
HAL Id: hal-02101778
https://hal-lara.archives-ouvertes.fr/hal-02101778v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protocol design for high performance networking: a
Myrinet experience

Loïc Prylli, Bernard Tourancheau

To cite this version:
Loïc Prylli, Bernard Tourancheau. Protocol design for high performance networking: a Myrinet
experience. [Research Report] LIP RR-1997-22, Laboratoire de l’informatique du parallélisme. 1997,
2+10p. �hal-02101778�

https://hal-lara.archives-ouvertes.fr/hal-02101778v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Protocol design for high performance

networking� a Myrinet experience

Loic Prylli

Bernard Tourancheau
July ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Protocol design for high performance networking� a Myrinet

experience

Loic Prylli

Bernard Tourancheau

July ����

Abstract

High speed networks are now providing incredible performance� Software evolution is slow and
the old protocol stacks are no longer adequate for these kind of communication speeds� When
bandwidth increases� the latency should decrease as much in order to keep the system balance�
With the current network technology� the main bottleneck is most often the software that is the
interface between the hardware and the user� We designed and implemented new transmission
protocols� targeted to parallel computing� that squeeze the most out of a high speed network
�Myrinet in this paper� without wasting time in system calls or memory copies� giving all the
speed to the applications� This design is presented here as well as experimental results� We
achieve Gigabit�s bandwidth and less than ��s latency on a cluster of PC workstations with
inexpensive network hardware� Moreover� our results compare favorably with the expensive
parallel computers or ATM LANs�

Keywords� High�speed networks� Communication Protocols� Message�passing implementations� Worksta�
tions clusters� Myrinet

R�esum�e

Les r�eseaux haut�d�ebits proposent maintenant des performances incroyables� L��evolution des
logiciels est plus lente et les vieilles piles de protocoles ne sont plus adapt�ees� Lorsque la bande
passante augmente� les latences doivent aussi diminuer pour maintenir un syst	eme �equilibr�e�
Avec les technologies actuelles de r�eseaux haut�d�ebits� le goulot d��etranglement le plus courant est
l�interface logicielle entre le mat�eriel et l�utilisateur� Nous avons con
cu et impl�ement�e de nouveaux
protocoles sp�eci�ques� destin�es au calcul parall	ele� qui permettent d�obtenir des performances
proches de celles du mat�eriel �Myrinet dans notre �etude�� Ceci sans perdre de temps en appels
syst	emes ou recopies m�emoires� laissant toutes les performances disponibles pour l�application�
Nous pr�esentons ici la conception et les r�esultats exp�erimentaux de l�impl�ementation r�ealis�ee�
Nous atteignons un d�ebit de �Gbit�s avec une latence inf�erieure 	a ��s sur une ferme de PC avec
un r�eseau local d�un prix raisonnable� De plus� ces r�esultats de communication sont meilleurs
que ceux des ordinateurs parall	eles ou des stations reli�ees par un r�eseau ATM�

Mots�cl�es� R�eseaux haut�d�ebits� Protocole de communication� impl�ementation de biblioth	eques message�
passing�� R�eseaux de stations� Myrinet

Protocol design for high performance networking� a Myrinet

experience

Loic Prylli

LHPC � INRIA ReMaP

LIP� ENS�Lyon

�����	 Lyon � France

Loic
Prylli�ens�lyon
fr

Bernard Tourancheau�

LHPC � INRIA ReMaP

LIGIM bat���� UCB�Lyon

����� Villeurbanne � France

Bernard
Tourancheau�inria
fr

� Introduction

Multimedia applications as well as parallel computing and databases are asking for low�latency� high�
bandwidth networks� This kind of performance implies a new design of the protocols in order to avoid
software latency and memory copies�
Indeed� the recent relative evolution of computer subsystems has created new problems� �ve years ago�

with parallel computing over ��Mbits�s Ethernet or even on a ���Mbits�s FDDI ring� it was easy to sat�
urate the network� The memory bandwidth or the IO bandwidth of typical workstations were an order of
magnitude faster than the physical network� so the interface between the user and the hardware was not
too much a problem� Nowadays relatively inexpensive network technology is over �Gbits�s for LAN� and
although workstations have also increased in performance� the gap between network bandwith and other
inner bandwiths �memory and IO busses� has been considerably reduced� So it is time to use carefully host
resources�
Our experiences with ATM LAN networks have shown two problems� �rst even when the wire is able

to provide ���Mbits�s� a poor design of the ATM board drivers can prevent the use of more than half the
hardware bandwidth� Second the latency on typical workstations is counted by hundreds of microsecond
�Pry��� PT��� which is unbearable in such a context �a ��� us latency is equivalent to the transfer of
��MBytes of data at the speed of ���Mbit�s��
Our software research work was driven by the idea that we wanted to exploit to its full strength the

potential of the network in the applications� In the real world� what counts is not what the hardware can
theoretically support �ATM ���Mbits�s� Myrinet ����Gbits�s� but what performance is available at the
user�developer level �and which marketing will not advertise�� Our research shows that the power of high�
speed networks can be exploited by carefully shortening the path of data from application to application
and avoiding overhead� This was necessary for both latency and bandwidth improvement�
This paper describes our ideas for the design of a software protocol that leaded to a sustained � Gbits�s

throughput with less than � �s latency over a Myricom LAN of PCs�

� Overview of BIP

Our �rst objective was to implement an interface for network communication targeted towards message�
passing parallel computing� The idea was to provide protocols with low level functionalities that could be
easily interfaced with classical protocol stacks like IP or APIs like the well established MPI�SOHL���� and
PVM�GBD���� �see Figure ���

�This work was supported by EUREKA contract EUROTOPS� LHPC �Matra MSI� CNRS� ENS�Lyon� INRIA� R�egion
Rh�one�Alpes�� INRIA Rh�one�Alpes project REMAP� CNRS PICS program� CEE KIT contract

�

The Myricom LAN target was chosen for its performance over the Gbit�s �OC��� � ���� Gbits�s actually��
its a�ordability �the interface board are around �K USD and the �� � switch is around ���K USD� and its
software openness �all the software and speci�cations are freely available for customers��
Our simple interface was called BIP for Basic Interface for Parallelism� Our basic idea was to build a

library accessible from applications that will implement a high�speed protocol with the least possible accesses
to the system kernel �for other works in this area� see Section���
BIP provides several functions to get parameters or set�up constants� and the send and receive communi�

cation primitives� Long messages have a rendez�vous semantics � the receive must be posted before the send
has begun� This is a like the MPI ready�mode� semantic� Short messages are stored in intermediate bu�ers
so a send call will not block even when no corresponding receive� is posted� except when the destination
bu�ers are full� This is a bit like the bu�ered send� of MPI� the di�erence is that the bu�er limit is �xed
by the receiver� not by the sender� These primitives allow higher layers to implement any more complex
semantics calls� for instance by using small control messages� we ported MPI this way�
BIP messages can be routed through multiple switches� which provides� from the OSI point of view�

services that are part of the level � functionality �in fact Myrinet design implies that routing is done at the
physical layer so we do not have to worry about it� for each message we still must provide the path that it
should follow through the switches�� This path is currently �xed at initialization for each pair of nodes�
Each BIP message has a tag identifying a particular receive queue on the destination� the other send

arguments are the data and the logical number of the destination� The receive does not specify a particular
source� Its arguments are a tag specifying a receive queue� a bu�er where to receive a message� and the
maximal length it can receive in this bu�er�
The rationale here is that BIP is intended as a intermediate layer for other higher level protocols as

soon as a complex functionality is needed� But the services provided are strongly oriented to the parallel
application domain�
The send and the receive are also available with a non�blocking semantics� where one can either test or

wait for the completion of the asynchronous send and receive calls� At one time� a process may only have
one receive and one send posted� and not more� Send and receive operations are completely independent
so you can intermix them in any manner� The non�blocking primitives allow overlapping of computation
and communication when appropriate but there must be no more than one send and one receive operation
pending� upper layers can provide a queuing mechanism to the user if necessary�
Here is a summary of the characteristics of BIP messages� a more complete presentations is done in the

