N
N

N

HAL

open science

A Portable and Adaptive Multi-Protocol
Communication Library for Multithreaded Runtime
Systems

Olivier Aumage, Luc Bougé, Raymond Namyst

» To cite this version:

Olivier Aumage, Luc Bougé, Raymond Namyst. A Portable and Adaptive Multi-Protocol Communi-
cation Library for Multithreaded Runtime Systems. [Research Report] LIP RR-2000-17, Laboratoire

de l'informatique du parallélisme. 2000, 24+7p. hal-02101779

HAL Id: hal-02101779
https://hal-lara.archives-ouvertes.fr /hal-02101779
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101779
https://hal.archives-ouvertes.fr

%

Laboratoire de I’ I nformatique du Parall&isme

, . CENTRE NATIONAL
Ecole Normale Supérieure de Lyon % DE LA RECHERCHE
Unité Mixte de Recherche CNRS-INRIA-ENS LYON rf 8512 SCIENTIFIQUE

A Portable and Adaptive Multi-Protocol
Communication Library for Multithreaded
Runtime Systems

Olivier Aumage
Luc Bougé April 2000
Raymond Namyst

Research Report N° 2000-17

Ecole Normale Supérieure de Lyon

- SPI
EEEEN
EEEEN

46 Allée d Italie, 69364 Lyon Cedex 07, France f'
Téléphone : +33(0)4.72.72.80.37 1 N R I A
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : 1ip@ens-lyon.fr

A Portable and Adaptive Multi-Protocol Communication Library
for Multithreaded Runtime Systems

Olivier Aumage
Luc Bougé
Raymond Namyst

April 2000

Abstract

This paper introduces Madeleine I, an adaptive multi-protocol extension of
the Madeleine portable communication interface. Madeleine II provides fa-
cilities to use multiple network protocols (VIA, SCI, TCP, MPI) and multi-
ple network adapters (Ethernet, Myrinet, SCI) within the same application.
Moreover, it can dynamically select the most appropriate transfer method for
a given network protocol according to various parameters such as data size
or responsiveness user requirements. We report performance results obtained
using Fast-Ethernet and SCI.

Keywords: Multiprotocol, multiparadigm, dynamicity, RPC.

Résumé

Cet article présente Madeleine II, une extension multi-protocole adaptative de
I'interface de communication portable Madeleine. Madeleine II permet ’utilisa-
tion de plusieurs protocoles réseaux (VIA, SCI, TCP, MPI) et de plusieurs type
de cartes d’interface réseau (Ethernet, Myrinet, SCI) dans une méme applica-
tion. De plus, Madeleine II sélectionne dynamiquement la méthode de transfert
la plus appropriée d’apres divers parametres tels que la taille des données ou
la réactivité requise. Les mesures de performances effectuées sur Fast-Ethernet
et SCI atteignent un niveau particulierement intéressant.

Mots-clés: Multi-protocole, multi-paradigme, dynamicité, RPC.

A Portable and Adaptive Multi-Protocol Communication Library
for Multithreaded Runtime Systems

Olivier Aumage Luc Bougé Raymond Namyst
27th April 2000

Contents

1 Efficient Communication in Multithreaded Environments 1
2 The Madeleine II Multi-Protocol Communication Interface 1
3 Inside Madeleine II : from the Application to the Network 3
4 Implementation and Performances 5
5 Related work 6
6 Conclusion 7

1 Efficient Communication in Multithreaded Environments

Due to their ever-growing success in the development of distributed applications on clusters of SMP machines,
today’s multithreaded environments have to be highly portable and efficient on a large variety of architec-
tures. For portability reasons, most of these environments are built on top of widespread message-passing
communication interfaces such as PVM or MPIL. However, the implementation of multithreaded environments
mainly involves RPC-like interactions. This is obviously true for environments providing a RPC-based pro-
gramming model such as Nexus [2] or PM2 [4], but also for others which often provide functionalities that
can be efficiently implemented by RPC operations.

We have shown in [1] that message passing interfaces such as MPI, do not meet the needs of RPC-
based multithreaded environments with respect to efficiency. Therefore, we have proposed a portable and
efficient communication interface, called Madeleine, which was specifically designed to provide RPC-based
multithreaded environments with both transparent and highly efficient communication. However, the inter-
nals of this first implementation were strongly message-passing oriented. Consequently, the support of non
message-passing network protocols such as SCI or even VIA was cumbersome and introduced some unnec-
essary overhead. In addition, no provision was made to use multiple network protocols within the same
application. For these reasons, we decided to design Madeleine II, a full multi-protocol version of Madeleine,
efficiently portable on a wider range of network protocols, including non message-passing ones.

