
HAL Id: hal-02101776
https://hal-lara.archives-ouvertes.fr/hal-02101776

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource-constrained Scheduling of Partitioned
Algorithms on Processor Array.
Michèle Dion, Tanguy Risset, Yves Robert

To cite this version:
Michèle Dion, Tanguy Risset, Yves Robert. Resource-constrained Scheduling of Partitioned Algo-
rithms on Processor Array.. [Research Report] LIP RR-1994-19, Laboratoire de l’informatique du
parallélisme. 1994, 2+29p. �hal-02101776�

https://hal-lara.archives-ouvertes.fr/hal-02101776
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Resource�constrained Scheduling

of Partitioned Algorithms on

Processor Arrays

Mich�ele Dion

Tanguy Risset

Yves Robert

June ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Resource�constrained Scheduling

of Partitioned Algorithms on Processor Arrays

Mich�ele Dion

Tanguy Risset

Yves Robert

June ����

Abstract

We deal with the problem of partitioning and mapping uniform loop nests
onto physical processor arrays� Resource constraints are taken into account�
not only we assume a limited number of available processors� but we also
assume that the communication capabilities of the physical processors are
restricted �in particular� the number of communication links in each di�
rection is bounded�� This paper is motivated by the recent work of Chou
and Kung and of Thiele� Our main contributions are a new formulation of
the complex optimization problem to be solved in terms of a single integer
linear programming problem� as well as optimal scheduling algorithms and
complexity results in the case of linear processor arrays�

Keywords� parallelism� SPMD� processor arrays� scheduling� tiles� resource con�
straints

R�esum�e

Nous �etudions dans ce rapport le partitionnement et le placement de nids de
boucles uniformes sur des tableaux de processeurs� Les contraintes li�ees aux
ressources sont prises en compte� non seulement nous supposons disposer
d�un nombre �ni de processeurs� mais �egalement que les capacit�es de com�
munication des processeurs sont limit�ees �en particulier� le nombre de liens
de communication dans chaque direction est born�e�� Les r�ecents travaux
de Chou et Kung et de Thiele sont 	a l�origine de ce travail� Nos princi�
pales contributions r�esident dans la reformulation d�un probl	eme complexe
d�optimisation en un probl	eme de programmation lin�eaire� ainsi que dans
des algorithmes d�ordonnancement et des r�esultats de complexit�e dans le
cas de tableaux lin�eaires de processeurs�

Mots�cl�es� parall�elisme� SPMD� tableaux de processeurs� ordonnancement� tuiles�
ressources born�ees

Resource�constrained Scheduling

of Partitioned Algorithms on Processor Array

Mich�ele Dion� Tanguy Risset and Yves Robert

Laboratoire LIP�IMAG� CNRS URA ����

Ecole Normale Sup�erieure de Lyon� 	��	� LYON Cedex
�

e�mail� �mdion�risset�yrobert��lip�ens�lyon�fr

June ��� ����

Abstract

We deal with the problem of partitioning and mapping uniform loop nests onto
physical processor arrays� Resource constraints are taken into account� not only
we assume a limited number of available processors� but we also assume that the
communication capabilities of the physical processors are restricted �in particular�
the number of communication links in each direction is bounded�� This paper
is motivated by the recent work of Chou and Kung and of Thiele� Our main
contributions are a new formulation of the complex optimization problem to be
solved in terms of a single integer linear programming problem� as well as optimal
scheduling algorithms and complexity results in the case of linear processor arrays�

� Introduction

In this paper� we deal with the problem of partitioning and mapping uniform loop
nests onto physical processor arrays� Resource constraints are taken into account� not
only we assume a limited number of available processors� but we also assume that the
communication capabilities of the physical processors are restricted �in particular� the
number of communication links in each direction is bounded��

Partitioning �or tiling� uniform loop nest onto processor arrays has motivated a
great amount of research in the last ten years
�� �� �
� ��� ��� ��� �
� ��� ��� ��� ��� ��
�this small list is far from bieng exhaustive�� Tiling is a widely used technique to
increase the granularity of computations and the locality of data references� When
targeting a SPMD style of programming
�
� ��� �
� ��� ��� tiles are usually consid�
ered to be atomic� inter�processor communications only take place at the end of the
processing of each tile� While well�suited to a data�parallel approach� this hypothesis
is unnecessarily restrictive when targeting VLSI processor arrays� Also� most current
distributed�memory machines are capable of performing communications in parallel
with computations� Therefore� it is of great practical importance to study tiling tech�
niques while assuming that communications and computations can overlap within a
tile�

�

This paper is motivated by the recent work of Chou and Kung
�� and of Thiele

���� Chou and Kung
�� have made a major contribution in formulating the prob�
lem of tiling uniform dependence graphs assuming limited resources and computa�
tion�communication overlap� Thiele
��� was the �rst to introduce Integer Linear Pro�
gramming �ILP� techniques to optimize the scheduling of partitioned algorithms onto
VLSI processor arrays with limited computational resources�

We start from the formulation of the problem by Chou and Kung� We summarize
their approach and we elaborate upon it along two important directions�

� We capture the complex optimization problem to be solved in terms of a single
Integer Linear Programming �ILP� problem� We point out that Chou and Kung
were only able to solve a very restricted instance of the problem that they have
formulated�

� We give optimal scheduling algorithms and complexity results in the case of linear
processor arrays�

The paper is organized as follows� in Section � we state the scheduling problem to
be solved� We follow the approach of Chou and Kung and we review the heuristics
that they propose� In Section � we derive a new formulation of the problem in terms
of a single ILP problem� We give several examples and brie�y discuss some practical
issues to compute the solution� Then in Section � we concentrate upon linear processor
arrays� In this particular case� we are able to give an analytical expression for the best
scheduling and we derive optimal algorithms� Finally in Section � we summarize our
results and give several perspectives for future work�

� Problem formulation

The original formulation of the problem is due to Chou and Kung
��� We introduce it
by working out a small example�

��� Scheduling constraints

Consider the following perfect uniform loop nest of depth ��

for i� � � to N� do
for i� � � to N� do

a�i�� i�� � f�a�i� � �� i��� a�i�� i� � ��� a�i�� �� i� � ���
endfor

endfor

where f is an arbitrary function� The iteration space is the rectangle Iter � f�i�� i��� � �
i� � N�� � � i� � N�g� The dependences vectors are captured in the dependence matrix

D �

�
�
 �

 � ��

�
�

Assume now that this loop nest is to be executed on a �D�grid of processors of size
M� �M�� In most practical cases the size of the iteration space �i�e� N� � N�� the
number of computation points� is much larger than the size of the processor grid� It
is then needed to partition the iteration space into rectangular tiles and to allocate a

�

� � � �
� � � �
� � � �

i�
n�

n�

�

�

N�

N�

i�

��

�

�

�

Dependence vectors

Figure �� Iteration space for the example �n� � �� n� � ��

whole tile to a single processor� For the sake of simplicity� Chou and Kung assume
the tiles to be rectangular and along the direction indices i� and i� of the iteration
space Iter �see Figure ��� Let n� � n� be the size of a tile� where N� � n� �M� and
N� � n� �M�� In Figure � we have tiles of size � by ��

The problem is thus resource�constrained as one single processor is responsible for
processing a whole tile of n��n� computation points� But there are many other possible
limitations to take into account� in particular the number of communication channels
and the �xed topology of the communication network�

Indeed� as stated by Chou and Kung� the physical characteristics of VLSI layout
impress a stringent limitation on the design of array processors� Typically� a �D�grid
of processors will be interconnected with horizontal and vertical physical channels �and
possibly also diagonal and antidiagonal channels�� each of these in limited number� This
means that long distance communications will have to be �routed�� i�e� decomposed
into a sequence of physically possible communications� This also means that several
inter�processor communications which are simultaneously ready to be performed will
compete for the communication resources�

In our example� assume that the interconnection network is that given in Figure ��
There are four communication channels �or links� going out every processor �or cell��
they are labeled east�� east�� north and south as indicated in the �gure�

Each processor is responsible for a whole tile and must execute

� n� � n� computations

� as many communications as imposed by the dependence vectors�

We see in Figure � that there are �� dependence vectors that require an inter�cell
communication �all other dependences are internalized in the cell�� These �� inter�cell
communications will lead to �� physical communications� as the dependence vector

�

north

east�

east�

south

Figure �� Communication network for the example

���
� � �� �

� � � �

� � � �

�

�

�

�

�� � � �

Figure �� Inter�cell communications

�

labeled ��� on the Figure cannot be realized by using a single link but instead requires
a two�step implementation� a �rst communication using link north then a second one
using either link east �or the other way round��

In the general case the interconnection network is represented by a tuple �L�Q�
where L is a set of column vectors and Q is a row vector� L � fl�� � � � � ldg� where
li represents a unique direction of communication links� Q � �q�� � � � � qd� represents
the number of communication channels at each direction� In our example we have

L � feast�south�northg �

��
�

��

�

��

��

��
and Q � ��� �� ��� Each inter�

cell communication induced by a dependence vector is then decomposed as an ordered
sequence �s�� � � � � si� � � �� where si belongs to L� Note that

� the same dependence vector can lead to di�erent inter�cell communications� This

is illustrated in Figure � with dependence vector

�
�
��

�
which leads either to

the sequence �l�� �north� or to the sequence �l�� l�� �north then east�� depending
upon the location of the vector source within the tile

� the order in which the links are used to implement an inter�cell communication
is assumed to be a�priori �xed� Of course this is an arbitrary restriction but it
is required to reduce the number of parameters �in practice sequences will be of
length � at most� we can still try several orderings��

How will we schedule the tiles � Let �calc be the time needed for one computation
�an instance of the statement a�i�� i�� � f�a�i���� i��� a�i�� i����� a�i���� i������� Let
�comm be the time for one communication over a physical link� There are several realistic
hypotheses that make Chou and Kung�s approach very interesting when targeting a
VLSI processor grid�

Communication�computation overlap� Tiles are not supposed to be atomic �as
opposed to the work presented in
�
� ��� �
� ���� Rather� as soon as a point in
the tile has been computed� we can start to communicate its value to neighboring
tiles�

Cyclic scheduling� We look for a scheduling in which each tile will execute the same
program� up to a translation in time� More precisely� let us assign tile indices
�x� y� to each tile� where
 � x � M� and
 � x � M�� If tile �
�
� starts its
program P at time�step
� tile �x� y� will start the same program at time�step
T�x � T�y� where T� and T� are the relative time o�sets between processors in
each dimension�

Searching for a cyclic scheduling is the key to a regular design� Of course� the goal
is to minimize the global execution time� and therefore to choose T� and T� as small
as possible� We formulate the objective function to be minimized more precisely in
Section �� Beforehand� we express all the constraints to be satis�ed in an intuitive
manner�

Let us consider a �xed tile T of tile index �x� y�� Let �j�� j�� be the indices of the
computation points inside the tile� where � � j� � n� � � and � � j� � n� � �� We
have the following relationship between global and local indices of the computation
points� i� � x� n� � j�� i� � y � n� � j��

�

Scheduling computations There is a partial ordering between points of the tile� if
both points p and q belong to T and if p depends upon q� i�e� if p � q � di for some
dependence vector di � D� then q must be executed before p� More precisely� let tp
�resp� tq� be the time�step where execution of point p �resp� q� begins� We have the
constraint

tq � �calc � tp ���

Scheduling communications Consider �rst the case of an inter�cell communication
c whose ordered sequence is the singleton �li�� Such a communication can be realized
with the use of a single channel of direction li� Let q � T be the source of the
communication and p � T � be the sink� Note that the index �x�� y�� of T � satis�es
to �x�� y�� � �x� y� � lti� In our example� if li corresponds to the direction east� then
lti � ���
�� x� � x � � and y� � y� This means that point p of T � is scheduled with
a relative o�set T� to the same point p of T � Let tc be the time�step at which the
communication c begins� The scheduling constraints are

tq � �calc � tc
tc � �comm � tp � T�

���

The �rst constraint expresses the fact that the communication c cannot start before
the end of the computation of q� The second constraint says that execution of point p
in T � cannot start before the end of c�

Now consider the case of an inter�cell communication to be decomposed by using
two� say� physical links� In the example� point q of local index ��� �� in T is the source
of a communication to point p of local index ��� �� in T � of tile index �x�� y��� with
x� � x� � and y� � y � � �see Figure �� communication marked with ����� If the �xed
routing order is north then east as before� we label the two physical communications
as c� and c� �with starting times tc� and tc�� and we have the constraints�

tq � �calc � tc�
tc� � �comm � tc� � T�
tc� � �comm � tp � T�

���

Of course� we need to compute the number of physical communications beforehand
and to assign a distinct label �number� to each of them�

Resource constraints All resource constraints remains to be expressed� At most
one point can be executed within T at a given time�step� Also� there is only a limited
number of links available in each communication direction� In the simple case �calc �
�comm � �� we have to say that at most � computation and qi communications along
direction li can start at any time�step� In the general case� the condition is more
di�cult to state� How to express resource constraints is explained in Section ��

Objective function The goal is to minimize the total execution time� which is equal
to

�M� � ��� jT�j� �M� � ��� jT�j� tlast � �calc ���

Here� we assume that in the �rst tile� the �rst point start execution at time
 and the
last one at time tlast� The expression �M� � ��� jT�j� �M� � ��� jT�j represents the

�

time at which the last tile starts execution� and is a good approximation of the total
execution time in practice�

��� Chou and Kung�s heuristics

There are many variables and many constraints� therefore Chou and Kung propose
several heuristics to order computations and communications�

Computation ordering If we assumed unlimited computation resources� we could
use Lamport�s hyperplane method to schedule the computations points of the depen�
dence graph� We would search for a linear scheduling vector � such that �t � di � � for
all dependence vector di � D� We write this set of constraints as �t �D � �� In our
example� let �t � ���� ���� we obtain the conditions

�� � �� �� � �� and �� � �� � ��

A possible choice is �t � ��� ��� With Lamport�s hyperplane method� a point p � Iter
is executed at time�step t��p� � �t � p�

Given �� we have the partial ordering induced by t� to schedule the points of a tile�
Using local indices within the tile to identify the points� we have � values of t� for the
�� points of the tile�

t��p� � � � � � � � �
 ��

points ����� ����� ����� ����� ����� ����� ����� ����� �����
����� ����� �����

Chou and Kung propose to use t� as a total ordering for computation events� They
break ties arbitrarily �for example using a lexicographical criterion�� This heuristic
dramatically reduces the search space� Computation points are totally ordered as
p�� p�� � � � � pn��n� � Let tpi be the i�th computation event� i�e� the time at which the
computation of the i�th point pi begins� All computation constraints reduce to

tpi � �calc � tpi�� � � � i � n� � n��

Indeed� dependences are preserved owing to the choice of � with the condition �t�D � ��
And resource constraints follow from the total ordering of computations�

Communication ordering Inter�cell communications are decomposed into physical
communications� All physical communications are assigned a distinct label� Commu�
nications along a given direction li are ordered totally� according to the value i of their
sink pi� the smaller i� the more urgent the communication� Ties are broken using source
values� Finally� in case there are more than one channel in direction li �i�e� qi � ���
links are attributed on in a round�robin fashion �ASAP policy��

Problem solution The above heuristics permit to have a total ordering of the com�
putations� as well as a total ordering of communications along each direction� Let
nbcalc � n�� n� be the number of computations and nbcomm be the number of commu�
nications �after having decomposed inter�cell communications into sequences of physi�
cal communications�� Therefore� there remains nbcalc variables tpi for the computation

�

events� and nbcomm variables tci for the communication events� Theses variables are
linked by the scheduling constraints �equations ������� and �����

The objective function �equation ���� has absolute value operators� which is not
allowed by the standard format of ILP problems� But the sign of the Ti�s can be
determined with the help of the scheduling vector �� and the problem is now reduced
to a standard ILP problem�

��� Discussion

As already said� the optimization problem to be solved has many variables and many
constraints� hence heuristics are likely to be crucial for deriving a good solution�

We believe that Chou and Kung�s approach can be greatly improved� Indeed� their
approach relies upon a linear scheduling vector � that gives a partial ordering for
computations� From this partial ordering a total ordering is induced �ties are broken
arbitrarily�� This solution is nice in that it reduces the search space� but it can lead to
poor results as illustrated by the following two simple examples�

Ties breaking Consider a �d�problem with dependence matrix D �

�
�

 �

�
and

assume �calc � �comm � �� A possible scheduling vector is �t � ��� ��� Consider a
�� � tiling with unlimited communication resources �� links in each direction east and
south are enough�� The tile T of tile index �
�
� is the �rst tile to start computing�
We schedule point ��� �� of tile T at time�step � and point ��� �� of T at time�step ��
because of the partial ordering induced by �� For points ��� �� and ��� �� of T � we have
to break ties�

� if we schedule point ��� �� of T at time�step � �and point ��� �� at time�step ���
then T� � �� T� � � and the global computation time is ��M�������M������

� if we do the other way round� we obtain as global computation time ��M�� �� �
��M� � �� � ��

If M� �M� the second solution is much better and this cannot be found by the method
presented in
���

Linear tiles Consider now a unidimensional problem with dependence matrix D �
���� Tiles are segments of size n �see Figure ��� Assume �calc � �comm � � and one link

Figure �� Example of linear tiling� n � �� l � �

in the direction east �unlimited communication resources� for the sake of simplicity�
The only possible scheduling vectors are positive multiples of � � ���� hence Chou and
Kung�s heuristic will always lead to execute points from the left to the right� The o�set

�

for a tile of size n will then be T� � n��� while we can achieve much better� we obtain
T� � b�n

�
c � � in Section �� To get such a result� we have to use non�linear orderings

for scheduling the points of the tile �see Section ���

� A solution based upon integer linear programming

We expose the problem formulation for a two dimensional graph� but the extension
to any dimension is immediate� The problem tackled here is close to the well�known
single machine scheduling problem
��� ��� The di�erences lie in the cyclicity constraint
and in the communication channel management� The major di�culty is to express
collision constraints� a processor can execute at most a single computation at each
time�step� The same constraint stands for each channel� a channel can perform at most
one communication at a time� In the single machine scheduling problem� computation
points are numbered from � to Np

max �using the lexicographic order on their coordinates
for example�� An array COMP
���Np

max� ���N
p
max� of
 � � variables is introduced�

Computation number i is executed in position j if and only if COMP
i� j� � �� Deriving
an integer linear problem to solve the single machine scheduling is easy
���� However� in
our problem� communications and computations neither take the same amount of time
nor compete for the same resources� Thus we cannot limit ourselves to the search of the
order of execution� we must compute the actual starting times of each computation and
of each communication� We describe in this section a technique to express the problem
as an integer linear problem� A similar idea has been introduced by Thiele
��� in a
much restricted framework� We �rst precisely describe all constraints� then we explain
how to express these constraints using an integer linear programming formulation�

��� Constraints of the cyclic two�dimensional problem

Consider a two�dimensional uniform graph of size N� � N�� each tile is composed of
Np

max � n� �n� computation points �in �gure � for example� Np
max � ���� These Np

max

points are numbered from � to Np
max �using the lexicographic order on local indices��

We schedule computations and communications for tile �
�
�� which starts execution
at time
� and we derive the o�sets T� and T�� which respectively correspond to the
starting time of tile ���
� �east� and of tile �
� �� �south�� Then if a tile T has �x� y�
for tile index � it starts execution at time T�x � T�y�

The interconnection network is known statically� It is composed of four kinds of
links� links going east� west� south or north� Each communication induced by a de�
pendence vector going out of tile �
�
� is decomposed into an ordered list of inter�cell
communications� each of them taking place in one of the four previous directions� The
total number of inter�cell communications is N c

max �in �gure �� N c
max � ���� We must�

� schedule the computations so that�

� each computation is executed once and only once

� two computations taking place on the same processor do not overlap

� dependences between computations are respected

� schedule �and map onto the links� the communications so that�

�

� each communication is executed once and only once

� two communications taking place on the same link do not overlap

� dependences between computations and communications are respected

� minimize the total latency� approximated by the expression

�M� � ��� jT�j� �M� � ��� jT�j

����� Linear integer problem formulation

We �rst make the following assumption� we know a priori a constant Tmax to bound
the execution time of a tile�� This assumption enables us to consider a �time� vector
of size Tmax whose i�th coordinate is equal to i�

TIME � �
� �� �� ���� Tmax� ��

We introduce two
� � variable arrays� COMP for the computations and COMM for
the communications�

Computations

The array COMP is used to indicate the starting time of each computation�

COMP
���Np
max�
��Tmax� ��

with the rule� COMP
i� j� � � if and only if the computation of the point i in
tile �
�
� begins at step j� and COMP
i� j� �
 otherwise� Let �calc be the time
needed for one computation� The non�collision constraint between computations
is expressed as�

	j�
 � j � Tmax � �calc�

Np
maxX
i��

j��calc��X
k�j

COMP
i� k� � �

which says in e�ect that the sub�matrix COMP
���Np
max� j��j � �calc � �� must

contain at most one ���� Thus� in any time interval of �calc steps� at most one
computation starts�

The other constraints on the computations are expressed as follows�

� each computation starts once and only once�

	i� j
 � COMP
i� j� � �

	i
PTmax��

j�� COMP
i� j� � �

�This assumption can be easily eliminated� guess a value for Tmax� if it leads to an empty solution
set for the linear problem� increase the value� iterate until a solution is found� More e�cient methods
to determine a good constant Tmax are given in �����

�

� If the point i� depends upon the point i� then�

T p
beg
i�� � �calc � T p

beg
i��

where T p
beg
i� is the starting time of point i� expressed by�

T p
beg
i� �

Tmax��X
j��

COMP
i� j� � TIME
j� � COMP
i� ��t � TIME

Communications

Expressing the communication constraints is more complicated� However� we use
similar ideas� Because of the cyclicity of the scheduling� we only have to schedule
inter�cell communications going out of a tile �in�going communications are going
out of neighbor cells �� We introduce the ��dimensional array of
� � variables�

COMM
���N c
max� ���N

l
max�
��Tmax� ��

with the rule� COMM
i� j� k� � � if and only if the communication number i

begins at step k on the link j� The physical links are known statically� and we
assume that they are ordered so that

� links numbered from � to N l
east go east

� links numbered from N l
east � � to N l

west go west

� links numbered from N l
west � � to N l

south go south

� links numbered from N l
south � � to N l

north � N l
max go north

The total number of links is N l
max� There are N c

max communications to process�
As for the �time� vector� we consider a �link� vector LINK of size N l

max� which
is used to enumerate all the links�

LINK � ��� �� � � � � N l
max�

The direction of each inter�cell communication is recorded in the array

DIR
���N c
max� �����

by storing a � in the adequate column �and
 elsewhere�� We obtain the starting
time of communication i by computing the following dot product

T c
beg
i� �

N l
maxX
j��

TmaxX
k��

COMM
i� j� k�� TIME
k� �

Nl
maxX
j��

COMM
i� j� ��t � TIME

and the number of the link used by the communication i is�

Link
i� �
Nl
maxX
j��

Tmax��X
k��

COMM
i� j� k��LINK
j� �
Tmax��X
k��

COMM
i� �� k�t�LINK

��

We must check that each communication begins once and only once� and that
two communications on the same link do not overlap� This gives the following
constraints�

	i� j� k�
 � COMM
i� j� k�� �

	i�
PNl

max

j��

PTmax��

k�� COMM
i� j� k� � �
	j� k�
 � j � N l

max�
 � k � Tmax � �comm�PNc
max

i��

Pk��comm��

l�k COMM
i� j� l�� �

To check that each communication is mapped on a link that goes in the right
direction� we must impose� for each communication i� the following condition�

DIR
i� ��t �

�
BBB�

�
N l

east � �
N l

west � �
N l

south � �

�
CCCA � LINK
i�� DIR
i� ��t �

�
BBB�

N l
east

N l
west

N l
south

N l
north

�
CCCA

The last set of constraints must ensure that dependences between two commu�
nications and dependences between communications and computations are re�
spected� which can be easily expressed as we have the expression of T p

beg
i� for any
computation i and T c

beg
j� for any communication j�

For instance if communication i� depends upon communication i� �in fact� the
copy of i� coming from the previous tile in the direction of i��� we get the con�
straint�

T c
beg
i�� � DIR
i�� ��

t �

�
BBB�
�T�
T�
�T�
T�

�
CCCA� �comm � T c

beg
i��

We have a similar set of constraints for dependences between computations and
communications�

Objective function
As already stated� the objective function is approximated by �M� � �� � jT�j �
�M� � �� � jT�j� which is not a linear expression� Fortunately� we have another
way to express the optimization criteria which amounts to �minimize the total
latency�

min
T��T�

max

 � x� x� �M�

 � y� y� �M�

�xT� � yT� � x�T� � y�T��

We can transform this problem into a single linear problem by using the duality
theorem as explained in
�� ���

��	
�

Ap � b
Aq � b

maxX�p� q�

�

������	
�����

X�A � X

X�A � �X
X� �

X� �

min �X� � X��b

��

Clearly� our ILP problem formulation is much more powerful than the one of
��
and will lead to optimal solutions in the two examples given in Section ����

However� a direct solution to our ILP problem is very expensive because many
variables as forced to be integral� We have tried several implementations of integer
linear problem solvers �lp�solve� Unix public domain routine� PIP
��� Omega
���� and
we have not been able to solve problems with more than �
 points in each tile �for
example� the ILP problem expressed for the example of Section ��� using small two�
dimensional tiles of size �� � is composed of approximately ��

 unknowns and ��

equations�� This complexity justi�es the use of heuristics� It might be more e�cient
to try standard branch�and�bound heuristics �as in
���� than to directly use those
in
��� Another possibility is to solve �rst the problem with an unlimited number of
communication links� then to use the computation ordering deduced from the solution
of this problem to apply Chou and Kung�s heuristics�

Also� the complexity of the problem motivates the search for an analytical exact
solution in some particular cases� That is what we propose for linear tiles in the
following section�

� Scheduling unidimensional graphs

We suppose in this section that we are given a unidimensional uniform dependence
graph� with all dependence vectors going in the same direction east �otherwise� the
graph would not be schedulable�� Such a graph may come� for instance� from the single
loop�

DO i���N
A
i��f�A
i����A
i����

ENDDO

It may also come from a multidimensional nested loop where the computation points
are built from all the inner loops so as to increase granularity�

We want to map this graph onto a unidimensional processor array� Each processor
will be assigned a linear tile of computation points� More precisely� each tile will include
n consecutive computation points of the graph �see �gure ���

If we call T� the o�set between the starting times of two consecutive tiles� tile x
will begin its computation at time xT�� Thus minimizing the total execution time is
roughly equivalent to minimizing T� �if we assume that the number n� of tiles is not
too small compared to n � this is the same approximation as in Section ����� This
scheduling problem can �in theory� be solved by using the integer linear programming
formulation shown in the previous section� However� this solution is not satisfactory
because the number of variables grows very quickly as O�n��� and the problem becomes
intractable� unless heuristics are used�

Our goal in this section is to analytically determine the best possible value for
T�� However� we restrict ourselves to the case where communication resources are
unlimited� In the particular case of linear processor arrays� this hypothesis is not
very restrictive� as b �comm

�calc
c links are su�cient to eliminate all delays potentially due to

communications� When targeting VLSI processor arrays� we even would be satis�ed
with a single communication link in the likely many cases where the inequality �comm �

��

�calc holds� This section is organized as follows� �rst� we introduce some de�nitions and
preliminary results� Then we solve the problem in the simple case of a single dependence
vector� Finally we generalize to arbitrary unidimensional dependence graphs�

��� De�nition and preliminary results

De�nition � A schedule S is a set of starting times for the n points within a tile� A

schedule is valid if�

� there is at most one computation during each time interval of length �calc

� dependences are respected

The e�ciency of a schedule S is given by the period T��S� which is the elapsed time

between the starting time of a tile and the starting time of the following tile�

First we prove Lemma � which allows us to �normalize� the computation time and
the communication time�

Lemma � The best schedule for �calc � � and �comm �
 gives an order for executing

the points of a tile which leads to the best schedule for any positive value of �calc and

�comm�

Proof� Let S���calc� �
�
comm� be the set of valid schedules for �calc � ��calc and �comm �

��comm� Let S� � S���calc� �
�
comm�� As dependence vectors all go in the same direction�

we can apply the cut theorem
��� and consider that the communication cost is
�
We obtain a schedule S� � S���calc�
� where the points of a tile are executed in the
same order� with T��S�� � T��S��� ��comm� Then we can choose a clock step such that