BIP manual�Pry����

� The BIP scope of an application consists of n processes numbered logically from � to n � � at start
time�

� BIP relies on send and receive primitives that have a ready�mode semantic for long messages�

� All BIP communications are reliable and ensure in�order delivery�

� For simplicity� the transmitted data must be contiguous and aligned on ��byte word boundaries�

� BIP does not put any limit on the size of messages transmitted�

� There is several queues� on a each destination� each message is sent to a particular queue identi�ed
by a tag� Messages on di�erent queues can be retrieved in a order di�erent from the physical reception�
but messages are retrieved in�order on a given queue �

� Design choices and methodology

The software design was in particular guided by the high�speed network platform we use �Myrinet from
Myricom Inc�� but the general ideas are applicable to any network hardware architecture that provide the
same assumptions� We tried to present it this way and give technical hints only when it is necessary to
illustrate the ideas�

�

IP-BIP MPI-BIP

MPI

BIP

Application

PVM

TCP/UDP

IP

Figure �� Description of the protocol stack with our application performance point of view� the application
can access directly the BIP level �basic message passing interface with constraints� or use other functionality
levels� Notice that this can be changed depending on the implementations that are done� for instance� one
can imagine porting the BLACS� or TCP� or PVM directly on top of BIP in order to keep very low latency�

�

��� User level management of the network

The BIP software is designed for a standard UNIX con�guration� We wanted to avoid implementing part of
our BIP library in the UNIX kernel� but working at the equivalent of OSI level ��� we needed direct access
to the hardware and modi�cations to the OS and thus use LINUX on each host of the LAN�
Let us justify user�level management� The primary aim of an OS is to isolate applications� one from

another� to give them an interface to interact with the external world �I�O� IP�� and to share the resources
of a machine �memory and CPU� between the di�erent applications� Security checks and context switches
make systems calls a heavy operation� and for performance reasons all interaction that is contained within
an application should not interact with the OS� We can illustrate this with the standard �stdio� that allow
bu�ering inside a process for performance reasons� or the e�ort that have been made to implement user�level
threads using the system only when strictly necessary�
A parallel application� although consisting of several processes on di�erent computers� is just one ap�

plication� As such when doing just computation it should not need to interact with the OS� Moreover�
message�passing in a parallel application should not need the OS like memory copy does not need the OS
in a sequential application� For this purpose� we consider the network hardware totally dedicated to the
application ��
The important point here has already been pointed out by others �PKC��� BBVvE���� for performance

reasons� we cannot a�ord using the OS and a heavy protocol stack as an intermediary to access the network
hardware� The message�passing library should directly manage the hardware to implement the message�
passing API�

��� Zero memory copy

Five years ago� on the parallel machines� or on cluster of workstations with ��Mbits�s Ethernet� the memory
bus was one or several orders of magnitudes faster than the network� There was not too much concern on
the way to put data from the memory to the network� Recopy of communication bu�ers in a memory space
suited for the communication protocol� packet disassembly and reassembly� all these kind of operations did
not have an important impact on the �nal performance�
The current situation is quite di�erent� The network bandwidth is often comparable with the memory

bandwidth �for instance� with our con�guration the memory bus throughput is ���MBytes�s when reading
memory� a memory copy is about ��Mbytes�s� and the network bandwidth is ���Mbytes�s�� So the
alternative between doing a memory copy versus putting directly user data directly on the network can
impact performance as much as the old�fashioned store and forward strategy slow down routing compared
to circuit�switched or wormhole strategies� In fact doing a memory copies is exactly like having a store�and�
forward step on the network�

����� Hardware requirements

Avoiding memory copy put some requirements on the type of hardware� Not all machines are in fact capable
of dealing with this situation e�ciently�
For most high�speed network hardware� at some point there is a DMA from �resp� to� memory to �resp�

from� either directly on the physical network or to a special memory on the interface boards �Myrinet is in
the latter case��
Transfering data directly from user data space means �rst that the DMA engine will be able to address

without overhead any location in main memory �which is not always the case� or requires an initialization
with non�negligible cost��
Second� all processors nowadays have memory caches� and it will occur frequently that the valid user data

is in a cache and has not yet been updated in main memory� The system bus of the machine should ensure
that coherency is respected between DMA memory access and the processor cache�BS���� That means the
processor should do snooping on the system bus and provide data from its cache when it is more recent�

�Note that like in the U�Net project the processor on the board could multiplex transmissions between several applications�
This is out of the scope of this paper but might be future work

�

instead of letting the memory provide it�� So for example� this requirement is full�led on most machines
based on Pentium� Pentium Pro� SuperSparc� UltraSparc� � � � � but MicroSPARC have not this capability�

����� Software and MMU issues

The second problem for a direct transfer of user data from�to the network is the way the hardware and the
OS deals with the duality between physical�virtual addresses� Basic OS system considerations make the use
of paging unavoidable for common applications� so it not possible to suppose equality between physical and
virtual addresses� Moreover a contiguous� chunk of data in the virtual address space will not be contiguous
in physical memory� Hence� the user data to be sent can be scattered in physical memory and it will be
necessary to take care of data in blocks of one page when they can be swapped out by the OS�
Our experimental testbed consisted of PCs for which the PCI bus can directly see the physical memory

without translation�� So before a transfer of user data� the user area is converted into a list of pairs �virtual
address� block length� and locked in memory to ensure some pages cannot be swapped out�
This is done by a kernel module that is part of the BIP implementation and thanks to the LINUX design

does not need a kernel recompilation� This module �rst provides to the user some system calls to pin pages
in physical memory �mark them unswappable��� Second� it allows the conversion of a virtual address into a
physical memory address �after checking its page has been marked unswappable� if not the physical address
could be changed or become invalid�� So these functions provide a means to give the appropriate addresses
to the network board DMA while transfering user data�
We said previously that we wanted to avoid costly system calls� but we needed these calls to translate

virtual addresses and mark pages unswappable� A heavy solution would have been to mark the process virtual
address space unswappable once and for all and to recopy the page table that contains the virtual�physical
translation into user space� The solution we adopted is to do that only on demand� which means the �rst
time a user process needs to transfer a page it is marked unswappable and its physical address is kept in
memory in order to be reused latter without a system call� This avoids locking more pages than necessary
and only the �rst messages of the application have the system call overhead�

����� Network reliability issues

����� No sharing between applications

Like for most parallel machines� the BIP implementation monopolizes the network interface of one processor
to insure full performances� In particular there cannot be several independent BIP applications using the
same processor� or the network interface cannot be used for IP tra�c while the BIP application is running�
BIP is also not intended to be fair versus other UNIX processes� It is optimized for the case where the

machines are temporarily dedicated to one application and it makes heavy use of busy loops and memory
pinning that would severely a�ect other applications performance� However the system does not need any
special con�guration� and besides the presence of a CPU hungry process� it still runs like a normal UNIX
system�

��� Dealing with big messages

����� Data path limitation

When a message is sent between two computers� the data should be transmitted from main memory to the
network board �step ��� then should be put on the wire �step ��� It will be received on the destination in the
board �step �� and then should be transferred to the �nal destination in main memory �step ��� With the
previous technology� the transfer steps between the main memory and the network board were neglected�

�This mechanism is already necessary when you have several processors sharing the main memory� so in general all proces�
sors�architecture that have multiprocessing capabilities deal transparently with this problem�

�On some architecture �Sparc�� the DMA can be programmed with virtual addresses� but there is in fact an IOMMU that
must be programmed before a transfer with the physical address of the user data�

�It allows an unprivileged user to use the �almost standard	mlock system call with some security checks

�

nowadays on some platforms this is the main bottleneck� or it is of the same order as the speed of the
network�
For instance� on our testbed� the hardware allows transfers on the PCI bus at about ���MBytes�s and the

mainmemory bandwidth is a bit greater than that so it can sustain this rate� The current Myrinet�PCI board
maximum throughput on the wire is less than ���MBytes�s� Hence� although the data on the wire could
be cadenced at ���Mbytes�s� there are two steps of transmission that are done at less than ���MBytes�s�
Clearly the peak theoretical throughput of the platform is ���MBytes�s� Moreover achieving something close
to this rate assume that all the transfer operations �step �� source host RAM to network emission board�
step �� emission board to wire� step �� wire to destination board� step �� destination board to destination
host RAM� are fully pipelined� In our case� that means at the same time four simultaneous DMAs� two on
the sending host and two on the receiving host �
Notice that this is not taking into account the presence of intermediate switches� From our knowledge�

the delay introduced can be neglected� For instance the Myricom switch is a wormhole switch� so in absence
of contention� the only visible e�ect is a very low latency �less than ����s overhead��

����� Pipeline transmission

In order to approach as much as possible the fully pipelined case� we decompose the message into packets of
equal size� depending of the total length� The host processors are only involved at the transfer initialization
to give to the board the location where to take and respectively store the target messages� After that all the
transmission is managed by our protocol implementation on the boards�
In BIP� each packet is transmitted in four steps as described above� if there is n � � packets� the

transmission will be fully pipelined from the start of the fourth packet until the start of the last packet�
In a �rst approximation one can consider each step is done at the same speed �corresponding to the lowest
performance link in the transmission chain�� A complete model of the transfer that matches with the
experimental delays was constructed in order to compute the optimal size of the packets�
Achieving a message transfer at high speed strongly depends on its length because of the pipelines that

would be introduced by the operation� The BIP protocols adapt as a function of the message length and try
to maximize data pipelining and use memory copy when it is faster than DMA� This is shown on Figure ��
Note that a message contiguous in user memory will not be contiguous in physical memory� Moreover�

the alignment has no reason to be the same on the sending and receiving side� which means the splitting
into packets at both sides is not the same� a packet at the receiving side may be composed of two fractions
of consecutive packets� Our algorithm arranges for the �ow of bytes on the wire be continuous� Alignment
has a negligible impact on performance as soon as the number of packet is big enough� This is generally the
case because the packet size depends on the whole message length�

��� Dealing with small messages

When dealing with very small messages� the initialization time to exchange the information between the
board and the host becomes predominant over the transmission time itself� It should also be clear that the
message will be transmitted in only one chunk�
At the BIP level� the cost of determining the DMA parameters by conversion of the virtual address to

the physical address is bigger for small messages than the classical memory copy� Hence� for small messages
there is a point where our algorithm starts to do memory copies to a �xed communication bu�er to or from
the board in order to decrease latency�

��� Security

The BIP implementation does not protect the system against a malicious user� In particular the user can
reload the NIC software �commonly named MCP on Myrinet��
The implementationworks almost totally at the user level and so the network board memory and registers

are mapped into the user space� A consequence of giving the user access to the board� is that all system
securities can be broken �at least by a malicious user�� giving him an easy way to become root �note that
this is also the case with other fast protocol implementations �PKC����� But in fact nothing in BIP design

�

prevents the implementation of a secure version of the BIP protocol� This will be more code� but we think
that it could be done without losing too much performance because it only require the OS protecting some
data structures either on the LANAI SRAM or on main memory from the user with the MMU�

� Communications benchmarks

The validation of our design is in the performance it delivers on the PCs connected to a Myricom LAN� In
this Section� we present the results in two parts� latency in the protocol processing and throughput achieved
with the BIP messages�

��� Latency

We measured the latency of our implementation by sending ���� messages for small payload sizes� sending
them back and measuring for each the round trip delay and dividing by ��� The result we choose is the
median� i�e� the ���� values are sorted and the result is the ���th value� This seems very fair to us because
it gives what the user can expected� taking apart extreme values� Typically the di�erence between the
minimum and the maximum timing were within a few percent after some warmup�
The results obtained represents less than ���� cycles of the ��� MHz processors� with such small timings

each instruction counts �

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

on
e-

w
ay

 la
te

nc
y

(u
s)

message size (bytes)

latency

Figure �� Latency of BIP messages for small messages on Myrinet � PCs platform�

��� Throughput

We measured the throughput of our implementation as a function of the message size� Each timing is
obtained by sending ��� messages of the same size� sending them back and measuring for each iteration the
round trip delay divided by ��� The message size is divided by this timing to obtain the bandwidth� again
we keep the median result� The Figure � shows the very good behavior of the protocol that reach half of
its speed for small messages ��K bytes�� The maximum throughput is ��� MBytes�s which represent more
than �� of the ���MBytes�s theoretical speed of our testbed�

�Timings are done with the Pentium cycle counter that has is incremented at each cycle count �every
ns at ���Mhz�� and
each measure has a ���ns overhead� This allows to time individual round�trip�

�In fact we use exactly the same program than for the latency measurements

�

Figure � shows the impact of the adaptative strategy that maximize the pipeline e�ect� Thus the
performance increases very rapidly� Figure � gives the maximum throughput asymptote�

0

20

40

60

80

100

120

140

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

ba
nd

w
id

th
 (

M
by

te
s/

s)

message size (bytes)

bandwidth

Figure �� Throughput of BIP messages on a Myrinet � PCs platform�

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000 14000

tim
e

(u
s)

message size (bytes)

transmission time

Figure �� Transmission time of BIP messages� this curve illustrate the adaptive packet size strategy�

The table below compares our results with the benchmark of �DD��� on di�erent parallel machines�

� Related work

Our work is directly in the ideas that motivated Active Messages� or Fast Messages� to get rid of the
costly protocol stack and system calls�
Our answer is di�erent from the others since from the beginning we tried to focus on the idea of perfor�

mance for the application� without any compromise� Another major di�erence is that we do not intend to

�

machine latency ��s� Bandwidth �MBytes�s� size of �
�
bandwidth

ATM����sparc� �AAL���PT��� Pry��� ��� �� �����
iPSC���� �NX���DD��� �� � ���
TMC CM�� �CMMD��DD��� �� � ���
Intel Paragon �NX��DD��� �� ��� ����

Intel Paragon �MPI��GLDS��� �� �� !����
Meiko CS���DD��� �� �� ����
IBM SP�� �MPI��DD��� �� �� ����
T�D �shmem��DD��� � ��� ���

T�D �MPI��GLDS��� �� ��� !����

SGI Power Challenge �MPI��GLDS���� �� �� !����
Myrinet�Ppro��� �BIP� ��� ��� ����

Table �� Comparison of communication performance for some parallel architectures�

provide any other paradigm of message�passing� BIP has been designed speci�cally as a base to implement
e�ciently MPI and PVM� Although other work has shown that they can be used with success for this aim�
such a task is easier to do with BIP� A �rst version of MPI on top of BIP has been realized and run all the
NAS benchmarks�
Active Messages from Berkeley�vECGS��� provide the RISC�type communications with a handler acti�

vation at the receiving side� We are not providing such a handling facility� We propose an optimized data
path� an adaptative protocol and low�level pipelining�
Fast Messages from Illinois�PKC��� include a complex �ow�control protocol in order to manage the

communications at the user level� We are just providing a high�speed low level interface� everything else is
left to upper layers�
U�net from Cornell University�BBVvE��� provides the whole protocol stack in the user space to avoid

system calls� We allow to the BIP interface the two memory management necessary system calls and do not
put other heavy protocols in the user space� thus no security check is ensured in BIP�
UHN�net"�HRKQ��� gives a shared data space for the user and the system by rewriting the OS kernel�

And producer�consumer synchronisation of message in this bu�er between the kernel and the user� We do
not provide such deep modi�cations of the kernel� just a mechanism that allow to choose which pages are
shared so avoiding memory copies�

� Conclusions and future work

The project home pages are available on the net
http���lhpca�univ�lyon��fr

We are actually working on the upper layers that will be interfaced with BIP� These works introduce
feedback to our BIP functionality and we are discussing which of them should be supported at the BIP level�
The MPI library is currently ported with the MPICH Channel interface� Our �rst results shows only

a �� loss in performance for the basic MPI communications compared to BIP which� to our knowledge�
gives us the best throughput and latency for MPI against any other machine�
The IP stack is our next goal in order to provide the TCP�IP support at higher speed and we got actually

promising results at ��MBytes�s��
From our design and experience� we set up the following rules�

� High speed networks required new protocols in order to give performance at the application level�

� Never do something that is not optimal in term of the number of operations for memory and data
transfer on the bus �use burst�transfer on PCI systems for instance��

�With the same measurement method used for BIP but by send�recv calls on TCP sockets instead of BIP calls

�

� Model all you can in order to understand it and have the best optimization�

� Uses di�erent strategies when performance requires them�

Finally� the raw performance numbers show that the new networking technology is going to change the
way of thinking� especially when one realizes that disk access now becomes more than one order of magnitude
costly than access to remote MegaBytes of RAM� It opens new opportunities in the �eld of distributed �le
systems� new opportunities for process migrations� and so on� It would be now possible to design a cluster
of workstations viewed as just one server and e�ciently migrate processes to do load balancing� For parallel
computing� it extends the �eld of possible applications� low latency allowing a �ner granularity parallelism�
General communication performance permits the scalability of applications to larger con�gurations�
Our future works will concern implementation of higher level APIs �MPI or PVM�� secure version of BIP

�in the UNIX security sense�� and multiplexing of several BIP applications on one network board�
As our work is progressing with higher communication functionality� we are enlarging BIP with the

services that are not decreasing the performances� Our prototype now includes tags and a queuing facility
for small messages�

References

�BBVvE��� Anindya Basu� Vineet Buch� Werner Vogels� and Thorsten von Eicken� U�Net� A user�level
network interface for parallel and distributed computing� In Proceedings of the ��th ACM
Symposium on Operating Systems Principles �SOSP�� Copper Mountain� Colorado� December
�����

�BS��� Gilles Berger�Sabbatel� PVM and ATM networks� In Dongarra� Gengler� Tourancheau� and
Vigouroux� editors� EuroPVM� Hermes� �����

�DD��� Jack Dongarra and TomDunigan� Message�passing performance of various computers� Technical
Report CS�������� University of Tennessee� July �����

�GBD���� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Mancheck� and Vaidy Sun�
deram� PVM� Parallel Virtual Machine� Scienti�c and Engineering Computation� MIT Press�
�����

�GLDS��� WilliamGropp� Ewing Lusk� Nathan Doss� and Anthony Skjellum� A high�performance� portable
implementation of the MPI message passing interface standard� Technical report� Argonne
National Laboratory� �����

�HRKQ��� Philip J� Hatcher� Robert D� Russell� Santhosh Kumaran� and Michael J� Quinn� Implementing
data�parallel programs on commodity clusters� In the Spring School on Data Parallelism� March
�����

�PKC��� S� Pakin� V� Karamcheti� and A� Chien� Fast messages �FM�� E�cient� portable communication
for workstation clusters and massively�parallel processors� IEEE Concurrency� �����

�Pry��� Lo#$c Prylli� Calcul parall	ele sur r�eseau ATM de stations de travail� In Renpar��� �����

�Pry��� Loic Prylli� BIP User Reference Manual� April ����� http���www�bip�univ�
lyon��fr�software�bip�manual�ps�

�PT��� Lo#$c Prylli and Bernard Tourancheau� Parallel computing on an ATM LAN� In ATM��� Brad�
ford� UK� ����� IFIP�

�SOHL���� Marc Snir� Steve Otto� Steven Huss�Lederman� David Walker� and Jack Dongarra� MPI� The
Complete Reference� MIT Press� �����

�vECGS��� T� von Eicken� D� E� Culler� S� C� Goldstein� and K� E� Schauser� Active messages� a mechanism
for integrated communication and computation� In Proceedings of the ��th Int�l Symp	 on
Computer Architecture� Gold Coast� Australia� may �����

��

