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Abstract

Squares are the most studied shapes in the tile assembly model. Adleman and al. proved
that the program size complexity of an n X n square is 9(%0;—”). In other words, for each
n we need a different set of tiles. Also, the size of the set increases with n.

Our approach is to fix a priori the set of tiles in such a way that it always self-assembles
into an N X N square. If n is an arbitrary positive integer, we show how to calculate the tile
concentrations in order to ensure that E(N) = n. To our knowlwdge, the tile concentrations,
a parameter of the original model, has never been seriously considered before. We claim that
it is therefore not necessary to construct the tiles (which are in fact tiny molecules) for each
shape we are asked to assemble. These tiny molecules are, for us, fixed primitives. In order to
obtain (in expectation) the required shape, we only need to “play” with the concentrations.
This is, of course, a standard procedure in Chemistry and Biology. Let d be a distance in Z2.
In the present work we tackle the specific problem of constructing tile systems that assemble
into shapes of the form {z € Z2|d(x,0) < N} and such that E(N) = n. We solve the problem
for the max distance d and for the d; distance. In the first case the induced shapes are
squares while in the second case the induced shapes are diamonds. Diamonds are much more
difficult to produce than squares. We leave as an open problem the Euclidean distance d2,
which induces the class of “discrete circles”.

Keywords: Wang tile, self-assembly

Résumé

Les carrés sont les formes les plus étudiées dans le modele d’auto-assemblage. Adleman et all
ont prouvé que complexité en taille d’un crré n X n est 9(%{);—”). En d’autres termes, le
nombre de tuiles necéssaires pour réalise le carré n X n augmentee avec n.

Notre approche consiste a fixer a priori I’ensemble de tuiles de telle facon que les seuls
auto-assemblages terminaux possibles soient les carrrés. Pour tout entier positif n, nous
montrons comment chosir les concentrations de tuiles, pour garantir que E(N) = n. A notre
connaissance, les concentrations de tuiles, qui sont un parametre du modele original, n’ont
jamais été sérieusement considérées auparavant. Les tuiles représentent des petites molécules
pouvant s’assembler. Ce molécules de base sont, pour nous, des primitives fixées. Dans le but
d’obtenir (en moyenne) la forme de la taille requise, nous avons seulement besoin, de “jouer”
sur les concentrations. Ceci est, évidemment, une procédure standard en chimie et en biologie.
Soit d une distance dans Z?2. Dans cet article, nous travaillons sur le probleme spécifique de
construire des systémes de tuiles qui s’assemblent en formes du type : {z € Z2|d(z,0) < N}
et telles que B(N) = n.

Nous résolvons le probleme pour la distance doo et pour la distance d;. Dans le premier cas,
les formes induites sont des carrés tandis que dans le deuxiéme cas, ce sont des “carreaux”.
Les carreaux sont beaucoup plus difficiles a produire que les carrrés. Nous laissons ouvert le
probléeme pour la distance Euclidienne d2, qui induit la classes des “cercles discrets”.

Mots-clés: tuiles de Wang, auto-assemblage
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Abstract

Squares are the most studied shapes in the tile assembly model. Adleman et al.
proved that the program size complexity of an n x n square is @(log)ﬁ;) gn) In other
words, for each n we need a different set of tiles. Also, the size of the set increases
with n. Our approach is to fix a priori the set of tiles in such a way that it always self-
assembles into an N X N square. If n is an arbitrary positive integer, we show how to
calculate the tile concentrations in order to ensure that E(N) = n. To our knowlwdge,
the tile concentrations, a parameter of the original model, has never been seriously
considered before. We claim that it is therefore not necessary to construct the tiles
(which are in fact tiny molecules) for each shape we are asked to assemble. These tiny
molecules are, for us, fixed primitives. In order to obtain (in expectation) the required
shape, we only need to “play” with the concentrations. This is, of course, a standard
procedure in Chemistry and Biology. Let d be a distance in Z?. In the present work
we tackle the specific problem of constructing tile systems that assemble into shapes
of the form {z € Z?|d(z,0) < N} and such that E(N) = n. We solve the problem for
the max distance dy, and for the d; distance. In the first case the induced shapes are
squares while in the second case the induced shapes are diamonds. Diamonds are much
more difficult to produce than squares. We leave as an open problem the Euclidean
distance do, which induces the class of “discrete circles”.