2 The Madeleine II Multi-Protocol Communication Interface

The Madeleine II programming interface provides a small set of primitives to build RPC-like communication
schemes. Theses primitives actually look like classical message-passing-oriented primitives. Basically, this
interface provides primitives to send and receive messages, and several packing and unpacking primitives
that allow the user to specify how data should be inserted into/extracted from messages (Table 1). A
message consists of several pieces of data, located anywhere in user-space. They are constructed (resp. de-
constructed) incrementally using packing (resp. unpacking) primitives, possibly at multiple software levels,

mad_begin_packing Initiates a new message
mad_begin_unpacking | Initiates a message reception
mad_end_packing Finalize an emission
mad_end_unpacking Finalize a reception
mad_pack Packs a data block
mad_unpack Unpacks a data block

Table 1: Functional interface of Madeleine II.

without losing efficiency. The following example illustrates this need. Let us consider a remote procedure
call which takes an array of unpredictable size as a parameter. When the request reaches the destination
node, the header is examined both by the multithreaded runtime (to allocate the appropriate thread stack
and then to spawn the server thread) and by the user application (to allocate the memory where the array
should be stored).

The critical point of a send operation is obviously the series of packing calls. Such packing operations
simply wirtually append the piece of data to a message under construction. In addition to the address of
data and its size, the packing primitive features a pair of flag parameters which specifies the semantics of
the operation. The available emission flags are the following:

send _SAFER This flag indicates that Madeleine IT should pack the data in a way that further modifications
to the corresponding memory area should not corrupt the message. This is particularly mandatory if
the data location is reused before the message is actually sent.

send LATER This flag indicates that Madeleine IT should not consider accessing the value of the corresponding
data until the mad_end packing primitive is called. This means that any modification of these data
between their packing and their sending shall actually update the message contents.

send CHEAPER This is the default flag. It allows Madeleine II to do its best to handle the data as efficiently
as possible. The counterpart is that no assumption should be made about the way Madeleine IT will
access the data. Thus, the corresponding data should be left unchanged until the send operation has
completed. Note that most data transmissions involved in parallel applications can accommodate the
send _CHEAPER semantics.

The following flags control the reception of user data packets:

receive EXPRESS This flag forces Madeleine II to guarantee that the corresponding data are immediately
available after the unpacking operation. Typically, this flag is mandatory if the data is needed to issue
the following unpacking calls. On some network protocols, this functionality may be available for free.
On some others, it may put a high penalty on latency and bandwidth. The user should therefore
extract data this way only when necessary.

receive CHEAPER This flag allows Madeleine II to possibly defer the extraction of the corresponding data
until the execution of mad_end unpacking. Thus, no assumption can be made about the exact moment
at which the data will be extracted. Depending on the underlying network protocol, Madeleine II will
do its best to minimize the overall message transmission time. If combined with send CHEAPER, this
flag guarantees that the corresponding data is transmitted as efficiently as possible.

Figure 1 illustrates the power of the Madeleine interface. Consider sending a message made of an array
of bytes whose size is unpredictable on the receiving side. Thus, on the receiving side, one has first to extract
the size of the array (an integer) before extracting the array itself, because the destination memory has to be
dynamically allocated. In this example, the constraint is that the integer must be extracted EXPRESS before
the corresponding array data is extracted. In contrast, the array data may safely be extracted CHEAPER,
striving to avoid any copies.

Madeleine II aims at enabling an efficient and exhaustive use of underlying communication software and
hardware functionalities. It is able to deal with several network protocols within the same session and to

Sending side Receiving side

conn = mad_begin_packing(...); conn = mad_begin_unpacking(...);
mad_pack(conn,&size,sizeof (int), mad_unpack(conn,&size,sizeof (int),
send_CHEAPER,receive_EXPRESS) ; send_CHEAPER,receive_EXPRESS);
array = malloc(size);
mad_pack(conn, array, size, mad_unpack(conn, array, size,
send_CHEAPER,receive_CHEAPER) ; send_CHEAPER,receive_CHEAPER) ;
mad_end_packing(conn) ; mad_end_unpacking(conn) ;

Figure 1: Sending and receiving messages with Madeleine I1.

manage multiple network adapters (NIC) for each of these protocols. The user application can dynamically
and explicitly switch from one protocol to another, according to its communication needs. The multi-protocol
support of Madeleine IT relies on the concept of channel.

Channels in Madeleine II are pretty much like radio channels. They are allocated at run-time. The
communication on a given channel does not interfere with the communication on another one. As a coun-
terpart, in-order delivery is not guaranteed among distinct channels. In-order delivery is only enforced for
point-to-point connections within the same channel. In this respect, they look like MPI communicators, but
different Madeleine I channels can be bound to different protocols as well as adapters (Fig. 2). Of course,
several channels may share the same protocol, and even the same adapter.

text_chan = mad_open_channel (TCP_ETHO) ;

video_chan = mad_open_channel (SISCI_SCIO) ;

text_conn = mad_begin_packing(text_chan, video_client);
video_conn = mad_begin_packing(video_chan, video_client);
mad_pack(text_conn, text_dataptr, text_len, ...);
mad_pack(video_conn, video_dataptr, video_len, ...);

Figure 2: Example of a video server simultaneously sending video information using a SISCI channel and
translation text data using TCP channel.

3 Inside Madeleine II : from the Application to the Network

The transmission of data blocks using Madeleine II involves several internal modules. We illustrate its
internals in the case of an implementation on top of VIA (Fig. 3).

Protocols such as VIA provide several methods to transfer data, namely regular message passing and
remote DMA write (and optionally RDMA-read). Moreover, there are several ways to use these transfer
methods, as VIA requires registering the memory blocks before transmission. It is for instance possible to
dynamically register user data blocks, or to copy them into a pool of pre-registered internal buffers. Their
relative efficiency crucially depends on the size of the blocks. The current implementation of Madeleine IT
on top of VIA supports the three following combinations:

Small blocks: message-passing + static buffer pool.
Medium-sized blocks: message-passing + dynamically registered buffers.
Large blocks: RDMA-write + dynamically registered buffers.

Each transfer method is encapsulated in a protocol-specific Transmission Module (TM, see Fig. 3). Each
TM is associated with a Buffer Management Module (BMM). A BMM implements a generic, protocol-
independent management policy: either the user-allocated data block is directly referenced as a buffer,
or it is copied into a buffer provided by the TM. Moreover, each BMM implements a specific scheme to

aggregate successive buffers into a single piece of message. Each TM is associated with its optimal BMM.
However, observe that several TM (even from different protocols) may share the same BMM, which results
in a significant improvement in development time and reliability.

In the case of VIA, one can for instance take advantage of the gather/scatter capabilities of VIA to issue
one-step burst data transfers when possible. This strategy is rewarding for medium-size blocks scattered
in user-space. For small blocks accumulated into static buffers, it is most efficient to immediately transfer
buffers as soon as they get full: this enhances pipelining and overlaps the additional copy involved.

Application Application
fffffffffffffffff pack ------=----------- ---------------unpack ----------------
|
L@ Switch Module | | Generic \ Switch Module |
pack, commit Buffer unpack, checkout
BMM 4| |BMM 5| ...|BMM , t":;”e"’;gemem ‘BMMl‘ ‘BMMZ‘... BMM ,
ffffffffffffffff send---------@ 1@ Seee-------- receiVe --------m-m-o-o-
VIA © \ select | | Specific VIA
™, ™, Protocol ™, ™,
rdma mesg Layer rdma mesg
ffffffffffffffff transmit - - - a""”” ---------------extract ------------o---
Fast-Ethernet Fast-Ethernet
Driver Driver
Fast-Ethernet Fast-Ethernet
Adapter Adapter
| © |
Network

Figure 3: Conceptual view of the data path through Madeleine II’s internal modules.

Sending Side

One initiates the construction of an outgoing message with a call to begin_packing(channel, remote).
The channel object selects the protocol module (VIA in our case), and the adapter to use for sending the
message. The remote parameter specifies the destination node. The begin packing function returns a
connection object.

