �nally that of A� as H is nonsingular too�

Lemma � was used in Section  to prove that we can safely let MS �MxF when Mx is a m�qx
matrix of rank m and F a qx � d matrix of rank qx� where m � qx � d� Now for the case where
m � d � qx� we need to solve the equation MS � MxF � where MS of rank m and F of rank d are
given� We use the following result from �����

Lemma � Let S be a m�d matrix of rank m and F be a a�d matrix of rank d� Then the equation

XF � S admits a solution if and only if the compatibility condition SF��F � S is satis�ed� In

such a case� all solutions are given by the expression X � SF�� � Y �Ida � FF���� where Y is an

arbitrary m� a matrix�

Lemma 
 Let S be a m�d matrix of rank m and F be a a�d matrix of rank d� where m � d � a�

Then the equation XF � S admits the rank�m solution A � SF���

Proof The compatibility condition is veri�ed because F��F � Idd with our hypothesis� Hence
A � SF�� is a solution of the equation� Finally� we apply Lemma � to prove that its rank is indeed
m�

Lemma � was used in Section  to orient some arrows from statements to arrays in the access
graph�
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