1 Introduction

The tile assembly model was introduced by Rothemund and Winfree [4, 6]. This model,
based on the classical one of Wang [5], includes a mechanism of growth (a dynamics) which
takes into account global parameters such as the temperature and the tile concentrations.

The individual components are square tiles. These tiles “float” on the two dimensional plane.
They can not be rotated. Each side of a tile has a specific “glue”. When two tiles collide they
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stick if their abbuting sides have the same glue and, crucially, if the strength of the glue is
“high enough” with respect to the temperature.

The dynamics of such a tile system is modeled as a Markov process. The precise process we
consider here was introduced by Adleman et al. [1]. It is, however, a simplification of the
reversible version proposed by Winfree [6]. Roughly speaking, the higher the concentration
of a particular tile the higher the rate at which it is encountered. And, when encountered,
the particular tile can eventually be incorporated into the growing structure. At the end of
the process, which begins with a “seed” tile placed at the origin of the plane, a given shape
S will be produced.

Notice that the produced shapes are the sink states of the Markov chain. If there is a unique

sink state S, and if also the state space turns out to be finite, we say that the tile system

uniquely produces the shape S. Researchers, until now, have almost exclusively considered

such tile systems. And they have mainly been concerned with the question of finding the

mimimal number of tiles needed in order to produce particular shapes. A typical result is the

one obtained by Aggarwal et al. [2], a generalization of [1], saying that the minimal number
1

of tiles that uniquely produces the m x n rectangle is Q(%=) if m << n, and @(log’ign)
otherwise.

The time t passed from the beginning of the process until the emergence of S is a random
variable. Even if a tile system T uniquely produces S, the value of ¢ could change in different
“repetitions” of the Markov process. The expected value of ¢ corresponds to the time it takes
to T to produce S. In [1] it is shown that the time complexity for producing an n x n square
is ©(n). Of course, some other random variables are also relevant. And, in fact, in this work
we focus our attention on the random variable that corresponds to the “size” of the produced
shape.

Let us consider, for instance, the class of all squares. In our construction we fix the tile system
in such a way that each time we run the Markov chain a (different) square is produced. Let
us call N the random variable corresponding to the size of the produced square. If n is a
fixed positive integer, then we will show how to calculate the tile concentrations in order
to ensure that E(N) = n. To our knowlwdge, the tile concentrations, a parameter of the
original model, has never been seriously considered before.

We claim that it is therefore not necessary to construct the tiles (which are in fact tiny
molecules) for each shape we are asked to assemble. These tiny molecules are, for us, fixed
primitives. In order to obtain (in expectation) the required shape, we only need to “play”
with the concentrations. This is, of course, a standard procedure in Chemistry and Biology.

Let d be a distance in Z2. In the present work we tackle the problem of constructing tile
systems that assemble into shapes of the form {z € Z?| d(z,0) < N}. More precisely, if an
arbitrary positive integer n is given, our aim is to calculate the tile concentrations in order
to get E(N) = n. We solve the problem for the max distance d, and for the d; distance. In
the first case the induced shapes are squares while in the second case the induced shapes are



diamonds. We leave as an open problem the Euclidean d, distance, which induces the class
of “discrete circles”.

2 Tile systems

A tile system is a 5-tuple T =< T,ty, 7,9, P >. Each of these variables is defined in the
following.

The set of tiles. T is a finite set of tiles. Each of these tiles is an oriented unit square
with the north, east, south and west edges labeled from some alphabet ¥ of glues (or colors).
For each t € T, the labels of its four edges are canonically denoted oy (t), og(t), og(t) and

The seed. ty € T is a particular tile known as the seed.
The temperature. 7 is a positive integer called the temperature.

The strength function. The (glue) strength function g goes from X x ¥ to N. We assume
that g(c, 8) = 0 for all , 8 in ¥ such that a # . The value g(«, ) is called the strength
of a. We also assume that the set of glues ¥ contains a special one, denoted by null, such
that for all @ in ¥, g(null, o) = 0. The tiles are respresented as in Figure 1: the number of
lines in front of the glue corresponds to the strength of it. There is one exception to that
convention: no lines mean strength 1.

\
a a

—a c a c
b b
T FTT

Figure 1: Two ways of representing the same tile.

The concentration. The concentration P associates to each tile t € T a positive value
P(t). The concentration function P satisfies ;7 P(t) = 1.

3 The dynamics

The dynamics of a tile system is modeled as a Markov process. At the end of the process a
particular shape S is produced. The time ¢ passed from the beginning of the process until
the emergence of S is an important random variable. More precisely, the expected value of ¢
is known as the time complexity for producing S. But some other random variables are also
relevant. In fact, in this work we focus our attention on the size of S.

T-transitions. A configuration is a map from Z? to (T U {empty}), where the tile empty is
the one having in its four sides the glue null. Let A and B be two configurations. Suppose



that there exist t € T and (x,y) € Z?* such that A = B except for (x,y) with A(x,y) = empty
and B(z,y) = t. If also

9(ou(t), ow(A(x +1,9)) + g(ow (1), ou(Alr — 1, y))+

glon(t),o5(A(x,y + 1)) + g(os(t),on(A(z,y — 1)) > 7

then we say that the position (z,y) is attachable in A, and we write A —¢ B. Informally,
this means that B can be obtained from A by adding a tile ¢ in such a way that the total
strength of the interaction between A and ¢ is at least 7. Let —% denote the transitive
closure of —.

Derived supertiles. The seed configuration, 'y, is the one that satisfies Iy, (0,0) = ¢, and,
for all (x,y) # (0,0), 'y, (z,y) = empty. Informally, the seed is reduced to the tile ¢, placed
at the origin (0, 0) of Z2. The derived supertiles of the tile system T are those configurations
X such that I'y, =5 X.

Continous time Markov process. The dynamics of the tile system T is modeled as a
continous time Markov process where the states are in one-to-one correspondence with the
derived supertiles and the initial state corresponds to the seed coniguration I[';,. There is
a transition from state A to state B if A —1 B. If B is obtained from A by adding the
tile ¢ then the rate of the transition is P(t). More precisely, the time for the occurence of
such a transition follows an exponential law of parameter P(¢). In this paper all we need to
know about continous time Markov chains is the following. Suppose that in state A there
are k possible transitions to states By,...,B;. And suppose that the transition rates are
Py,..., P.. Then, the probability to jump to state B; equals H%f‘i‘})k' Finally, the time
spent in state A follows an exponential law of parameter P, + ...+ P;.

Production of shapes. A shape is a 4-connected finite subset of Z2. The shape of a derived
supertile A will be denoted by [A] and corresponds to {(z,y) € Z*: A(x,y) # empty}. A
derived supertile A is called terminal if it is a sink state of the Markov process. In other
words, if there is no supertile B such that A —1 B. The set of shapes produced by the tile
system is

S(T) = {[A] : A is terminal}.

Let C be a set of shapes. We say that the tile system T uniquely produces the set C if on
one hand S(T) = C and, on the other hand, the event “the structure grows indefinitely” has
probability zero of ocurrence. This notion is the natural generalization of the one of Winfree
where the set C was a singleton.

4 A one dimensional example
Let n be a positive fixed integer. The one dimensional segment of size n is the shape

L,={(x,0)]0 <z <n}.



null null null null

null 1 1 2 2 3 n-1 X null

null null null null

Figure 2: The n tiles needed in order to uniquely produce an n-segment.

Let us fix the temperature 7 = 1. If we want our tile system to uniquely produce L,, then,
with respect to the set of tiles T, we do not have much choice. In fact, the solution is
despicted in Figure 2.

Suppose now that, instead, we have the three tiles of Figure 3. The seed is #; and the
concentrations are P(ty) = 0, P(t1) = 1—¢, P(t2) = €. This tile system produces the set of all
segments. The main question is the following: what is the expected length of the produced
segment? The answer is rather direct. Let N be the random variable corresponding to the
length of the segment. Obviously:

Pr{N =k} = (1 — ¢)f 2.

The random variable N follows a geometric law. So E(N) = €' + 1. In other words, if
we repeat this experiment many times with the concentration of tile t, being (n — 1)~
then the average size of the produced segments will be exactely n. And we do this with a
constant number of tiles. Moreover: with a fixed set of tiles. We just need to prepare the
right concentrations of each tile. This is an elementary procedure in Biology and Chemistry.

null null null
null a a a a null

null null null

to ty t,

Figure 3: Three tiles producing a segment of expected length n.

