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Abstract

We deal with the problem of partitioning and mapping uniform loop nests
onto physical processor arrays� Resource constraints are taken into account�
not only we assume a limited number of available processors� but we also
assume that the communication capabilities of the physical processors are
restricted �in particular� the number of communication links in each di�
rection is bounded�� This paper is motivated by the recent work of Chou
and Kung and of Thiele� Our main contributions are a new formulation of
the complex optimization problem to be solved in terms of a single integer
linear programming problem� as well as optimal scheduling algorithms and
complexity results in the case of linear processor arrays�

Keywords� parallelism� SPMD� processor arrays� scheduling� tiles� resource con�
straints

R�esum�e

Nous �etudions dans ce rapport le partitionnement et le placement de nids de
boucles uniformes sur des tableaux de processeurs� Les contraintes li�ees aux
ressources sont prises en compte� non seulement nous supposons disposer
d�un nombre �ni de processeurs� mais �egalement que les capacit�es de com�
munication des processeurs sont limit�ees �en particulier� le nombre de liens
de communication dans chaque direction est born�e�� Les r�ecents travaux
de Chou et Kung et de Thiele sont 	a l�origine de ce travail� Nos princi�
pales contributions r�esident dans la reformulation d�un probl	eme complexe
d�optimisation en un probl	eme de programmation lin�eaire� ainsi que dans
des algorithmes d�ordonnancement et des r�esultats de complexit�e dans le
cas de tableaux lin�eaires de processeurs�

Mots�cl�es� parall�elisme� SPMD� tableaux de processeurs� ordonnancement� tuiles�
ressources born�ees
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Abstract

We deal with the problem of partitioning and mapping uniform loop nests onto
physical processor arrays� Resource constraints are taken into account� not only
we assume a limited number of available processors� but we also assume that the
communication capabilities of the physical processors are restricted �in particular�
the number of communication links in each direction is bounded�� This paper
is motivated by the recent work of Chou and Kung and of Thiele� Our main
contributions are a new formulation of the complex optimization problem to be
solved in terms of a single integer linear programming problem� as well as optimal
scheduling algorithms and complexity results in the case of linear processor arrays�

� Introduction

In this paper� we deal with the problem of partitioning and mapping uniform loop
nests onto physical processor arrays� Resource constraints are taken into account� not
only we assume a limited number of available processors� but we also assume that the
communication capabilities of the physical processors are restricted �in particular� the
number of communication links in each direction is bounded��

Partitioning �or tiling� uniform loop nest onto processor arrays has motivated a
great amount of research in the last ten years 
�� �� �
� ��� ��� ��� �
� ��� ��� ��� ��� ��
�this small list is far from bieng exhaustive�� Tiling is a widely used technique to
increase the granularity of computations and the locality of data references� When
targeting a SPMD style of programming 
�
� ��� �
� ��� ��� tiles are usually consid�
ered to be atomic� inter�processor communications only take place at the end of the
processing of each tile� While well�suited to a data�parallel approach� this hypothesis
is unnecessarily restrictive when targeting VLSI processor arrays� Also� most current
distributed�memory machines are capable of performing communications in parallel
with computations� Therefore� it is of great practical importance to study tiling tech�
niques while assuming that communications and computations can overlap within a
tile�
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This paper is motivated by the recent work of Chou and Kung 
�� and of Thiele

���� Chou and Kung 
�� have made a major contribution in formulating the prob�
lem of tiling uniform dependence graphs assuming limited resources and computa�
tion�communication overlap� Thiele 
��� was the �rst to introduce Integer Linear Pro�
gramming �ILP� techniques to optimize the scheduling of partitioned algorithms onto
VLSI processor arrays with limited computational resources�

We start from the formulation of the problem by Chou and Kung� We summarize
their approach and we elaborate upon it along two important directions�

� We capture the complex optimization problem to be solved in terms of a single
Integer Linear Programming �ILP� problem� We point out that Chou and Kung
were only able to solve a very restricted instance of the problem that they have
formulated�

� We give optimal scheduling algorithms and complexity results in the case of linear
processor arrays�

The paper is organized as follows� in Section � we state the scheduling problem to
be solved� We follow the approach of Chou and Kung and we review the heuristics
that they propose� In Section � we derive a new formulation of the problem in terms
of a single ILP problem� We give several examples and brie�y discuss some practical
issues to compute the solution� Then in Section � we concentrate upon linear processor
arrays� In this particular case� we are able to give an analytical expression for the best
scheduling and we derive optimal algorithms� Finally in Section � we summarize our
results and give several perspectives for future work�

� Problem formulation

The original formulation of the problem is due to Chou and Kung 
��� We introduce it
by working out a small example�

��� Scheduling constraints

Consider the following perfect uniform loop nest of depth ��

for i� � � to N� do
for i� � � to N� do

a�i�� i�� � f�a�i� � �� i��� a�i�� i� � ��� a�i�� �� i� � ���
endfor

endfor

where f is an arbitrary function� The iteration space is the rectangle Iter � f�i�� i��� � �
i� � N�� � � i� � N�g� The dependences vectors are captured in the dependence matrix

D �

�
� 
 �

 � ��

�
�

Assume now that this loop nest is to be executed on a �D�grid of processors of size
M� �M�� In most practical cases the size of the iteration space �i�e� N� � N�� the
number of computation points� is much larger than the size of the processor grid� It
is then needed to partition the iteration space into rectangular tiles and to allocate a
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Dependence vectors

Figure �� Iteration space for the example �n� � �� n� � ��

whole tile to a single processor� For the sake of simplicity� Chou and Kung assume
the tiles to be rectangular and along the direction indices i� and i� of the iteration
space Iter �see Figure ��� Let n� � n� be the size of a tile� where N� � n� �M� and
N� � n� �M�� In Figure � we have tiles of size � by ��

The problem is thus resource�constrained as one single processor is responsible for
processing a whole tile of n��n� computation points� But there are many other possible
limitations to take into account� in particular the number of communication channels
and the �xed topology of the communication network�

Indeed� as stated by Chou and Kung� the physical characteristics of VLSI layout
impress a stringent limitation on the design of array processors� Typically� a �D�grid
of processors will be interconnected with horizontal and vertical physical channels �and
possibly also diagonal and antidiagonal channels�� each of these in limited number� This
means that long distance communications will have to be �routed�� i�e� decomposed
into a sequence of physically possible communications� This also means that several
inter�processor communications which are simultaneously ready to be performed will
compete for the communication resources�

In our example� assume that the interconnection network is that given in Figure ��
There are four communication channels �or links� going out every processor �or cell��
they are labeled east�� east�� north and south as indicated in the �gure�

Each processor is responsible for a whole tile and must execute

� n� � n� computations

� as many communications as imposed by the dependence vectors�

We see in Figure � that there are �� dependence vectors that require an inter�cell
communication �all other dependences are internalized in the cell�� These �� inter�cell
communications will lead to �� physical communications� as the dependence vector
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labeled ��� on the Figure cannot be realized by using a single link but instead requires
a two�step implementation� a �rst communication using link north then a second one
using either link east �or the other way round��

In the general case the interconnection network is represented by a tuple �L�Q�
where L is a set of column vectors and Q is a row vector� L � fl�� � � � � ldg� where
li represents a unique direction of communication links� Q � �q�� � � � � qd� represents
the number of communication channels at each direction� In our example we have

L � feast�south�northg �

��
�
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�

��


��

��
and Q � ��� �� ��� Each inter�

cell communication induced by a dependence vector is then decomposed as an ordered
sequence �s�� � � � � si� � � �� where si belongs to L� Note that

� the same dependence vector can lead to di�erent inter�cell communications� This

is illustrated in Figure � with dependence vector

�
�
��

�
which leads either to

the sequence �l�� �north� or to the sequence �l�� l�� �north then east�� depending
upon the location of the vector source within the tile

� the order in which the links are used to implement an inter�cell communication
is assumed to be a�priori �xed� Of course this is an arbitrary restriction but it
is required to reduce the number of parameters �in practice sequences will be of
length � at most� we can still try several orderings��

How will we schedule the tiles � Let �calc be the time needed for one computation
�an instance of the statement a�i�� i�� � f�a�i���� i��� a�i�� i����� a�i���� i������� Let
�comm be the time for one communication over a physical link� There are several realistic
hypotheses that make Chou and Kung�s approach very interesting when targeting a
VLSI processor grid�

Communication�computation overlap� Tiles are not supposed to be atomic �as
opposed to the work presented in 
�
� ��� �
� ���� Rather� as soon as a point in
the tile has been computed� we can start to communicate its value to neighboring
tiles�

Cyclic scheduling� We look for a scheduling in which each tile will execute the same
program� up to a translation in time� More precisely� let us assign tile indices
�x� y� to each tile� where 
 � x � M� and 
 � x � M�� If tile �
� 
� starts its
program P at time�step 
� tile �x� y� will start the same program at time�step
T�x � T�y� where T� and T� are the relative time o�sets between processors in
each dimension�

Searching for a cyclic scheduling is the key to a regular design� Of course� the goal
is to minimize the global execution time� and therefore to choose T� and T� as small
as possible� We formulate the objective function to be minimized more precisely in
Section �� Beforehand� we express all the constraints to be satis�ed in an intuitive
manner�

Let us consider a �xed tile T of tile index �x� y�� Let �j�� j�� be the indices of the
computation points inside the tile� where � � j� � n� � � and � � j� � n� � �� We
have the following relationship between global and local indices of the computation
points� i� � x� n� � j�� i� � y � n� � j��
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Scheduling computations There is a partial ordering between points of the tile� if
both points p and q belong to T and if p depends upon q� i�e� if p � q � di for some
dependence vector di � D� then q must be executed before p� More precisely� let tp
�resp� tq� be the time�step where execution of point p �resp� q� begins� We have the
constraint

tq � �calc � tp ���

Scheduling communications Consider �rst the case of an inter�cell communication
c whose ordered sequence is the singleton �li�� Such a communication can be realized
with the use of a single channel of direction li� Let q � T be the source of the
communication and p � T � be the sink� Note that the index �x�� y�� of T � satis�es
to �x�� y�� � �x� y� � lti� In our example� if li corresponds to the direction east� then
lti � ��� 
�� x� � x � � and y� � y� This means that point p of T � is scheduled with
a relative o�set T� to the same point p of T � Let tc be the time�step at which the
communication c begins� The scheduling constraints are

tq � �calc � tc
tc � �comm � tp � T�

���

The �rst constraint expresses the fact that the communication c cannot start before
the end of the computation of q� The second constraint says that execution of point p
in T � cannot start before the end of c�

Now consider the case of an inter�cell communication to be decomposed by using
two� say� physical links� In the example� point q of local index ��� �� in T is the source
of a communication to point p of local index ��� �� in T � of tile index �x�� y��� with
x� � x� � and y� � y � � �see Figure �� communication marked with ����� If the �xed
routing order is north then east as before� we label the two physical communications
as c� and c� �with starting times tc� and tc�� and we have the constraints�

tq � �calc � tc�
tc� � �comm � tc� � T�
tc� � �comm � tp � T�

���

Of course� we need to compute the number of physical communications beforehand
and to assign a distinct label �number� to each of them�

Resource constraints All resource constraints remains to be expressed� At most
one point can be executed within T at a given time�step� Also� there is only a limited
number of links available in each communication direction� In the simple case �calc �
�comm � �� we have to say that at most � computation and qi communications along
direction li can start at any time�step� In the general case� the condition is more
di�cult to state� How to express resource constraints is explained in Section ��

Objective function The goal is to minimize the total execution time� which is equal
to

�M� � ��� jT�j� �M� � ��� jT�j� tlast � �calc ���

Here� we assume that in the �rst tile� the �rst point start execution at time 
 and the
last one at time tlast� The expression �M� � ��� jT�j� �M� � ��� jT�j represents the
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time at which the last tile starts execution� and is a good approximation of the total
execution time in practice�

��� Chou and Kung�s heuristics

There are many variables and many constraints� therefore Chou and Kung propose
several heuristics to order computations and communications�

Computation ordering If we assumed unlimited computation resources� we could
use Lamport�s hyperplane method to schedule the computations points of the depen�
dence graph� We would search for a linear scheduling vector � such that �t � di � � for
all dependence vector di � D� We write this set of constraints as �t �D � �� In our
example� let �t � ���� ���� we obtain the conditions

�� � �� �� � �� and �� � �� � ��

A possible choice is �t � ��� ��� With Lamport�s hyperplane method� a point p � Iter
is executed at time�step t��p� � �t � p�

Given �� we have the partial ordering induced by t� to schedule the points of a tile�
Using local indices within the tile to identify the points� we have � values of t� for the
�� points of the tile�

t��p� � � � � � � � �
 ��

points ����� ����� ����� ����� ����� ����� ����� ����� �����
����� ����� �����

Chou and Kung propose to use t� as a total ordering for computation events� They
break ties arbitrarily �for example using a lexicographical criterion�� This heuristic
dramatically reduces the search space� Computation points are totally ordered as
p�� p�� � � � � pn��n� � Let tpi be the i�th computation event� i�e� the time at which the
computation of the i�th point pi begins� All computation constraints reduce to

tpi � �calc � tpi�� � � � i � n� � n��

Indeed� dependences are preserved owing to the choice of � with the condition �t�D � ��
And resource constraints follow from the total ordering of computations�

Communication ordering Inter�cell communications are decomposed into physical
communications� All physical communications are assigned a distinct label� Commu�
nications along a given direction li are ordered totally� according to the value i of their
sink pi� the smaller i� the more urgent the communication� Ties are broken using source
values� Finally� in case there are more than one channel in direction li �i�e� qi � ���
links are attributed on in a round�robin fashion �ASAP policy��

Problem solution The above heuristics permit to have a total ordering of the com�
putations� as well as a total ordering of communications along each direction� Let
nbcalc � n�� n� be the number of computations and nbcomm be the number of commu�
nications �after having decomposed inter�cell communications into sequences of physi�
cal communications�� Therefore� there remains nbcalc variables tpi for the computation
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events� and nbcomm variables tci for the communication events� Theses variables are
linked by the scheduling constraints �equations ������� and �����

The objective function �equation ���� has absolute value operators� which is not
allowed by the standard format of ILP problems� But the sign of the Ti�s can be
determined with the help of the scheduling vector �� and the problem is now reduced
to a standard ILP problem�

��� Discussion

As already said� the optimization problem to be solved has many variables and many
constraints� hence heuristics are likely to be crucial for deriving a good solution�

We believe that Chou and Kung�s approach can be greatly improved� Indeed� their
approach relies upon a linear scheduling vector � that gives a partial ordering for
computations� From this partial ordering a total ordering is induced �ties are broken
arbitrarily�� This solution is nice in that it reduces the search space� but it can lead to
poor results as illustrated by the following two simple examples�

Ties breaking Consider a �d�problem with dependence matrix D �

�
� 


 �

�
and

assume �calc � �comm � �� A possible scheduling vector is �t � ��� ��� Consider a
�� � tiling with unlimited communication resources �� links in each direction east and
south are enough�� The tile T of tile index �
� 
� is the �rst tile to start computing�
We schedule point ��� �� of tile T at time�step � and point ��� �� of T at time�step ��
because of the partial ordering induced by �� For points ��� �� and ��� �� of T � we have
to break ties�

� if we schedule point ��� �� of T at time�step � �and point ��� �� at time�step ���
then T� � �� T� � � and the global computation time is ��M�������M������

� if we do the other way round� we obtain as global computation time ��M�� �� �
��M� � �� � ��

If M� �M� the second solution is much better and this cannot be found by the method
presented in 
���

Linear tiles Consider now a unidimensional problem with dependence matrix D �
���� Tiles are segments of size n �see Figure ��� Assume �calc � �comm � � and one link

Figure �� Example of linear tiling� n � �� l � �

in the direction east �unlimited communication resources� for the sake of simplicity�
The only possible scheduling vectors are positive multiples of � � ���� hence Chou and
Kung�s heuristic will always lead to execute points from the left to the right� The o�set
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for a tile of size n will then be T� � n��� while we can achieve much better� we obtain
T� � b�n

�
c � � in Section �� To get such a result� we have to use non�linear orderings

for scheduling the points of the tile �see Section ���

� A solution based upon integer linear programming

We expose the problem formulation for a two dimensional graph� but the extension
to any dimension is immediate� The problem tackled here is close to the well�known
single machine scheduling problem 
��� ��� The di�erences lie in the cyclicity constraint
and in the communication channel management� The major di�culty is to express
collision constraints� a processor can execute at most a single computation at each
time�step� The same constraint stands for each channel� a channel can perform at most
one communication at a time� In the single machine scheduling problem� computation
points are numbered from � to Np

max �using the lexicographic order on their coordinates
for example�� An array COMP 
���Np

max� ���N
p
max� of 
 � � variables is introduced�

Computation number i is executed in position j if and only if COMP 
i� j� � �� Deriving
an integer linear problem to solve the single machine scheduling is easy 
���� However� in
our problem� communications and computations neither take the same amount of time
nor compete for the same resources� Thus we cannot limit ourselves to the search of the
order of execution� we must compute the actual starting times of each computation and
of each communication� We describe in this section a technique to express the problem
as an integer linear problem� A similar idea has been introduced by Thiele 
��� in a
much restricted framework� We �rst precisely describe all constraints� then we explain
how to express these constraints using an integer linear programming formulation�

��� Constraints of the cyclic two�dimensional problem

Consider a two�dimensional uniform graph of size N� � N�� each tile is composed of
Np

max � n� �n� computation points �in �gure � for example� Np
max � ���� These Np

max

points are numbered from � to Np
max �using the lexicographic order on local indices��

We schedule computations and communications for tile �
� 
�� which starts execution
at time 
� and we derive the o�sets T� and T�� which respectively correspond to the
starting time of tile ��� 
� �east� and of tile �
� �� �south�� Then if a tile T has �x� y�
for tile index � it starts execution at time T�x � T�y�

The interconnection network is known statically� It is composed of four kinds of
links� links going east� west� south or north� Each communication induced by a de�
pendence vector going out of tile �
� 
� is decomposed into an ordered list of inter�cell
communications� each of them taking place in one of the four previous directions� The
total number of inter�cell communications is N c

max �in �gure �� N c
max � ���� We must�

� schedule the computations so that�

� each computation is executed once and only once

� two computations taking place on the same processor do not overlap

� dependences between computations are respected

� schedule �and map onto the links� the communications so that�
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� each communication is executed once and only once

� two communications taking place on the same link do not overlap

� dependences between computations and communications are respected

� minimize the total latency� approximated by the expression

�M� � ��� jT�j� �M� � ��� jT�j

����� Linear integer problem formulation

We �rst make the following assumption� we know a priori a constant Tmax to bound
the execution time of a tile�� This assumption enables us to consider a �time� vector
of size Tmax whose i�th coordinate is equal to i�

TIME � �
� �� �� ���� Tmax� ��

We introduce two 
� � variable arrays� COMP for the computations and COMM for
the communications�

Computations

The array COMP is used to indicate the starting time of each computation�

COMP 
���Np
max� 
��Tmax� ��

with the rule� COMP 
i� j� � � if and only if the computation of the point i in
tile �
� 
� begins at step j� and COMP 
i� j� � 
 otherwise� Let �calc be the time
needed for one computation� The non�collision constraint between computations
is expressed as�

	j� 
 � j � Tmax � �calc�

Np
maxX
i��

j��calc��X
k�j

COMP 
i� k� � �

which says in e�ect that the sub�matrix COMP 
���Np
max� j��j � �calc � �� must

contain at most one ���� Thus� in any time interval of �calc steps� at most one
computation starts�

The other constraints on the computations are expressed as follows�

� each computation starts once and only once�

	i� j 
 � COMP 
i� j� � �

	i
PTmax��

j�� COMP 
i� j� � �

�This assumption can be easily eliminated� guess a value for Tmax� if it leads to an empty solution
set for the linear problem� increase the value� iterate until a solution is found� More e�cient methods
to determine a good constant Tmax are given in �����

�




� If the point i� depends upon the point i� then�

T p
beg
i�� � �calc � T p

beg
i��

where T p
beg
i� is the starting time of point i� expressed by�

T p
beg
i� �

Tmax��X
j��

COMP 
i� j� � TIME
j� � COMP 
i� ��t � TIME

Communications

Expressing the communication constraints is more complicated� However� we use
similar ideas� Because of the cyclicity of the scheduling� we only have to schedule
inter�cell communications going out of a tile �in�going communications are going
out of neighbor cells �� We introduce the ��dimensional array of 
� � variables�

COMM 
���N c
max� ���N

l
max� 
��Tmax� ��

with the rule� COMM 
i� j� k� � � if and only if the communication number i

begins at step k on the link j� The physical links are known statically� and we
assume that they are ordered so that

� links numbered from � to N l
east go east

� links numbered from N l
east � � to N l

west go west

� links numbered from N l
west � � to N l

south go south

� links numbered from N l
south � � to N l

north � N l
max go north

The total number of links is N l
max� There are N c

max communications to process�
As for the �time� vector� we consider a �link� vector LINK of size N l

max� which
is used to enumerate all the links�

LINK � ��� �� � � � � N l
max�

The direction of each inter�cell communication is recorded in the array

DIR
���N c
max� �����

by storing a � in the adequate column �and 
 elsewhere�� We obtain the starting
time of communication i by computing the following dot product

T c
beg
i� �

N l
maxX
j��

TmaxX
k��

COMM 
i� j� k�� TIME
k� �

Nl
maxX
j��

COMM 
i� j� ��t � TIME

and the number of the link used by the communication i is�

Link
i� �
Nl
maxX
j��

Tmax��X
k��

COMM 
i� j� k��LINK
j� �
Tmax��X
k��

COMM 
i� �� k�t�LINK

��



We must check that each communication begins once and only once� and that
two communications on the same link do not overlap� This gives the following
constraints�

	i� j� k� 
 � COMM 
i� j� k�� �

	i�
PNl

max

j��

PTmax��

k�� COMM 
i� j� k� � �
	j� k� 
 � j � N l

max� 
 � k � Tmax � �comm�PNc
max

i��

Pk��comm��

l�k COMM 
i� j� l�� �

To check that each communication is mapped on a link that goes in the right
direction� we must impose� for each communication i� the following condition�

DIR
i� ��t �

�
BBB�

�
N l

east � �
N l

west � �
N l

south � �

�
CCCA � LINK
i�� DIR
i� ��t �

�
BBB�

N l
east

N l
west

N l
south

N l
north

�
CCCA

The last set of constraints must ensure that dependences between two commu�
nications and dependences between communications and computations are re�
spected� which can be easily expressed as we have the expression of T p

beg
i� for any
computation i and T c

beg
j� for any communication j�

For instance if communication i� depends upon communication i� �in fact� the
copy of i� coming from the previous tile in the direction of i��� we get the con�
straint�

T c
beg
i�� � DIR
i�� ��

t �

�
BBB�
�T�
T�
�T�
T�

�
CCCA� �comm � T c

beg
i��

We have a similar set of constraints for dependences between computations and
communications�

Objective function
As already stated� the objective function is approximated by �M� � �� � jT�j �
�M� � �� � jT�j� which is not a linear expression� Fortunately� we have another
way to express the optimization criteria which amounts to �minimize the total
latency�

min
T��T�

max

 � x� x� �M�


 � y� y� �M�

�xT� � yT� � x�T� � y�T��

We can transform this problem into a single linear problem by using the duality
theorem as explained in 
�� ���

��	
�


Ap � b
Aq � b

maxX�p� q�

�

������	
�����


X�A � X

X�A � �X
X� � 

X� � 

min �X� � X��b

��



Clearly� our ILP problem formulation is much more powerful than the one of 
��
and will lead to optimal solutions in the two examples given in Section ����

However� a direct solution to our ILP problem is very expensive because many
variables as forced to be integral� We have tried several implementations of integer
linear problem solvers �lp�solve� Unix public domain routine� PIP 
��� Omega 
���� and
we have not been able to solve problems with more than �
 points in each tile �for
example� the ILP problem expressed for the example of Section ��� using small two�
dimensional tiles of size �� � is composed of approximately ��

 unknowns and ��


equations�� This complexity justi�es the use of heuristics� It might be more e�cient
to try standard branch�and�bound heuristics �as in 
���� than to directly use those
in 
��� Another possibility is to solve �rst the problem with an unlimited number of
communication links� then to use the computation ordering deduced from the solution
of this problem to apply Chou and Kung�s heuristics�

Also� the complexity of the problem motivates the search for an analytical exact
solution in some particular cases� That is what we propose for linear tiles in the
following section�

� Scheduling unidimensional graphs

We suppose in this section that we are given a unidimensional uniform dependence
graph� with all dependence vectors going in the same direction east �otherwise� the
graph would not be schedulable�� Such a graph may come� for instance� from the single
loop�

DO i���N
A
i��f�A
i����A
i����

ENDDO

It may also come from a multidimensional nested loop where the computation points
are built from all the inner loops so as to increase granularity�

We want to map this graph onto a unidimensional processor array� Each processor
will be assigned a linear tile of computation points� More precisely� each tile will include
n consecutive computation points of the graph �see �gure ���

If we call T� the o�set between the starting times of two consecutive tiles� tile x
will begin its computation at time xT�� Thus minimizing the total execution time is
roughly equivalent to minimizing T� �if we assume that the number n� of tiles is not
too small compared to n � this is the same approximation as in Section ����� This
scheduling problem can �in theory� be solved by using the integer linear programming
formulation shown in the previous section� However� this solution is not satisfactory
because the number of variables grows very quickly as O�n��� and the problem becomes
intractable� unless heuristics are used�

Our goal in this section is to analytically determine the best possible value for
T�� However� we restrict ourselves to the case where communication resources are
unlimited� In the particular case of linear processor arrays� this hypothesis is not
very restrictive� as b �comm