Using this connection object, the application can start packing user data into packets by calling
pack(connection, ptr, len, smode, rmode). Entering the Generic Buffer Management Layer, the
packet is examined by the Switch Module (Step 1 on Fig. 3). It queries the Specific Protocol Layer (Step 2)
for the best suited Transmission Module, given the length and the send/receive mode combination. The se-
lected TM (Step 3) determines the optimal Buffer Management Module to use (Step 4). Finally, the Switch
Module forwards the packet to the selected BMM. Depending on the BMM, the packet may be handled as
is (and considered as a buffer), or copied into a new buffer, possibly provided by the TM. Depending on
its aggregation scheme, the BMM either immediately sends the buffer to the TM or delays this operation
for a later time. The buffer is eventually sent to the TM (Step 5). The TM immediately processes it and
transmits it to the Driver (Steps 6). The buffer is then eventually shipped to the Adapter (Step 7).

Special attention must be paid to guarantee the delivery order in presence of multiple TM. Each time
the Switch Step selects a TM differing from the previous one, the corresponding previous BMM is flushed
(commit on Fig. 3) to ensure that any delayed packet has been sent to the network. A general commit
operation is also performed by the end packing(connection) call to ensure that no delayed packet remains
waiting in the BMM.

Receiving Side

Processing an incoming message on the destination side is just symmetric. A message reception is initiated
by a call to begin unpacking(channel) which starts the extraction of the first incoming message for the
specified channel. This function returns the connection object corresponding to the established point-to-
point connection, which contains the remote node identification among other things.

Using this connection object, the application issues a sequence of unpack(connection, ptr, len,
s.mode, r_mode) calls, symmetrically to the series of pack calls that generated the message. The Switch
Step is performed on each unpack and must select the same sequence of TM as on the sending side. For
instance, a packet sent by the DMA Transmission Module of VIA must be received by the same module on
the receiving side. The checkout function (dual to the commit one on the sending side) is used to actually
extract data from the network to the user application space: indeed, just like packet sending could be delayed
on the sending side for aggregation, the actual packet extraction from the network may also be delayed to
allow for burst data reception. Of course, the final call to end_unpacking(connection) ensures that all
expected packets are made available to the user application.

Discussion

This modular architecture combined to packet-based message construction allows Madeleine I to be efficient
on top of message-passing protocols as well as put/get protocols. Whatever the underlying protocol used,
Madeleine II's generic flexible buffer management layer is able to tightly adapt itself to its particularities,
and hence deliver most of the available networking potential to the user application. Moreover, the task of
implementing a new protocol into Madeleine II is considerably alleviated by re-using existing BMM.

4 Implementation and Performances

We now evaluate Madeleine II on top of several network protocols. All features mentioned above have been
implemented. Drivers are currently available for TCP, MPI, VIA, SISCI [3] and SBP [6] network interfaces.

Testing Environment

The following performance results are obtained using a cluster of dual Intel Pentium II 450 MHz PC nodes
with 128 MB of RAM running LINUX (Kernel 2.1.130 for VIA, and Kernel 2.2.10 for TCP and SISCI).
The cluster interconnection networks are 100 Mbit/s Fast Ethernet for TCP and VIA, and Dolphin SCI
for SISCI. The tests run on the TCP/IP protocol use the standard UNIX sockets. The tests run on the
VIA protocol use the M-VIA 0.9.2 implementation from the NERSC (National Energy Research Scientific
Computing Center, Lawrence Berkeley Natl Labs).

TCP

Latency Bandwidth
Protocol TCP | SISCI TCP SISCI
Raw performance | 59.8 us | 2.3 ps || 11.1 MB/s | 76.5 MB/s
Madeleine 774 ps | 5.9 ps || 10.5 MB/s | 70.0 MB/s
Madeleine 11 67.2 pus | 7.9 ps || 11.0 MB/s | 57.0 MB/s

Table 2: Latency (left) and bandwidth (right) on top of TCP and SISCI.

Surprisingly enough, Madeleine IT outperforms Madeleine (Table 2). Madeleine used to require attaching
a short header to each transfered message, whereas Madeleine II gives the user finer control on the message
structure. The difference in performance between raw TCP and Madeleine II on top of TCP is the result of

the current software overhead of Madeleine II. The bandwidth of Madeleine IT on top of TCP is very close
to the raw bandwidth of TCP.

SISCI

The new SISCI Specific Protocol Layer of Madeleine II is not yet as optimized as the one used by Madeleine.
This is why the bandwidth measured with Madeleine IT on top of SISCI is not as good as the one obtained
with Madeleine (Table 2). The difference in latency between Madeleine II and Madeleine is due to some
additional processing in the internals of Madeleine II. Future optimizations will hopefully solve this problem.

Dynamic Transfer Method Selection

Dynamic transfer method selection (Madeleine/VIA)

1600 T T T T T =
[m}
(]
1400 |- - -
gt ®®
< 1200 oY _e®® A
8 8 00®
2 1000 |- gohe® E
o o®
1
= 800 [g9 -
3 g8 &
E 600 ° 8 8 —
T a0 b o8® -
o
o 8 = Multiparadigm
200 For Dynamic registraton O
= | | Stallic registratlion + CopyI o

0
0 2000 4000 6000 8000 10000 12000
Packet size (bytes)

Figure 4: Multi-Paradigm support.

We mentioned above the capability of Madeleine IT to dynamically choose the most appropriate transfer
paradigm within a given protocol. Figure 4 shows the dramatic influence of dynamic transfer paradigm
selection on performance using VIA. VIA requires the memory areas involved in transfer to be registered.
Such dynamic registration operations are expensive. This cost is especially prohibitive for short messages, and
using a pool of pre-registered buffers help circumventing the problem. Instead of registering the memory area
where the messages are stored, one can copy the messages into these buffers. This amounts to exchanging
registration time for copying time. This is obviously inefficient for long messages. The two curves are
plotted on Figure 4. The Multi-Paradigm curve is obtained by activating the dynamic paradigm selection of
Madeleine II. It is optimal both with short messages and long messages!

5 Related work

Many communication libraries have recently been designed to provide portable interfaces and/or efficient
implementations to build distributed applications. However, very few of them provide an efficient support
for RPC-like communication schemes, support for multi-protocol communications and support for multi-
threading.

Illinois Fast Messages (FM) [5] provides a very simple mechanism to send data to a receiving node that
is notified upon arrival by the activation of a handler. Releases 2.x of this interface provide interesting
gather/scatter features which allow an efficient implementation of zero-copy data transmissions. However,
it is not possible to issue a transmission with the semantics of the receive CHEAPER Madeleine II flag: only
receive EXPRESS-like receptions are supported, and it is not possible to enforce aggregated transmissions.

The Nexus multithreaded runtime [2] features a multi-protocol communication subsystem very close
to the one of Madeleine II. The messages are constructed using similar packing operations except that
no “high level” semantics can be associated to data: there is no notion of CHEAPER specifications, which
allows Madeleine II to choose the best suited strategy. Also, as for FM, unpacking operations behave like
receive EXPRESS Madeleine II transmissions.

6

Conclusion

In this paper, we have described the new Madeleine II communication interface. This new version features full
multi-protocol, multi-adapter support as well as an integrated new dynamic most-efficient transfer-method
selection mechanism. We showed that this mechanism gives excellent results with protocols such as VIA.
We are now actively working on having Madeleine II running across clusters connected by heterogeneous
networks.

References

[1]

BoucE, L., MEHAUT, J.-F., AND NAMYST, R. Efficient communications in multithreaded runtime systems. In
Proc. 8rd Workshop on Runtime Systems for Parallel Programming (RTSPP ’99) (San Juan, Puerto Rico, Apr.
1999), vol. 1586 of Lect. Notes Comp. Science, Springer-Verlag, pp. 468-182.

FosTER, I., KESSELMAN, C., AND TUECKE, S. The Nexus approach to integrating multithreading and commu-
nication. Journal on Parallel and Distributed Computing 37, 1 (1996), 70-82.

IEEE. Standard for Scalable Coherent Interface (SCI), Aug. 1993. Standard no. 1596.

NAMYST, R., AND MEHAUT, J.-F. PM2: Parallel Multithreaded Machine. a computing environment for dis-
tributed architectures. In Parallel Computing (ParCo’95) (Sept. 1995), Elsevier, pp. 279-285.

PAKIN, S., KARAMCHETI, V., AND CHIEN, A. Fast Messages: Efficient, portable communication for workstation
clusters and MPPs. IEEE Concurrency 5, 2 (Apr. 1997), 60-73.

RusseLL, R., AND HATCHER, P. Efficient kernel support for reliable communication. In 18th ACM Symposium
on Applied Computing (Atlanta, GA, Feb. 1998), pp. 541-550.