5 Rectangles and squares
Let m,n be positive integers. The rectangle of width m and height n is the shape
Ryp={(z,y)[0<z<m,0<y<n}

Let us fix the temperature 7 = 2. With this temperature, by generalyzing the result of [1], it
has been proved in [2] that the minimal number of tiles that uniquely produce the rectangle
Ry pis

3
3‘3\H

Q=) if m << n,

O(—%"_)  otherwise.
loglogn



Following our approach we fix the set of tiles that appears in Figure 4. Let us consider
tsw as the seed. It is easy to notice that this set of tiles uniquely produces rectangles. If
A, B, C' are arbitrary positive values satisfying A4+ B+ C' =1, then we fix the concentrations
as follows:

P(ts) = A(1 — (m —1)""), P(tsg) = A(m — 1),

P(tw)=B(1 —(n—1)"1), P(tyw) = B(n — 1)1,
P(tﬁ) =C, P(tSW) =0.

B B
tw | B X B BBt
a B
[
L
a
t, | B X B
o
[
L
a B B
B ol a ol | a B
B B B
Loy 3 e

Figure 4: The set of tiles used for producing rectangles.

The same reasoning we applied for the one dimensional segment leads us to the following
result.

Proposition 1 The tile system defined above uniquely produces rectangles. If M is the

random variable corresponding to the width and N 1is the random variable corresponding to
the height, then E(M) = m and E(N) = n.

The height and the width of the rectangles produced by the previous tile system were in-
dependent. Is it possible to make these two values absolutely dependant in order to uniquely
produce, for instance, squares? Squares are the most studied objects in the tile assembly
model.

If we want to produce squares it is rather natural to create diagonals. Informally, we
use four tiles in order to construct the diagonal. These four tiles -tp, UD,ignes UDuy and sop-
appear in Figure 5. We need two more tiles in order to fill the square: ¢z for the northwest
half and ¢, for the southeast half. The seed is {p and the temperature is 7 = 2.

For arbitrary positive values A, B, C, D such that A+ B+ C + D + E = 1, we fix the
concentrations as follows:

P(tp) = A(1— (n—1) "), Pltue) = A(n —1) 1,

6



B B
tB B B B Y | tsop
B y
B
t
0| BB
a
[
[ |
a Yy Yy
B X all JaXy Y y
Yy y Yy
tD tDright ty

Figure 5: The set of tiles used for producing squares.



P(tp,,..) = B, P(tp,,) = C, P(ts) = D, P(t,) = E.

Proposition 2 The tile system defined above uniquely produces squares. If N is the random
variable corresponding to the length of the sides, then E(N) = n.

6 Diamonds
Notice that a square corresponds to the set {(x,y) | dwo[(z,v), (0,0)] < n}, with

doo[(7,y), (7', y')] = max{|z — &', [y — ¢/'[}-

If we change the metrics towards the more “natural”

di[(z,y), (@', y)] = |z = 2" + [y = /'],

then the induced shape is the diamond D,, that appears in Figure 6. The problem of produc-
ing diamonds is much more complicated than those we tackled before. Any naive approach
seem not to work. We are going to construct diamonds with the help of a very particular
and non-trivial cellular automaton called “the firing squad”.

n

Figure 6: An n-diamond.

6.1 The firing squad cellular automaton

A one dimensional cellular automaton (CA) is a couple (Q,0) where @ is a finite set of
states and § : Q® — @ is a transition function. We always assume the existence of a state
p € @ such that §(z, p,y) = p for all z,y € Q). A configuration of a CA (Q, ) is a bi-infinite
sequence C € Q%, and its global transition function G5 : Q% — Q% is such that

(G5(C))i = 0(Ciz1,Cs,Cizr).

There is a particular CA, defined in [3] and related to the classical “firing-squad problem”,
capable of synchronizying an array of cells of arbitrary size “as soon as possible”. The main
properties of this CA, that we denote by (Qrs,drs), are the following.

8



e {G,G,,s,F} CQps (left general, right general, soldier, fire).

e For every n € N, when beginning from the initial configuration

the CA evolves, after n — 1 steps, to the configuration

o pppGisss ... sssGy ppp. ..

~~

n

coopppFFFE ... FFF ppp...
————

n

in such a way tht the state F' never appears before the (n — 1)-th step.

F‘F‘F‘F‘F‘F‘F‘F‘F‘F

Pl |
I
PP |
I
PP |
PP |
I
I
I
Pl |

Figure 7: Two-generals firing squad.

6.2 Simulating the firing squad CA by self-assembly

Let us fix the temperature 7 = 2. We will represent, for simplicity, the tiles rotated in 45°.
Let us first consider the set of six tiles of Figure 8. The tiles are, from left to right, ¢, (the

seed), tGl, t/g, ts, ty

instance,

on(ta) = 05(te) = ow(ta) = null.

and t,. The colors «, 3,7 ¢ Qrs. The color null is omitted. For

ey
S

Figure 8: The set of six tiles that codifies the initial configuration.



Figure 9: The way the initial configuration ... pppG;sss...sssG.ppp... is assembled.

As it is schematically explained in Figure 9, the assemblying process of these tiles is such
that the structure they produce represents the initial configuration

. pppGsss...sssGrppp. ...

The size of the initial structure of Figure 9 determines the size of the diamond we are
going to produce. This part of the self-assembly process is, in fact, the only nondeterministic
one. Therefore, the expected size of the diamond can be calculated as a function of the
concentrations of the previously introduced tiles. Moreover, the only concentrations relevant
for the process are those of t; and tg,. Let 0 < A < 1. Let us define the concentrations as
follows:

P(t;) = A(l - (n—1)7"), P(tg,) = A(n —1)7".

The only requierement for the concentrations of the other tiles (the four already introduced
and those to come) is that they must be positives with their sum being 1 — A.

There are two other classes of tiles: transmission tiles and transition tiles. The transmis-
sion tiles are divided into six subclasses: left-border, internal, right-border, upper-left-border,
upper-border, upper-right-border. More precisely, for all a,b € Qrs \ {F'}, the transmission
tiles are constructed in Figure 10.

p ab | ab P
o a b y F F F F
left-border internal right-border left-upper-border upper-border right-upper-border

Figure 10: Transmission tiles.

The transition tiles are divided into five subclasses: left-border, internal, right-border,
upper-left-border and upper-right-border. More precisely: let a,b, c,d, e, f,g € Qrs be such
that

5FS(P;C% b) 7£ F and 6F5(fagap) 7£ F.
The (a, b)-left-border, (¢, d, e)-internal and (f, g)-right-border tiles are constructed in Figure
11.
Finally, let a,b,¢,d € Qps be such that dps(p,a,b) = dps(c,d, p) = F. The upper-left-
border and upper-right-border tiles are constructed in Figure 12.
From the previously defined construction follows the last proposition.

Proposition 3 The tile system defined above uniquely produces diamonds. If N is the ran-
dom wvariable corresponding to the length of the diagonal, then BE(N) = 2n + 1.

10



a SFs(pab) Srs(cde) | dgs(cde) Srs(fgp) Y
p ab cd de fg p

left-border internal right-border

Figure 11: Transition tiles: left-border, internal, right-border.

F F F F
p | ab cd | p
upper-left-border upper-right—-border

Figure 12: Transition tiles: upper-left-border, upper-right-border.

7 Perspectives

We have considered the d,, and the d; distances. It is a natural step forward to consider the
Euclidean distance dy. In other words, we should try to answer whether it is possible or not
to produce the class of “discrete circles”:

{(z,y) | Va2 +y* <n}.

We should take into account the multiple temperature model introduced in [2]. In that
model, roughly speaking, the temperature 7 is adjusted during assembly. We can exhibit a
class of shapes that, in our standard model, can not be produced with a constant number
of tiles: the L-shape of Figure 13(a). Nevertheless, as it is shown in Figure 13(b), we can
construct a square with 7 = 2 and then increase the temperature to 7 = 3. The only portion
of the square that will “resist” this higher temperature is the desired L-shape.

Given a class of shapes C and a positive value n, our aim was to find a tile system T
producing C and such that E(N) = n (where N is the random variable corresponding to the
size of the produced shape). An extremely natural complexity problem arises: we should
find, among all those feasible tile sytstems, the one that minimizes the variance of N.
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