�calc
c links are su�cient to eliminate all delays potentially due to

communications� When targeting VLSI processor arrays� we even would be satis�ed
with a single communication link in the likely many cases where the inequality �comm �

��



�calc holds� This section is organized as follows� �rst� we introduce some de�nitions and
preliminary results� Then we solve the problem in the simple case of a single dependence
vector� Finally we generalize to arbitrary unidimensional dependence graphs�

��� De�nition and preliminary results

De�nition � A schedule S is a set of starting times for the n points within a tile� A

schedule is valid if�

� there is at most one computation during each time interval of length �calc

� dependences are respected

The e�ciency of a schedule S is given by the period T��S� which is the elapsed time

between the starting time of a tile and the starting time of the following tile�

First we prove Lemma � which allows us to �normalize� the computation time and
the communication time�

Lemma � The best schedule for �calc � � and �comm � 
 gives an order for executing

the points of a tile which leads to the best schedule for any positive value of �calc and

�comm�

Proof� Let S���calc� �
�
comm� be the set of valid schedules for �calc � ��calc and �comm �

��comm� Let S� � S���calc� �
�
comm�� As dependence vectors all go in the same direction�

we can apply the cut theorem 
��� and consider that the communication cost is 
�
We obtain a schedule S� � S���calc� 
� where the points of a tile are executed in the
same order� with T��S�� � T��S��� ��comm� Then we can choose a clock step such that

��calc � �� Thus we obtain a schedule S� � S��� 
� with T��S�� � T���
�
comm

��
calc

�

Reciprocally� given a schedule S� � S��� 
�� it is obvious to derive a valid schedule
S� � S���calc� �

�
comm� with the same execution ordering and T��S�� � ��calc � T��S�� �

��comm�
As the two transformations described are non�decreasing functions of T�� the opti�

mal schedule in S���calc� �
�
comm� and in S��� 
� are obtained for the same order�

For the sake of clarity� we let �calc � � and �comm � 
 in the following� Thus we
just have to check that any two execution steps are di�erent and that dependences
are respected� Moreover� we will consider only schedules where all points of a tile are
executed consecutively�

Lemma 	 Given a valid schedule S�� there exist a valid schedule S� such that all points

of a tile are executed consecutively and T��S�� � T��S��

Proof� If there is a �hole� in schedule S�� i�e� no point is scheduled at a given step i
whereas some points are scheduled later� then we simply delete the holes and construct
S� so that points are executed consecutively� with the same order as in S�� Clearly� S�
is a valid schedule and its period is not greater than T��S��

��



��� A small example

The problem to solve now has two kinds of parameters� First� the number and lengths
of the dependence vectors� second� the size of each tile� It turns out that even the
problem with a single dependence vector is not obvious to solve� Indeed� consider the
problem with one dependence vector of length l � �� the size of the tile being n � ��
We number the points of the tile from � to n and we let ti be the execution time of
point i�

The �rst obvious valid schedule is the naive schedule� ti � i� This schedule is
represented on Figure �� We see that we cannot compute the �rst point of the second
tile before step � thus� for this schedule� T� � �� In fact we check that T� � � leads to
a valid solution� In general� if the period T is chosen so that the l �rst points of the
second tile are scheduled correctly � than T is a valid period for the schedule �one does
not have to check dependences for all the other points of the second tile��

� � � � 
 	 � 	 � � �

Figure �� The naive scheduling

A greedy approach would be the following� if we want to minimize the period� we
should try to start the second tile as soon as possible �assuming we choose to start
the �rst tile with its �rst point�� To achieve this goal we compute all points in the
dependence path leading to the �rst point of the second tile as soon as possible� This
is done in Figure �� We take t� � � and t� � � so that the �rst point of the second tile
can be executed at step �� But we have to cope with the cyclicity constraint� Indeed�
as we have scheduled the second point of the �rst tile just after the �rst point� this
property must remain true in the second tile� thus the second point of the second tile
must be executed at step �� This is not possible as some dependences are necessarily
violated� Thus T� � � cannot be reached with this strategy�

� � � � �

Figure �� A wrong schedule

In fact� we have two problems� one is to �nd the minimum period that we can �nd
for a given problem! the other is to �nd a schedule which achieves this period� In our
example� we shall show that the minimum period is T� � �� which is obtained by the
schedule of �gure ��

The last thing to point out is that the respective values of n and l �if we have one
dependence vector� are not independent� If n � l 
� � �� consider the reduced graph of

�We write gcd	u� v
 � u � v

��



� �� �
 	 
 � ��

Figure �� The optimal schedule

Figure � where a single tile is represented� dependences going out of the tile are re�sent
as inputs to the same tile� We have n� l connected components in this reduced graph�
Thus� the cyclicity condition has no impact on the schedule of two points belonging to
distinct connected component� It means exactly that we can independently schedule
each connected component �see Figure ��� The problem is then reduced to scheduling
a smaller tile whose size is relatively prime to the dependence vector length�

� ��� ���� ��� �� �� � �

Figure �� Connected components when l � n � � and when l � n � �

� ��
 �
 �� �� � �� ��

Figure �� Independent schedules for the connected components �l � n � ��

��� Scheduling a linear tile with one dependence vector

Each tile contains n points� and the length of the dependence vector is l� Thanks to
Lemmas � and � we suppose that �calc � � and �comm � 
� Also� following the previous
discussion� we can restrict ourselves to the case n � l � � without loss of generality�
To simplify notations� we write T instead of T� to denote the period between the
computation of two consecutive tiles�


���� Case l � �

We begin with a simple case� i�e the length of the dependence vector is �� The number
n of points in a tile is odd �n � �k � � to ful�ll the hypothesis n � l � ���

��



Theorem � For n � �k � �� k � 
 and l � �� the optimal scheduling has a period Topt
of�

Topt �

�
�n � �

�

�

Remark Remember that in Theorem � we assume �calc � � and �comm � 
� Using
Lemma �� we obtain

Topt �

�
�n� �

�

�
�calc � �comm

in the general case�

t� � 


� T � �� n��
�

� n� T

� T � �

� n� �

T

� n

� �

Tile x Tile x � �

Figure �
� n � �k � �� l � �

Proof The �rst computed point in the tile is the �rst or the second� i�e t� � 
 or
t� � 
� We �rst suppose that t� � 
� The last point to be computed is the ultimate or
the pen�ultimate point� i�e tn�� � n � � or tn � n � � �we see that all the points can
be executed consecutively�� If tn�� � n � �� the computation of the second tile begins
at least at step n and T � n� It is not a good solution �not faster that if all the points
were computed sequentially�� We consider the second case� tn � n� � �see Figure �
��

tn � n�� and there is a dependence between the last point of a tile and the second
point of the next tile� so

t� � T � n ���

The �rst point of the second tile is computed at step T � There is a dependence between
the pen�ultimate point of the �rst tile and the �rst point of the second tile so� tn���� �
T There are n��

�
arcs in the dependence path to go from the second point of the tile

to the pen�ultimate one� hence

t� � � �
n� �

�
� T ���

Inequalities � and � give us�

n� T � T � �� n��
�

�T � n � � � n��
�

T � �n��
�

��



If t� � 
� with a similar demonstration� we obtain�

T � �n��
�

T is� at best� equal to d�n��
�
e� If we can �nd a solution with T � d�n��

�
e� it will be

an optimal scheduling�

Example of a solution with T � d�n��
�
e

� for j even� tj � d�n��
�
e � n���j

�

� for j odd�

� if j � ��d�n��
�
e � ��� n� tj � j��

�

� if j � ��d�n��
�
e � ��� n� tj � j�n��

�

The �rst point of the �rst tile is executed at step t� � 
� the �rst point of the
second one is executed at step T � Starting from T ��rst point of the next tile�� dates
of execution are decremented backwards the path dependence� they are incremented
from 
 to n�� along the other path dependence in taking into account that some dates
have already been used� For an example of such a solution� see Figure ���


 � � � � � � � � � �


Figure ��� Example of optimal scheduling for n � � and l � �

By construction� all dependences inside the tiles are respected�

tn � n� �
t� � T � �d�n��

�
e � n��

�

t� � T � ��n��
�

� n��
�

� n
t� � T � tn

Besides�

t� � T � tn��

All dependences are respected� Thus� the solution is feasible and it is an optimal
solution�

��




���	 Case l � �

We consider now tiles of n points and with one dependence vector of length l� n� l � ��
We suppose n � lp � k� k� p integers and 
 � k � l
� Assuming that n � l � ��
there is only one connected component in the reduced graph but� inside each tile� the
dependence paths de�ne l components� As n and l are relatively prime� the components
are not independent and during the transition from a tile to the next� there is a change
of connected component� We call Xi� � Xi�� ���� Xil the di�erent components� The indices
i�� i�� ���� il are chosen in such a such a way that�

� Xi� is the component whose �rst point is the �rst point executed in the tile

� during the transition from a tile to the next� there is a dependence from the last
point of Xi� to the �rst point of Xil� from the last point of Xil to the �rst point
of Xil�� � ���� from the last point of Xi� to the �rst point of Xi� �

Xi� � Xil � ���� Xi� � Xi�

See Figure �� when n � � and l � ��

First component �Xi��
Second conponent �Xi��
Third conponent �Xi��

Figure ��� Components for n � � and l � �

The length of a component can be p� � or p according to the value of k �there are
k components of length p� the others are of length p � ��� In the case of Figure ���
there are two components of length p and one of length p� ��

We de�ne the l�tuple ���� ��� ���� �l� so that �j � � if the length of the component
Xij is p� and 
 if its length is p� �� i�e �j � jXij j � �p� ���

We de�ne the values �t�� t
�

��� �t�� t
�

��������tj� t
�

j� ������tl� t
�

l� so that the �rst point of the
component Xij is executed at step tj in the �rst tile and its last point at step t�j �

Lemma � We have the following inequalities between the beginning and the �nishing

dates of the connected components�

	 � � j � l � ��
�i� t�j�� � tj � T � �
�ii� t�j � tj � �p� �� � �j

��



Proof �i� During the transition from a tile to the next there is a dependence between
the last point of the component Xij�� and the �rst point of the component Xij �Xij�� �
Xij�� The last point of the component Xij�� of tile x is executed at t�j�� � xT and the
�rst point of the component Xij of tile x � � at tj � �x � ��T so�

t�j�� � xT � tj � �x � ��T � �

Thus �i� is demonstrated�
�ii� The length of the component Xij is p � � � �j� There are at least p � � � �j

tops between the execution of the �rst point of the component Xij and the execution
of the last point� This gives �ii��

We want to �nd lower bounds for T � Let Xif be the component which contains the
last point executed in a tile�

If f 
� �� Xif � Xif�� � ���� Xi� � Xi�� t� � 
� t�f � n� ��
With Lemma �� we have�

n� � � t�f � tf�� � T � �
tf�� � �p� �� � �f�� � t�f�� � tf�� � T � �

�
�

t� � �p� �� � �� � t�
�

� t� � T � �
t� � �p� �� � �� � t�� � T � �

Summing up all previous inequalities� we obtain�

�f � ��T � n� � � �f � ��p �
Pf��

i�� �i

T � l�f��
f��

p �
k���

P
f��

i��
�i

f��

T � �p �
k���

P
f��

i��
�i

f��

Hence� if f 
� �� we obtain T � �p�
In the same way� if f � �� i�e the same component Xi� contains the �rst and the

last point executed in a tile� we obtain�

lT � n � �l� ��p� k �
Pl

i�� �i

T � �l��
l
p � k��

l
� suml

i���i
l

We want to improve this bound and to show that even when f � � �the same
component begins and �nishes� we have a lower bound in �p for T �

Lemma 
 If the same component Xi� contains the �rst and the last executed point in

a tile� we have the following inequalities�

	 � � j � l�

n � �l� j�p� �l� j � ��T �
Pl

i�j�� �i � tj � �j � ���T � p��
Pj

i�� �i
n� � � �l� j � ���p� T � �

Pl
i�j �i � t�j � �j � ���T � p� � p� ��

Pj��
i�� �i

�




Proof By induction on j�
t�� � t� �T � � � T � �� t� � t��� �p� ��� �� � T � p���� For the upper bounds�

the inequalities are true for j��� Assuming that they are satis�ed for j� because of
Lemma ��

t�j�� � �j � ���T � p��
Pj

i�� �i � T � �

t�j�� � j�T � p� � p� ��
Pj

i�� �i
tj�� � j�T � p� � p� ��

Pj
i�� �i � �p� ��� �j��

tj�� � j�T � p��
Pj��

i�� �i

The upper inequalities are satis�ed for j���
tl � t�

�
� T � � � n � T � t�l � tl � p � � � �l � n � T � p � � � �l� For the lower

bounds� the inequalities are true for j�l� Assuming that they are true for j��� because
of Lemma �

tj � n � � � �l� j��p� T � �
Pl

i�j�� �i � T � �

tj � n � �l� j�p� �l � j � ��T �
Pl

i�j�� �i
t�j � n � �l� j�p� �l � j � ��T �

Pl
i�j�� �i � �p� �� � �j

t�j � n � � � �l� j � ���p� T � �
Pl

i�j �i � �p� ��

The lower inequalities are satis�ed for j�

Lemma � Assuming that the same component begins and �nishes� if there exists j such

that t�j � t�j�� then T � �p �
k�
P

l

i��
�i��j

l��

Proof Assuming �j�t�j � t�j���
The inequalities of the previous lemma as satis�ed and we have�

t�j�� � n � � � �l� j��p� T � �
Pl

i�j�� �i
t�j�� � lp � k � � � �l � j��p� T � �

Pl
i�j�� �i

t�j�� � �lp � k � �� jp� jT � lT �
Pl

i�j�� �i

and
t�j � �j � ���T � p� � p� ��

Pj��
i�� �i

so�

�lp� k � �� jp � jT � lT �
Pl

i�j�� �i � jT � jp� T � p � p� ��
Pj��

i�� �i
�lp� k � lT �

Pl
i�j�� �i � �p� T �

Pj��
i�� �i

��l� ��p � k �
Pl

i�� �i � �j � �l� ��T

T � �p�
k�
P

l

i��
�i��j

l��

Lemma � Assuming that for any j� � � j � l� � we have t�j � t�j�� then

T � �p� �

��



Proof We assume that 	 � � j � l� �� t�j � t�j�� and T � �p� ��
We call �u�� u�� ���� ul��� the number of points of the components �Xi�� Xi�� ���� Xil���

executed between tl and t�l���

t�l � tl�� � T � �

t�l � tl � p� � � �l �
Pl��

i�� ui
tl�� � tl � p� � � �l �

Pl��
i�� ui � T � �

tl � tl�� � T � p� �l �
Pl��

i�� ui

If T � �p� � then�

tl � tl�� � p� �� �l �
Pl��

i�� ui
tl � tl�� � p� � � �l�� � ul��

so�
p� �� �l �

Pl��
i�� ui � p� � � �l�� � ul��Pl��

i�� ui � ��l � �l��

So�
Pl��

i�� ui � 
 and u� � u� � ��� � ul�� � 
 �see Figure ���

� p� �
��l�� � u�

i�
i�

il��

il

il��

t� t� t�
�
t�
�

t�l�� t
�

l�� t�l

ul

ul��

ul��

u�

u�

t

Figure ��� T � �p� �

tl � tl�� � p� � � �l�� � ul��
t�l � tl � p� � � �l � ul��

So� adding the two inequalities� we obtain�

t�l � tl�� � �p� � � �l � �l��

Besides�

t�l � tl�� � T � �

��



So�
T � � � �p� � � �l � �l��
T � �p� �

Theorem 	 For l � � and n�l � �� T is asymptotically equal to �bn
l
c� More precisely�

we have�

�b
n

l
c � � � T � �b

n

l
c � �

Proof We see that in any case� T � �p � �� If we can �nd a feasible solution with
T � �p � �� the theorem will be proven�

The cyclic algorithm The l components are numbered in such a way that Xi� ��
Xil �� Xil�� �� ��� �� Xi� �� Xi� � Our strategy is the following� the �rst com�
ponent Xi� is wholly executed� then the second� ���� etc until the lth� The second tile
begins after T � b�n

l
c� � tops�

In these conditions� we have�

ti� � 
 t�i� � p� � � ��
ti� � p � �� t�i� � �p� � � �� � ��

�

�

tij � �j � ��p �
Pj��

i�� �i t�ij � jp� � �
Pj

i�� �i
�

til�� � �l� ��p�
Pl��

i�� �i t�il�� � �l� ��p� � �
Pl��

i�� �i
til � �l� ��p �

Pl��
i�� �i t�il � lp� � �

Pl
i�� �i

If we �x T � b�n
l
c � �� we obtain a feasible solution� By construction� inside each

tile� the dependences are respected� Besides�

t�j � jp� � �
Pj

i�� �i
tj�� � �j � ��p �

Pj��
i�� �i

t�j � tj � �p� � � �j�� � �j
t�j � tj � T � �

So� during the transition from a tile to the next� the dependences are also respected� All
the constraints are respected and this algorithm gives a feasible solution with T � �p���

��� Scheduling a linear tile with several dependence vectors

Consider now a linear tile but with several dependence vectors�
We �rst demonstrate a preliminary technical lemma that will useful in the following�

Lemma 
 Let l�� l� be two integers verifying l� � l� and l� � l� � ��
for any n� n � �l� � ���l� � ��� there exist two non negative integers u and v such

that n � l�u � l�v�

��



Proof Let m be an integer between � and l� � �� let us divide ml� by l��

ml� � qml� � rm� � � rm � l� � �

rm 
� 
 because l� � l� � � and the rm are all di�erent otherwise by di�erence there
would be a contradiction too with the condition l� � l� � ��

rm � 
 so�
qml� � ml�
qm � m

l�
l�

qm � l�

Let us consider the interval I � 
�l� � ���l� � ��� �l� � ��l� � ��� I contains l� � �
consecutive integers� Each integer in I can be written �l�� ���l�� �� � rm� � with all
the rm for � � m � l� � � �the rm are distinct integers between � and l� � �� l� � � is
the length of the interval��

�l� � ���l�� �� � rm � � � l�l� � l� � l� � rm
� l�l� � l� � l� � ml� � qml�
� �l� � �� qm�l� � �m� ��l�

� 
 � 


All the numbers in I can be written under the form ul�� vl� with u � 
 and v � 
�
It is also true for the number �l����l�� So� we have l� consecutive numbers that can be
written under the form ul� � vl� with u � 
 and v � 
� It is also true for all numbers
greater than these l� numbers�

Theorem � Consider a linear tile with two dependence vectors of length l� and l�
verifying l� � l� � �� Then� T is asymptotically equal to the number of points of the

tile�

lim
n��

T

n
� �

Proof A point must be executed after its predecessors along all dependence paths�
If two points p� and p� are distant from a length d greater than �l� � ���l� � ��� we
see with the previous lemma that there is a dependence between p� and p� �d can be
written ul� � vl�� u � 
� v � 
�� Let us consider the point executed at T in the second
tile� it depends on at least n � �l� � ���l� � �� � � point in the previous tile so�

T � n � �l� � ���l�� �� � �

Besides

T � n

so�

lim
n��

T

n
� ��

��




 � � � � � � � � �� �
� �� �� �� �� �� �� ��

Figure ��� Example of scheduling with two vectors of length l� � �� l� � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

Tile x

Tile x � �

Figure ��� Example� l� � �� l� � �� n � ��

For an example of scheduling with two dependence vectors l�� l� with l� � l� � ��
see Figure ���

This result basically says that the problem is inherently sequential with two depen�
dence vectors whose lengths are relatively prime�

Theorem 
 Consider a linear tile with n points and two dependence vectors of size l��

l� such that l� � l� � d� d 
� � and n � d��� Then�

�i� if d � �� T is asymptotically equal to �n���

�ii� if d � � T is asymptotically equal to �n�d�

Proof Since l� � l� � d� as in the case with one dependence vector� there are d com�
ponents in the path de�ned by the dependence vectors� As n � d � �� the components
are not independent and during the transition from a tile to the next there is a change
of component� We de�ne the two integers l�� and l�� such as l�� � l��d and l�� � l��d�

We consider now the two following problems�

Problem � We consider tiles of n points with one uniform vector of length d� We see
from Theorems � and � that optimal values for the period T� are the following�

� if d � �� T� asymptotically equal to ���n�

� if d � � � T� asymptotically equal to �n�d�

l��l� � d� there exist two integers k� and k� such that l� � k��d and l� � k��d� So�
problem � is equivalent to our scheduling problem �n points and two dependence
vectors� but with some additional dependences� and therefore T � T�

��



Problem 	 We consider tiles of n� � n� �l�� ���l�� ���max�l�� l�� points and with
one uniform dependence vector of length d� As for problem �� we see that the
optimal values for the period T� are the following�

� if d � �� T� � ���n� � ���n ��

� if d � �� T� � �n��d � �n�d�

We saw �Lemma �� that the �rst point of a component in the basic problem depends
on all the n� �l��� ���l��� �� � � �rst points in the previous component� Problem � is
equivalent to our scheduling problem but with less points and with less dependences�
So� we have T � T��

T� � T � T�� Besides� T� and T� have the same asymptotic behavior�

� if d � �� T� � ���n� T� � ���n �� T � ���n�

� if d � �� T� � �n�d� T� � �n�d �� T � �n�d�

Theorem � Consider a linear tile with n points and two dependence vectors of size l�
and l�� l� � l� � d and n� d � d�� d� 
� �� Then� the optimal scheduling is obtained for�

�i� if d � d�� T � n�d�

�ii� if d�d� � �� T � �n
�d�
�

�iii� if d�d� � �� T � �n�d

Proof The problem is equivalent to d� separate problems with n� � n�d� points and
two dependence vectors of length l�� � l��d

�� l�� � l��d
�� l�� � l

�

� � d�d�� n� � d�d����

�i� If d � d�� the result is given by Theorem �� T � n� � n�d�

�ii� and �iii� The result is given by Theorem �� If d�d� � �� T � ���n� � �n
�d�

� If

d�d� � �� T � �n�

d�d�
� �n�d�

Generalization to the case of m dependence vectors Lemma � can be gener�
alized to the case of m integers and so� the previous theorems can be generalized to m

dependence vectors�

Lemma � Let us consider m integers �l�� l�� ���lm� such that gcd�l�� l�� ���lm� � � � Then�
there exists an integer A such that for any n � A� there exist m non negative integers

��� ��� ���� �m such that�

n � ��l� � ��l� � ���� �mlm

�Throughout� we write f	n
 � g	n
 if limn��
f�n�
g�n� � �

��



Proof By induction on m� The lemma is true for m � � �Lemma ��� Let us assume
that the lemma is true for m � � and prove that it is also true for m � ��

Let us consider m � � integers l�� l�� ���� lm� lm�� such as gcd�l�� l�� ���lm� lm��� � ��
gcd�l�� l�� ���lm� � p so gcd�l��p� l��p� ���lm�p� � ��

The lemma is true for m integers so� there exists an integer A such that for any
n � A� n � ��l��p� ��l��p� ���� �mlm�p with �i � 
�

gcd�l�� l�� ���lm� lm��� � � so p and lm�� are relatively prime�
There exists an integer A� such that for any n � A�� n � �p � 	lm�� with � � 


and 	 � 
�
Consider n � A � p � A�� n � A � p � m with m � A�� So ���� 	� such that

m � �p � 	p with � � 
 and 	 � 
� n � A � p � � � p � 	lm�� � �A � �� � p � 	lm���
But� ����� ��� ���� �m� such A�� � ��l��p���l��p� �����mlm�p so� n � ��l����l��
���� �mlm � 	lm�� with �i � 
 and 	 � 
�

Theorem � Generalization� all previous theorems can be generalized to a tile with m

dependence vectors� i�e� Consider a tile of n points with m dependence vectors of size

l�� l�� ���� lm� gcd�l�� l�� ���� lm� � d and gcd�n� d� � d��

�i� if d � d�� T � n�d�

�ii� if d�d� � � T � �n
�d�
�

�iii� if d�d� � � � T � �n�d�

Proof With Lemma �� all the previous demonstrations can be easily transposed to
the case of m dependence vectors�

� Summary and Future Work

Tiling is a quite powerful technique to increase granularity and data locality� The
atomicity constraint used by researchers targeting DMPC computers 
�
� ��� �
� ��� ��
has a great impact upon the simplicity of SPMD code generation� However� such a
constraint imposes two restrictions�

� tiles cannot depend upon each other� which restricts the search space for valid
schedulings

� the capability of modern DMPC computers to overlap communications and com�
putations of modern DMPC is not taken advantage of

We believe that removing the atomicity constraint can lead to very interesting perspec�
tives� in particular when targeting VLSI processor arrays �see 
��� in this respect�� The
work of Chou and Kung 
�� opens new directions for scheduling tiled processor arrays
while assuming limited computation and communication resources� Our main contri�
bution in this paper is to have given a formulation of the problem in terms of an ILP
problem which takes all constraints into account� Clearly� the size of this ILP problem
makes the use of heuristics unavoidable� but the choice of these heuristics can rely upon

��



the new ILP formulation that leaves the whole solution space open for searching� On
the contrary� Chou and Kung�s heuristics� while very simple� imposes very restrictive
limitations� as shown by the examples given in the paper�

One possibly better heuristic would be �rst to solve the problem with an unlimited
number of links �which is much simpler� so as to derive an initial ordering in the tile
and to apply Chou and Kung technique� Another possible solution would be to apply
classical linear programming heuristics �like branch and bound for example� to our ILP
problem� Anyway� comparing and evaluating heuristics is an interesting direction for
future research�

From a theoretical point of view� it would be very interesting to extend the analytical
solution given in the case of unidimensional tiles to arbitrary dimensions� as well as
to propose optimal algorithms for the general case� However� scheduling problems are
known to be di�cult 
��� and that of multidimensional tiles with limited resources is
very challenging  
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