��calc � �� Thus we obtain a schedule S� � S���
� with T��S�� � T���
�
comm

��
calc

�

Reciprocally� given a schedule S� � S���
�� it is obvious to derive a valid schedule
S� � S���calc� �

�
comm� with the same execution ordering and T��S�� � ��calc � T��S�� �

��comm�
As the two transformations described are non�decreasing functions of T�� the opti�

mal schedule in S���calc� �
�
comm� and in S���
� are obtained for the same order�

For the sake of clarity� we let �calc � � and �comm �
 in the following� Thus we
just have to check that any two execution steps are di�erent and that dependences
are respected� Moreover� we will consider only schedules where all points of a tile are
executed consecutively�

Lemma 	 Given a valid schedule S�� there exist a valid schedule S� such that all points

of a tile are executed consecutively and T��S�� � T��S��

Proof� If there is a �hole� in schedule S�� i�e� no point is scheduled at a given step i
whereas some points are scheduled later� then we simply delete the holes and construct
S� so that points are executed consecutively� with the same order as in S�� Clearly� S�
is a valid schedule and its period is not greater than T��S��

��

��� A small example

The problem to solve now has two kinds of parameters� First� the number and lengths
of the dependence vectors� second� the size of each tile� It turns out that even the
problem with a single dependence vector is not obvious to solve� Indeed� consider the
problem with one dependence vector of length l � �� the size of the tile being n � ��
We number the points of the tile from � to n and we let ti be the execution time of
point i�

The �rst obvious valid schedule is the naive schedule� ti � i� This schedule is
represented on Figure �� We see that we cannot compute the �rst point of the second
tile before step � thus� for this schedule� T� � �� In fact we check that T� � � leads to
a valid solution� In general� if the period T is chosen so that the l �rst points of the
second tile are scheduled correctly � than T is a valid period for the schedule �one does
not have to check dependences for all the other points of the second tile��

� � � �
 	 � 	 � � �

Figure �� The naive scheduling

A greedy approach would be the following� if we want to minimize the period� we
should try to start the second tile as soon as possible �assuming we choose to start
the �rst tile with its �rst point�� To achieve this goal we compute all points in the
dependence path leading to the �rst point of the second tile as soon as possible� This
is done in Figure �� We take t� � � and t� � � so that the �rst point of the second tile
can be executed at step �� But we have to cope with the cyclicity constraint� Indeed�
as we have scheduled the second point of the �rst tile just after the �rst point� this
property must remain true in the second tile� thus the second point of the second tile
must be executed at step �� This is not possible as some dependences are necessarily
violated� Thus T� � � cannot be reached with this strategy�

� � � � �

Figure �� A wrong schedule

In fact� we have two problems� one is to �nd the minimum period that we can �nd
for a given problem! the other is to �nd a schedule which achieves this period� In our
example� we shall show that the minimum period is T� � �� which is obtained by the
schedule of �gure ��

The last thing to point out is that the respective values of n and l �if we have one
dependence vector� are not independent� If n � l
� � �� consider the reduced graph of

�We write gcd	u� v
 � u � v

��

� �� �
 	
 � ��

Figure �� The optimal schedule

Figure � where a single tile is represented� dependences going out of the tile are re�sent
as inputs to the same tile� We have n� l connected components in this reduced graph�
Thus� the cyclicity condition has no impact on the schedule of two points belonging to
distinct connected component� It means exactly that we can independently schedule
each connected component �see Figure ��� The problem is then reduced to scheduling
a smaller tile whose size is relatively prime to the dependence vector length�

� ��� ���� ��� �� �� � �

Figure �� Connected components when l � n � � and when l � n � �

� ��
 �
 �� �� � �� ��

Figure �� Independent schedules for the connected components �l � n � ��

��� Scheduling a linear tile with one dependence vector

Each tile contains n points� and the length of the dependence vector is l� Thanks to
Lemmas � and � we suppose that �calc � � and �comm �
� Also� following the previous
discussion� we can restrict ourselves to the case n � l � � without loss of generality�
To simplify notations� we write T instead of T� to denote the period between the
computation of two consecutive tiles�

���� Case l � �

We begin with a simple case� i�e the length of the dependence vector is �� The number
n of points in a tile is odd �n � �k � � to ful�ll the hypothesis n � l � ���

��

Theorem � For n � �k � �� k �
 and l � �� the optimal scheduling has a period Topt
of�

Topt �

�
�n � �

�

�

Remark Remember that in Theorem � we assume �calc � � and �comm �
� Using
Lemma �� we obtain

Topt �

�
�n� �

�

�
�calc � �comm

in the general case�

t� �

� T � �� n��
�

� n� T

� T � �

� n� �

T

� n

� �

Tile x Tile x � �

Figure �
� n � �k � �� l � �

Proof The �rst computed point in the tile is the �rst or the second� i�e t� �
 or
t� �
� We �rst suppose that t� �
� The last point to be computed is the ultimate or
the pen�ultimate point� i�e tn�� � n � � or tn � n � � �we see that all the points can
be executed consecutively�� If tn�� � n � �� the computation of the second tile begins
at least at step n and T � n� It is not a good solution �not faster that if all the points
were computed sequentially�� We consider the second case� tn � n� � �see Figure �
��

tn � n�� and there is a dependence between the last point of a tile and the second
point of the next tile� so

t� � T � n ���

The �rst point of the second tile is computed at step T � There is a dependence between
the pen�ultimate point of the �rst tile and the �rst point of the second tile so� tn���� �
T There are n��

�
arcs in the dependence path to go from the second point of the tile

to the pen�ultimate one� hence

t� � � �
n� �

�
� T ���

Inequalities � and � give us�

n� T � T � �� n��
�

�T � n � � � n��
�

T � �n��
�

��

If t� �
� with a similar demonstration� we obtain�

T � �n��
�

T is� at best� equal to d�n��
�
e� If we can �nd a solution with T � d�n��

�
e� it will be

an optimal scheduling�

Example of a solution with T � d�n��
�
e

� for j even� tj � d�n��
�
e � n���j

�

� for j odd�

� if j � ��d�n��
�
e � ��� n� tj � j��

�

� if j � ��d�n��
�
e � ��� n� tj � j�n��

�

The �rst point of the �rst tile is executed at step t� �
� the �rst point of the
second one is executed at step T � Starting from T ��rst point of the next tile�� dates
of execution are decremented backwards the path dependence� they are incremented
from
 to n�� along the other path dependence in taking into account that some dates
have already been used� For an example of such a solution� see Figure ���

 � � � � � � � � � �

Figure ��� Example of optimal scheduling for n � � and l � �

By construction� all dependences inside the tiles are respected�

tn � n� �
t� � T � �d�n��

�
e � n��

�

t� � T � ��n��
�

� n��
�

� n
t� � T � tn

Besides�

t� � T � tn��

All dependences are respected� Thus� the solution is feasible and it is an optimal
solution�

��

���	 Case l � �

We consider now tiles of n points and with one dependence vector of length l� n� l � ��
We suppose n � lp � k� k� p integers and
 � k � l
� Assuming that n � l � ��
there is only one connected component in the reduced graph but� inside each tile� the
dependence paths de�ne l components� As n and l are relatively prime� the components
are not independent and during the transition from a tile to the next� there is a change
of connected component� We call Xi� � Xi�� ���� Xil the di�erent components� The indices
i�� i�� ���� il are chosen in such a such a way that�

� Xi� is the component whose �rst point is the �rst point executed in the tile

� during the transition from a tile to the next� there is a dependence from the last
point of Xi� to the �rst point of Xil� from the last point of Xil to the �rst point
of Xil�� � ���� from the last point of Xi� to the �rst point of Xi� �

Xi� � Xil � ���� Xi� � Xi�

See Figure �� when n � � and l � ��

First component �Xi��
Second conponent �Xi��
Third conponent �Xi��

Figure ��� Components for n � � and l � �

The length of a component can be p� � or p according to the value of k �there are
k components of length p� the others are of length p � ��� In the case of Figure ���
there are two components of length p and one of length p� ��

We de�ne the l�tuple ���� ��� ���� �l� so that �j � � if the length of the component
Xij is p� and
 if its length is p� �� i�e �j � jXij j � �p� ���

We de�ne the values �t�� t
�

��� �t�� t
�

��������tj� t
�

j� ������tl� t
�

l� so that the �rst point of the
component Xij is executed at step tj in the �rst tile and its last point at step t�j �

Lemma � We have the following inequalities between the beginning and the �nishing

dates of the connected components�

	 � � j � l � ��
�i� t�j�� � tj � T � �
�ii� t�j � tj � �p� �� � �j

��

Proof �i� During the transition from a tile to the next there is a dependence between
the last point of the component Xij�� and the �rst point of the component Xij �Xij�� �
Xij�� The last point of the component Xij�� of tile x is executed at t�j�� � xT and the
�rst point of the component Xij of tile x � � at tj � �x � ��T so�

t�j�� � xT � tj � �x � ��T � �

Thus �i� is demonstrated�
�ii� The length of the component Xij is p � � � �j� There are at least p � � � �j

tops between the execution of the �rst point of the component Xij and the execution
of the last point� This gives �ii��

We want to �nd lower bounds for T � Let Xif be the component which contains the
last point executed in a tile�

If f
� �� Xif � Xif�� � ���� Xi� � Xi�� t� �
� t�f � n� ��
With Lemma �� we have�

n� � � t�f � tf�� � T � �
tf�� � �p� �� � �f�� � t�f�� � tf�� � T � �

�
�

t� � �p� �� � �� � t�
�

� t� � T � �
t� � �p� �� � �� � t�� � T � �

Summing up all previous inequalities� we obtain�

�f � ��T � n� � � �f � ��p �
Pf��

i�� �i

T � l�f��
f��

p �
k���

P
f��

i��
�i

f��

T � �p �
k���

P
f��

i��
�i

f��

Hence� if f
� �� we obtain T � �p�
In the same way� if f � �� i�e the same component Xi� contains the �rst and the

last point executed in a tile� we obtain�

lT � n � �l� ��p� k �
Pl

i�� �i

T � �l��
l
p � k��

l
� suml

i���i
l

We want to improve this bound and to show that even when f � � �the same
component begins and �nishes� we have a lower bound in �p for T �

Lemma
 If the same component Xi� contains the �rst and the last executed point in

a tile� we have the following inequalities�

	 � � j � l�

n � �l� j�p� �l� j � ��T �
Pl

i�j�� �i � tj � �j � ���T � p��
Pj

i�� �i
n� � � �l� j � ���p� T � �

Pl
i�j �i � t�j � �j � ���T � p� � p� ��

Pj��
i�� �i

�

Proof By induction on j�
t�� � t� �T � � � T � �� t� � t��� �p� ��� �� � T � p���� For the upper bounds�

the inequalities are true for j��� Assuming that they are satis�ed for j� because of
Lemma ��

t�j�� � �j � ���T � p��
Pj

i�� �i � T � �

t�j�� � j�T � p� � p� ��
Pj

i�� �i
tj�� � j�T � p� � p� ��

Pj
i�� �i � �p� ��� �j��

tj�� � j�T � p��
Pj��

i�� �i

The upper inequalities are satis�ed for j���
tl � t�

�
� T � � � n � T � t�l � tl � p � � � �l � n � T � p � � � �l� For the lower

bounds� the inequalities are true for j�l� Assuming that they are true for j��� because
of Lemma �

tj � n � � � �l� j��p� T � �
Pl

i�j�� �i � T � �

tj � n � �l� j�p� �l � j � ��T �
Pl

i�j�� �i
t�j � n � �l� j�p� �l � j � ��T �

Pl
i�j�� �i � �p� �� � �j

t�j � n � � � �l� j � ���p� T � �
Pl

i�j �i � �p� ��

The lower inequalities are satis�ed for j�

Lemma � Assuming that the same component begins and �nishes� if there exists j such

that t�j � t�j�� then T � �p �
k�
P

l

i��
�i��j

l��

Proof Assuming �j�t�j � t�j���
The inequalities of the previous lemma as satis�ed and we have�

t�j�� � n � � � �l� j��p� T � �
Pl

i�j�� �i
t�j�� � lp � k � � � �l � j��p� T � �

Pl
i�j�� �i

t�j�� � �lp � k � �� jp� jT � lT �
Pl

i�j�� �i

and
t�j � �j � ���T � p� � p� ��

Pj��
i�� �i

so�

�lp� k � �� jp � jT � lT �
Pl

i�j�� �i � jT � jp� T � p � p� ��
Pj��

i�� �i
�lp� k � lT �

Pl
i�j�� �i � �p� T �

Pj��
i�� �i

��l� ��p � k �
Pl

i�� �i � �j � �l� ��T

T � �p�
k�
P

l

i��
�i��j

l��

Lemma � Assuming that for any j� � � j � l� � we have t�j � t�j�� then

T � �p� �

��

Proof We assume that 	 � � j � l� �� t�j � t�j�� and T � �p� ��
We call �u�� u�� ���� ul��� the number of points of the components �Xi�� Xi�� ���� Xil���

executed between tl and t�l���

t�l � tl�� � T � �

t�l � tl � p� � � �l �
Pl��

i�� ui
tl�� � tl � p� � � �l �

Pl��
i�� ui � T � �

tl � tl�� � T � p� �l �
Pl��

i�� ui

If T � �p� � then�

tl � tl�� � p� �� �l �
Pl��

i�� ui
tl � tl�� � p� � � �l�� � ul��

so�
p� �� �l �

Pl��
i�� ui � p� � � �l�� � ul��Pl��

i�� ui � ��l � �l��

So�
Pl��

i�� ui �
 and u� � u� � ��� � ul�� �
 �see Figure ���

� p� �
��l�� � u�

i�
i�

il��

il

il��

t� t� t�
�
t�
�

t�l�� t
�

l�� t�l

ul

ul��

ul��

u�

u�

t

Figure ��� T � �p� �

tl � tl�� � p� � � �l�� � ul��
t�l � tl � p� � � �l � ul��

So� adding the two inequalities� we obtain�

t�l � tl�� � �p� � � �l � �l��

Besides�

t�l � tl�� � T � �

��

So�
T � � � �p� � � �l � �l��
T � �p� �

Theorem 	 For l � � and n�l � �� T is asymptotically equal to �bn
l
c� More precisely�

we have�

�b
n

l
c � � � T � �b

n

l
c � �

Proof We see that in any case� T � �p � �� If we can �nd a feasible solution with
T � �p � �� the theorem will be proven�

The cyclic algorithm The l components are numbered in such a way that Xi� ��
Xil �� Xil�� �� ��� �� Xi� �� Xi� � Our strategy is the following� the �rst com�
ponent Xi� is wholly executed� then the second� ���� etc until the lth� The second tile
begins after T � b�n

l
c� � tops�

In these conditions� we have�

ti� �
 t�i� � p� � � ��
ti� � p � �� t�i� � �p� � � �� � ��

�

�

tij � �j � ��p �
Pj��

i�� �i t�ij � jp� � �
Pj

i�� �i
�

til�� � �l� ��p�
Pl��

i�� �i t�il�� � �l� ��p� � �
Pl��

i�� �i
til � �l� ��p �

Pl��
i�� �i t�il � lp� � �

Pl
i�� �i

If we �x T � b�n
l
c � �� we obtain a feasible solution� By construction� inside each

tile� the dependences are respected� Besides�

t�j � jp� � �
Pj

i�� �i
tj�� � �j � ��p �

Pj��
i�� �i

t�j � tj � �p� � � �j�� � �j
t�j � tj � T � �

So� during the transition from a tile to the next� the dependences are also respected� All
the constraints are respected and this algorithm gives a feasible solution with T � �p���

��� Scheduling a linear tile with several dependence vectors

Consider now a linear tile but with several dependence vectors�
We �rst demonstrate a preliminary technical lemma that will useful in the following�

Lemma
 Let l�� l� be two integers verifying l� � l� and l� � l� � ��
for any n� n � �l� � ���l� � ��� there exist two non negative integers u and v such

that n � l�u � l�v�

��

Proof Let m be an integer between � and l� � �� let us divide ml� by l��

ml� � qml� � rm� � � rm � l� � �

rm
�
 because l� � l� � � and the rm are all di�erent otherwise by di�erence there
would be a contradiction too with the condition l� � l� � ��

rm �
 so�
qml� � ml�
qm � m

l�
l�

qm � l�

Let us consider the interval I �
�l� � ���l� � ��� �l� � ��l� � ��� I contains l� � �
consecutive integers� Each integer in I can be written �l�� ���l�� �� � rm� � with all
the rm for � � m � l� � � �the rm are distinct integers between � and l� � �� l� � � is
the length of the interval��

�l� � ���l�� �� � rm � � � l�l� � l� � l� � rm
� l�l� � l� � l� � ml� � qml�
� �l� � �� qm�l� � �m� ��l�

�
 �

All the numbers in I can be written under the form ul�� vl� with u �
 and v �
�
It is also true for the number �l����l�� So� we have l� consecutive numbers that can be
written under the form ul� � vl� with u �
 and v �
� It is also true for all numbers
greater than these l� numbers�

Theorem � Consider a linear tile with two dependence vectors of length l� and l�
verifying l� � l� � �� Then� T is asymptotically equal to the number of points of the

tile�

lim
n��

T

n
� �

Proof A point must be executed after its predecessors along all dependence paths�
If two points p� and p� are distant from a length d greater than �l� � ���l� � ��� we
see with the previous lemma that there is a dependence between p� and p� �d can be
written ul� � vl�� u �
� v �
�� Let us consider the point executed at T in the second
tile� it depends on at least n � �l� � ���l� � �� � � point in the previous tile so�

T � n � �l� � ���l�� �� � �

Besides

T � n

so�

lim
n��

T

n
� ��

��

 � � � � � � � � �� �
� �� �� �� �� �� �� ��

Figure ��� Example of scheduling with two vectors of length l� � �� l� � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

Tile x

Tile x � �

Figure ��� Example� l� � �� l� � �� n � ��

For an example of scheduling with two dependence vectors l�� l� with l� � l� � ��
see Figure ���

This result basically says that the problem is inherently sequential with two depen�
dence vectors whose lengths are relatively prime�

Theorem
 Consider a linear tile with n points and two dependence vectors of size l��

l� such that l� � l� � d� d
� � and n � d��� Then�

�i� if d � �� T is asymptotically equal to �n���

�ii� if d � � T is asymptotically equal to �n�d�

Proof Since l� � l� � d� as in the case with one dependence vector� there are d com�
ponents in the path de�ned by the dependence vectors� As n � d � �� the components
are not independent and during the transition from a tile to the next there is a change
of component� We de�ne the two integers l�� and l�� such as l�� � l��d and l�� � l��d�

We consider now the two following problems�

Problem � We consider tiles of n points with one uniform vector of length d� We see
from Theorems � and � that optimal values for the period T� are the following�

� if d � �� T� asymptotically equal to ���n�

� if d � � � T� asymptotically equal to �n�d�

l��l� � d� there exist two integers k� and k� such that l� � k��d and l� � k��d� So�
problem � is equivalent to our scheduling problem �n points and two dependence
vectors� but with some additional dependences� and therefore T � T�

��

Problem 	 We consider tiles of n� � n� �l�� ���l�� ���max�l�� l�� points and with
one uniform dependence vector of length d� As for problem �� we see that the
optimal values for the period T� are the following�

� if d � �� T� � ���n� � ���n ��

� if d � �� T� � �n��d � �n�d�

We saw �Lemma �� that the �rst point of a component in the basic problem depends
on all the n� �l��� ���l��� �� � � �rst points in the previous component� Problem � is
equivalent to our scheduling problem but with less points and with less dependences�
So� we have T � T��

T� � T � T�� Besides� T� and T� have the same asymptotic behavior�

� if d � �� T� � ���n� T� � ���n �� T � ���n�

� if d � �� T� � �n�d� T� � �n�d �� T � �n�d�

Theorem � Consider a linear tile with n points and two dependence vectors of size l�
and l�� l� � l� � d and n� d � d�� d�
� �� Then� the optimal scheduling is obtained for�

�i� if d � d�� T � n�d�

�ii� if d�d� � �� T � �n
�d�
�

�iii� if d�d� � �� T � �n�d

Proof The problem is equivalent to d� separate problems with n� � n�d� points and
two dependence vectors of length l�� � l��d

�� l�� � l��d
�� l�� � l

�

� � d�d�� n� � d�d����

�i� If d � d�� the result is given by Theorem �� T � n� � n�d�

�ii� and �iii� The result is given by Theorem �� If d�d� � �� T � ���n� � �n
�d�

� If

d�d� � �� T � �n�

d�d�
� �n�d�

Generalization to the case of m dependence vectors Lemma � can be gener�
alized to the case of m integers and so� the previous theorems can be generalized to m

dependence vectors�

Lemma � Let us consider m integers �l�� l�� ���lm� such that gcd�l�� l�� ���lm� � � � Then�
there exists an integer A such that for any n � A� there exist m non negative integers

��� ��� ���� �m such that�

n � ��l� � ��l� � ���� �mlm

�Throughout� we write f	n
 � g	n
 if limn��
f�n�
g�n� � �

��

Proof By induction on m� The lemma is true for m � � �Lemma ��� Let us assume
that the lemma is true for m � � and prove that it is also true for m � ��

Let us consider m � � integers l�� l�� ���� lm� lm�� such as gcd�l�� l�� ���lm� lm��� � ��
gcd�l�� l�� ���lm� � p so gcd�l��p� l��p� ���lm�p� � ��

The lemma is true for m integers so� there exists an integer A such that for any
n � A� n � ��l��p� ��l��p� ���� �mlm�p with �i �
�

gcd�l�� l�� ���lm� lm��� � � so p and lm�� are relatively prime�
There exists an integer A� such that for any n � A�� n � �p � 	lm�� with � �

and 	 �
�
Consider n � A � p � A�� n � A � p � m with m � A�� So ���� 	� such that

m � �p � 	p with � �
 and 	 �
� n � A � p � � � p � 	lm�� � �A � �� � p � 	lm���
But� ����� ��� ���� �m� such A�� � ��l��p���l��p� �����mlm�p so� n � ��l����l��
���� �mlm � 	lm�� with �i �
 and 	 �
�

Theorem � Generalization� all previous theorems can be generalized to a tile with m

dependence vectors� i�e� Consider a tile of n points with m dependence vectors of size

l�� l�� ���� lm� gcd�l�� l�� ���� lm� � d and gcd�n� d� � d��

�i� if d � d�� T � n�d�

�ii� if d�d� � � T � �n
�d�
�

�iii� if d�d� � � � T � �n�d�

Proof With Lemma �� all the previous demonstrations can be easily transposed to
the case of m dependence vectors�

� Summary and Future Work

Tiling is a quite powerful technique to increase granularity and data locality� The
atomicity constraint used by researchers targeting DMPC computers
�
� ��� �
� ��� ��
has a great impact upon the simplicity of SPMD code generation� However� such a
constraint imposes two restrictions�

� tiles cannot depend upon each other� which restricts the search space for valid
schedulings

� the capability of modern DMPC computers to overlap communications and com�
putations of modern DMPC is not taken advantage of

We believe that removing the atomicity constraint can lead to very interesting perspec�
tives� in particular when targeting VLSI processor arrays �see
��� in this respect�� The
work of Chou and Kung
�� opens new directions for scheduling tiled processor arrays
while assuming limited computation and communication resources� Our main contri�
bution in this paper is to have given a formulation of the problem in terms of an ILP
problem which takes all constraints into account� Clearly� the size of this ILP problem
makes the use of heuristics unavoidable� but the choice of these heuristics can rely upon

��

the new ILP formulation that leaves the whole solution space open for searching� On
the contrary� Chou and Kung�s heuristics� while very simple� imposes very restrictive
limitations� as shown by the examples given in the paper�

One possibly better heuristic would be �rst to solve the problem with an unlimited
number of links �which is much simpler� so as to derive an initial ordering in the tile
and to apply Chou and Kung technique� Another possible solution would be to apply
classical linear programming heuristics �like branch and bound for example� to our ILP
problem� Anyway� comparing and evaluating heuristics is an interesting direction for
future research�

From a theoretical point of view� it would be very interesting to extend the analytical
solution given in the case of unidimensional tiles to arbitrary dimensions� as well as
to propose optimal algorithms for the general case� However� scheduling problems are
known to be di�cult
��� and that of multidimensional tiles with limited resources is
very challenging

References

�� J� B�� E�F� Deprettere� and P� Dewilde� A design methodology for �xed�size systolic
arrays� In S�Y� Kung and E� Swartzlander� editors� International Conference on
application Speci�c Array Processing� pages ���"�
�� Princeton� New Jersey� sep
���
� IEEE Computer Society�

�� Jacek Blazewicz� Moshe Dror� and Jan Weglarz� Mathematical programming for�
mulations for machine scheduling � A survey� European Journal of Operational

Research� ������"�

� June �����

�� Pierre Boulet� Alain Darte� Tanguy Risset� and Yves Robert� �Pen��ultimate
tiling � In IEEE Computer Society Press� editor� Scalable High Performance

Computing Conference� pages ���"���� ����� Extended version available as Tech�
nical Report ������ LIP� ENS Lyon �������

�� W�H� Chou and S�Y� Kung� Scheduling partitioned algorithms with limited com�
munication supports� In Luigi Dadda and Benjamin Wah� editors� Application

Speci�c Array Processors ASAP �	� pages ��"��� IEEE Computer Society Press�
�����

�� Ph� Chretienne� Task scheduling over distributed memory machines� In M� Cos�
nard� P� Quinton� M� Raynal� and Y� Robert� editors� Parallel and Distributed

Algorithms� pages ���"���� North Holland� �����

�� Alain Darte� Regular partitioning for synthesizing �xed�size systolic arrays� IN�

TEGRATION� The VLSI Jounal� ������"�
�� December �����

�� Alain Darte� Techniques de parall
elisations de nids de boucles� PhD thesis� ENS�
Lyon� avril �����

�� Alain Darte� Leonid Khachiyan� and Yves Robert� Linear scheduling is nearly
optimal� Parallel Processing Letters� �������"��� �����

��

�� P� Feautrier� Parametric integer programming� RAIRO Recherche Op
erationnelle�
������"���� September �����

�
� F� Irigoin and R� Triolet� Supernode partitioning� In Proc� ��th Annual ACM

Symp� Principles of Programming Languages� pages ���"���� San Diego� CA� Jan�
uary �����

��� K� Jainandunsing� Optimal partitioning scheme for wavefront�systolic array pro�
cessors� In IEEE Symposium on Circuits and Systems� �����

��� S�Y� Kung� VLSI array processors� Prentice�Hall� �����

��� Jean B� Lasserre and Maurice Queyrane� Generic scheduling polyhedra and new
mixed�integer formulation for single�machine scheduling� In Integer Programming

and Combinatorial Optimization� pages ���"���� �����

��� J�A� Martens� Partitioning of parametrized data�ow graphs� Technical Report
������� Technical University of Delft� �����

��� D�I� Moldovan and J�A�B� Fortes� Partitioning and mapping algorithms into �xed�
size systolic arrays� IEEE Transactions on Computers� �������"��� jan �����

��� William Pugh� The Omega test� a fast and practical integer programming al�
gorithm for dependence analysis� Communications of the ACM� ���
�"���� aug
�����

��� Patrice Quinton and Yves Robert� Systolic Algorithms and Architectures� Prentice
Hall� ����� Translated from French� Masson �������

��� J� Ramanujam� Non�unimodular transformations of nested loops� In Proc� Super�

computing��
� pages ���"���� IEEE Computer Society Press� November �����

��� J� Ramanujam and P� Sadayappan� Tiling of iteration spaces for multicomputers�
In Proc� Internal Conference on Parallel Processing� volume �� pages ���"����
August ���
�

�
� R� Schreiber and Jack J� Dongarra� Automatic blocking of nested loops� Technical
Report �
���� RIACS� August ���
�

��� S� Sharma� C��H� Huang� and P� Sadayappan� On data dependence analysis
for compiling programs on distributed�memory machines� ACM Sigplan Notices�
������ January ����� Extended Abstract�

��� B� Sinharoy and N� Szymanski� Finding optimum wavefront of parallel com�
putation� In H� El�Rewini� T� Lewis� and B� D� Shriver� editors� Proc� of the

Twenty�Sixth Annual Hawaii International Conference on System Sciences� vol�
ume �� pages ���"���� IEEE Computer Society Press� �����

��� L� Thiele� Resource constrained scheduling of uniform algorithms� In Luigi Dadda
and Benjamin Wah� editors� Application Speci�c Array Processors ASAP �	� pages
��"�
� IEEE Computer Society PressIEEE Computer Society Press� �����

��

