Mich Ele

Risset Dion Tanguy

Yves Robert
email: yrobert]@lip.ens-lyon.fr

Mich Ele Dion

Tanguy Risset
email: risset@lip.ens-lyon.fr

Resource-constrained Scheduling of Partitioned Algorithms on Processor Arrays

Keywords: parallelism, SPMD, processor arrays, scheduling, tiles, resource constraints parall elisme, SPMD, tableaux de processeurs, ordonnancement, tuiles, ressources born ees

We deal with the problem of partitioning and mapping uniform loop nests onto physical processor arrays. Resource constraints are taken into account: not only we assume a limited number of available processors, but we a l s o assume that the communication capabilities of the physical processors are restricted (in particular, the number of communication links in each d irection is bounded). This paper is motivated by the recent w ork of Chou and Kung and of Thiele. Our main contributions are a new formulation of the complex optimization problem to be solved in terms of a single integer linear programming problem, as well as optimal scheduling algorithms and complexity results in the case of linear processor arrays.

Introduction

In this paper, we deal with the problem of partitioning and mapping uniform loop nests onto physical processor arrays. Resource constraints are taken into account: not only we assume a limited numb e r o f a vailable processors, but we also assume that the communication capabilities of the physical processors are restricted (in particular, the number of communication links in each direction is bounded).

Partitioning (or tiling) uniform loop nest onto processor arrays has motivated a great amount of research in the last ten years 1, 6, 10, 11, 1 2 , 15, 20, 18, 2 1 , [START_REF] Ramanujam | Non-unimodular transformations of nested loops[END_REF][START_REF] Sharma | On data dependence analysis for compiling programs on distributed-memory machines[END_REF][START_REF] Blazewicz | Mathematical programming formulations for machine scheduling : A survey[END_REF] (this small list is far from bieng exhaustive). Tiling is a widely used technique to increase the granularity of computations and the locality of data references. When targeting a SPMD style of programming 10, 1 8 , 20, 21, 3], tiles are usually considered to be atomic: i n ter-processor communications only take place at the end of the processing of each tile. While well-suited to a data-parallel approach, this hypothesis is unnecessarily restrictive when targeting VLSI processor arrays. Also, most current distributed-memory machines are capable of performing communications in parallel with computations. Therefore, it is of great practical importance to study tiling techniques while assuming that communications and computations can overlap within a tile.

1

This paper is motivated by the recent w ork of Chou and Kung 4] and of Thiele 23]. Chou and Kung 4] h a ve made a major contribution in formulating the problem of tiling uniform dependence graphs assuming limited resources and computation/communication overlap. Thiele 23] w as the rst to introduce Integer Linear Programming (ILP) techniques to optimize the scheduling of partitioned algorithms onto VLSI processor arrays with limited computational resources.

We start from the formulation of the problem by Chou and Kung. We summarize their approach and we elaborate upon it along two important directions:

We capture the complex optimization problem to be solved in terms of a single Integer Linear Programming (ILP) problem. We point out that Chou and Kung were only able to solve a v ery restricted instance of the problem that they have formulated.

We give optimal scheduling algorithms and complexity results in the case of linear processor arrays. The paper is organized as follows: in Section 2 we state the scheduling problem to be solved. We f o l l o w the approach of Chou and Kung and we review the heuristics that they propose. In Section 3 we d e r i v e a new formulation of the problem in terms of a single ILP problem. We g i v e s e v eral examples and brie y discuss some practical issues to compute the solution. Then in Section 4 we c o n c e n trate upon linear processor arrays. In this particular case, we are able to give an analytical expression for the best scheduling and we d e r i v e optimal algorithms. Finally in Section 5 we summarize our results and give s e v eral perspectives for future work.

Problem formulation

The original formulation of the problem is due to Chou and Kung 4]. We i n troduce it by w orking out a small example.

Scheduling constraints

Consider the following perfect uniform loop nest of depth 2: for i 1 = 1 t o N 1 do for i 2 = 1 t o N 2 do a(i 1 i 2) = f(a(i 1 ; 1 i 2) a (i 1 i 2 ; 1) a (i 1 ; 1 i 2 + 1))

endfor endfor where f is an arbitrary function. The iteration space is the rectangle Iter = f(i 1 i 2) 1 i 1 N 1 1 i 2 N 2 g. The dependences vectors are captured in the dependence matrix D = 1 0 1 0 1 ;1 ! . Assume now that this loop nest is to be executed on a 2D-grid of processors of size M 1 M 2 . In most practical cases the size of the iteration space (i.e. N 1 N 2 , the number of computation points) is much larger than the size of the processor grid. It is then needed to partition the iteration space into rectangular tiles and to allocate a 2 : : : : : : : : : : : :

i 1 n 1 n 2 1 1 N 1 N 2 i 2 ;1 1 0 1 1 0

Dependence vectors

Figure 1: Iteration space for the example (n 1 = 4 , n 2 = 3) whole tile to a single processor. For the sake of simplicity, Chou and Kung assume the tiles to be rectangular and along the direction indices i 1 and i 2 of the iteration space Iter (see Figure 1). Let n 1 n 2 be the size of a tile, where N 1 = n 1 M 1 and N 2 = n 2 M 2 . In Figure 1 we h a ve tiles of size 4 by 3 .

The problem is thus resource-constrained as one single processor is responsible for processing a whole tile of n 1 n 2 computation points. But there are many other possible limitations to take i n to account, in particular the number of communication channels and the xed topology of the communication network.

Indeed, as stated by Chou and Kung, the physical characteristics of VLSI layout impress a stringent limitation on the design of array processors. Typically, a 2D-grid of processors will be interconnected with horizontal and vertical physical channels (and possibly also diagonal and antidiagonal channels), each of these in limited number. This means that long distance communications will have to be \routed", i.e. decomposed into a sequence of physically possible communications. This also means that several inter-processor communications which are simultaneously ready to be performed will compete for the communication resources.

In our example, assume that the interconnection network is that given in Figure 2. There are four communication channels (or links) going out every processor (or cell): they are labeled east 1 , east 2 , north and south as indicated in the gure.

Each processor is responsible for a whole tile and must execute n 1 n 2 computations as many communications as imposed by the dependence vectors. We see in Figure 3 that there are 13 dependence vectors that require an inter-cell communication (all other dependences are internalized in the cell). These 13 inter-cell communications will lead to 14 physical communications, as the dependence vector north east 1 east 2 south a t wo-step implementation: a rst communication using link north then a second one using either link east (or the other way round).

In the general case the interconnection network is represented by a tuple (L Q) where L is a set of column vectors and Q is a row v ector. L = fl 1 : : : l d g, where l i represents a unique direction of communication links. Q = (q 1 : : : q d) represents the number of communication channels at each direction. In our example we h a ve

L = feast,south,northg = (1 0 ! 0 1 ! 0 ;1 !)
and Q = (2 1 1). Each i n tercell communication induced by a dependence vector is then decomposed as an ordered sequence (s 1 : : : s i : : :) w h e r e s i belongs to L. Note that the same dependence vector can lead to di erent i n ter-cell communications. This is illustrated in Figure 3 with dependence vector 1 ;1 ! which leads either to the sequence (l 3) (north) or to the sequence (l 3 l 1) (north then east), depending upon the location of the vector source within the tile the order in which the links are used to implement a n i n ter-cell communication is assumed to be a-priori xed. Of course this is an arbitrary restriction but it is required to reduce the number of parameters (in practice sequences will be of length 2 at most, we can still try several orderings). How will we s c hedule the tiles ? Let calc be the time needed for one computation (an instance of the statement a(i 1 i 2) = f(a(i 1 ;1 i 2) a (i 1 i 2 ;1) a (i 1 ;1 i 2 +1))). Let comm be the time for one communication over a physical link. There are several realistic hypotheses that make Chou and Kung's approach v ery interesting when targeting a VLSI processor grid:

Communication/computation overlap. Tiles are not supposed to be atomic (as opposed to the work present e d i n 1 0 , 1 9 , 2 0 , 3]). Rather, as soon as a point i n the tile has been computed, we can start to communicate its value to neighboring tiles.

Cyclic scheduling. We l o o k f o r a s c heduling in which e a c h tile will execute the same program, up to a translation in time. More precisely, let us assign tile indices (x y) t o e a c h tile, where 0 x < M 1 and 0 x < M 2 . If tile (0 0) starts its program P at time-step 0, tile (x y) will start the same program at time-step T 1 x + T 2 y, w h e r e T 1 and T 2 are the relative time o sets between processors in each dimension. Searching for a cyclic scheduling is the key to a regular design. Of course, the goal is to minimize the global execution time, and therefore to choose T 1 and T 2 as small as possible. We formulate the objective function to be minimized more precisely in Section 3. Beforehand, we express all the constraints to be satis ed in an intuitive manner.

Let us consider a xed tile T of tile index (x y). Let (j 1 j 2) be the indices of the computation points inside the tile, where 1 j 1 n 1 = 4 a n d 1 j 2 n 2 = 3 . W e have the following relationship between global and local indices of the computation points: i 1 = x n 1 + j 1 i 2 = y n 2 + j 2 .

Scheduling computations There is a partial ordering between points of the tile: if both points p and q belong to T and if p depends upon q, i.e. if p = q + d i for some dependence vector d i 2 D, then q must be executed before p. More precisely, l e t t p (resp: t q) be the time-step where execution of point p (resp: q) begins. We h a ve the constraint t q + calc t p (1) Scheduling communications Consider rst the case of an inter-cell communication c whose ordered sequence is the singleton (l i). Such a c o m m unication can be realized with the use of a single channel of direction l i . Let q 2 T be the source of the communication and p 2 T 0 be the sink. Note that the index (x 0 y 0) o f T 0 satis es to (x 0 y 0) = (x y) + l t i . In our example, if l i corresponds to the direction east, then l t i = (1 0), x 0 = x + 1 and y 0 = y. This means that point p of T 0 is scheduled with a relative o set T 1 to the same point p of T . Let t c be the time-step at which the communication c begins. The scheduling constraints are t q + calc t c t c + comm t p + T 1

(2)

The rst constraint expresses the fact that the communication c cannot start before the end of the computation of q. The second constraint s a ys that execution of point p in T 0 cannot start before the end of c. Now consider the case of an inter-cell communication to be decomposed by using two, say, p h ysical links. In the example, point q of local index (1 4) in T is the source of a communication to point p of local index (3 1) in T 0 of tile index (x 0 y 0), with x 0 = x + 1 a n d y 0 = y ; 1 (see Figure 3: communication marked with (*)). If the xed routing order is north then east as before, we label the two p h ysical communications as c 1 and c 2 (with starting times t c1 and t c2) and we h a ve the constraints: t q + calc t c1 t c1 + comm t c2 ; T 2 t c2 + comm t p + T 1 [START_REF] Blazewicz | Mathematical programming formulations for machine scheduling : A survey[END_REF] Of course, we need to compute the numb e r o f p h ysical communications beforehand and to assign a distinct label (number) to each o f t h e m .

Resource constraints All resource constraints remains to be expressed. At most one point can be executed within T at a given time-step. Also, there is only a limited number of links available in each c o m m unication direction. In the simple case calc = comm = 1 , w e h a ve t o s a y that at most 1 computation and q i communications along direction l i can start at any time-step. In the general case, the condition is more di cult to state. How to express resource constraints is explained in Section 3.

Objective function The goal is to minimize the total execution time, which is equal to (M 1 ; 1) j T 1 j + (M 2 ; 1) j T 2 j + t last + calc (4) Here, we assume that in the rst tile, the rst point start execution at time 0 and the last one at time t last . The expression (M 1 ; 1) j T 1 j + (M 2 ; 1) j T 2 j represents the time at which the last tile starts execution, and is a good approximation of the total execution time in practice.

Chou and Kung's heuristics

There are many v ariables and many constraints, therefore Chou and Kung propose several heuristics to order computations and communications.

Computation ordering If we assumed unlimited computation resources, we could use Lamport's hyperplane method to schedule the computations points of the dependence graph. We w ould search for a linear scheduling vector such that t d i 1 for all dependence vector d i 2 D. W e write this set of constraints as t D 1. In our example, let t = (1 2), we obtain the conditions 1 1 2 1 and 1 ; 2 1: A possible choice is t = (2 1). With Lamport's hyperplane method, a point p 2 Iter is executed at time-step t (p) = t p.

Given , w e h a ve the partial ordering induced by t to schedule the points of a tile. Using local indices within the tile to identify the points, we h a ve 9 v alues of t for the 12 points of the tile:

t (p) 3 4 5 6 7 8 9 10 11 points (1,1) (1,2) (1,3) (2,2) (2,3) (3,2) (3,3) (4,2) (4,3) (2,1) (3,1) (4,1)
Chou and Kung propose to use t as a total ordering for computation events. They break ties arbitrarily (for example using a lexicographical criterion). This heuristic dramatically reduces the search space. Computation points are totally ordered as p 1 p 2 : : : p n1 n2 . L e t t pi be the i-th computation event, i.e. the time at which the computation of the i-th point p i begins. All computation constraints reduce to t pi + calc t pi+1 1 i < n 1 n 2 : Indeed, dependences are preserved owing to the choice of with the condition t D 1.

And resource constraints follow from the total ordering of computations.

Communication ordering Inter-cell communications are decomposed into physical communications. All physical communications are assigned a distinct label. Communications along a given direction l i are ordered totally, according to the value i of their sink p i : the smaller i, the more urgent t h e c o m m unication. Ties are broken using source values. Finally, in case there are more than one channel in direction l i (i.e. q i > 2), links are attributed on in a round-robin fashion (ASAP policy).

Problem solution The above heuristics permit to have a total ordering of the computations, as well as a total ordering of communications along each direction. Let nb calc = n 1 n 2 be the number of computations and nb comm be the number of communications (after having decomposed inter-cell communications into sequences of physical communications). Therefore, there remains nb calc variables t pi for the computation events, and nb comm variables t ci for the communication events. Theses variables are linked by t h e s c heduling constraints (equations (1),(2) and (3)).

The objective function (equation (4)) has absolute value operators, which i s n o t allowed by the standard format of ILP problems. But the sign of the T i 's can be determined with the help of the scheduling vector , and the problem is now reduced to a standard ILP problem.

Discussion

As already said, the optimization problem to be solved has many v ariables and many constraints, hence heuristics are likely to be crucial for deriving a good solution.

We believe that Chou and Kung's approach can be greatly improved. Indeed, their approach relies upon a linear scheduling vector that gives a partial ordering for computations. From this partial ordering a total ordering is induced (ties are broken arbitrarily). This solution is nice in that it reduces the search space, but it can lead to poor results as illustrated by the following two simple examples.

Ties breaking Consider a 2d-problem with dependence matrix D = 1 0 0 1 ! and assume calc = comm = 1 . A possible scheduling vector is t = (1 1). Consider a 2 2 tiling with unlimited communication resources (2 links in each direction east and south are enough). The tile T of tile index (0 0) is the rst tile to start computing. We s c hedule point (1 1) of tile T at time-step 1 and point (2 2) of T at time-step 4, because of the partial ordering induced by . F or points (2 1) and (1 2) of T , w e h a ve to break ties: if we s c hedule point (1 2) of T at time-step 2 (and point (2 1) at time-step 3), then T 1 = 3 , T 2 = 4 and the global computation time is 3(M 1 ; 1) + 4 (M 2 ; 1)+4 if we do the other way round, we obtain as global computation time 4(M 1 ; 1) + 3(M 2 ; 1) + 4.

If M 1 M 2 the second solution is much better and this cannot be found by the method presented in 4].

Linear tiles Consider now a unidimensional problem with dependence matrix D = (3). Tiles are segments of size n (see Figure 4). Assume calc = comm = 1 and one link for a tile of size n will then be T 1 = n;2, while we can achieve m uch better: we obtain T 1 = b 2n 3 c + 2 in Section 4. To get such a result, we h a ve to use non-linear orderings for scheduling the points of the tile (see Section 4).

A solution based upon integer linear programming

We expose the problem formulation for a two dimensional graph, but the extension to any dimension is immediate. The problem tackled here is close to the well-known single machine scheduling problem [START_REF] Kung | VLSI array processors[END_REF]2]. The di erences lie in the cyclicity constraint and in the communication channel management. The major di culty is to express collision constraints: a processor can execute at most a single computation at each time-step. The same constraint stands for each c hannel: a channel can perform at most one communication at a time. In the single machine scheduling problem, computation points are numbered from 1 to N p max (using the lexicographic order on their coordinates for example). An array COMP 1::N p max 1::N p max] o f 0 ; 1 v ariables is introduced.

Computation number i is executed in position j if and only if COMP i j] = 1. Deriving an integer linear problem to solve the single machine scheduling is easy 13]. However, in our problem, communications and computations neither take the same amount of time nor compete for the same resources. Thus we cannot limit ourselves to the search o f t h e order of execution, we m ust compute the actual starting times of each computation and of each c o m m unication. We describe in this section a technique to express the problem as an integer linear problem. A similar idea has been introduced by Thiele 23] i n a much restricted framework. We rst precisely describe all constraints, then we explain how to express these constraints using an integer linear programming formulation.

Constraints of the cyclic two-dimensional problem

Consider a two-dimensional uniform graph of size N 1 N 2 , e a c h tile is composed of N p max = n 1 n 2 computation points (in gure 1 for example, N p max = 12). These N p max points are numbered from 1 to N p max (using the lexicographic order on local indices). We s c hedule computations and communications for tile (0 0), which starts execution at time 0, and we d e r i v e the o sets T 1 and T 2 , which r e s p e c t i v ely correspond to the starting time of tile (1 0) (east) and of tile (0 1) (south). Then if a tile T has (x y) for tile index , it starts execution at time T 1 x + T 2 y.

The interconnection network is known statically, It is composed of four kinds of links: links going east, west, south or north. Each communication induced by a dependence vector going out of tile (0 0) is decomposed into an ordered l i s t of inter-cell communications, each of them taking place in one of the four previous directions. The total number of inter-cell communications is N c max (in gure 3, N c max = 1 4) . W e m ust: schedule the computations so that: { each computation is executed once and only once { two computations taking place on the same processor do not overlap { dependences between computations are respected schedule (and map onto the links) the communications so that: { each communication is executed once and only once { two communications taking place on the same link do not overlap { dependences between computations and communications are respected minimize the total latency, approximated by the expression (M 1 ;1) j T 1 j + (M 2 ; 1) j T 2 j

Linear integer problem formulation

We r s t m a k e the following assumption: we k n o w a priori a constant T max to bound the execution time of a tile 1 . This assumption enables us to consider a \time" vector of size T max whose i-th coordinate is equal to i: TI ME= (0 1 2 : : : T max ; 1)

We i n troduce two 0 ; 1 v ariable arrays, COMPfor the computations and COMMfor the communications.

Computations

The array COMP is used to indicate the starting time of each computation:

COMP 1::N p max 0::T max ; 1] with the rule: COMP i j] = 1 if and only if the computation of the point i in tile (0 0) begins at step j, and COMP i j] = 0 otherwise. Let calc be the time needed for one computation. The non-collision constraint b e t ween computations is expressed as: 8j 0 j T max ; calc

N p max X i=1 j+ calc;1 X k=j COMP i k] 1
which s a ys in e ect that the sub-matrix COMP 1::N p max j::j + calc ; 1] must contain at most one \1". Thus, in any t i m e i n terval of calc steps, at most one computation starts.

The other constraints on the computations are expressed as follows: each computation starts once and only once: 8i j 0 COMP i j]

1 8i P Tmax;1 j=0 COMP i j] = 1
If the point i 1 depends upon the point i 2 then:

T p beg i 2] + calc T p beg i 1] where T p beg i] is the starting time of point i, expressed by: T p beg i] = The total number of links is N l max . There are N c max communications to process.

As for the \time" vector, we consider a \link" vector LINK of size N l max , which is used to enumerate all the links, LINK = (1 2 : : : N l max) The direction of each i n ter-cell communication is recorded in the array DIR 1::N c max 1::4] by storing a 1 in the adequate column (and 0 elsewhere). We obtain the starting time of communication i by computing the following dot product

T c beg i] = N l max X j=1 Tmax X k=1 COMM i j k] TI M E k] = N l max X j=1 COMM i j] t TI M E
and the number of the link used by the communication i is:

Link i] = N l max X j=1 Tmax;1 X k=0 COMM i j k] LINK j] = Tmax;1 X k=0 COMM i k] t LINK
We m ust check that each c o m m unication begins once and only once, and that two communications on the same link do not overlap. This gives the following constraints:

8i j k 0 COMM i j k] 1 8i P N l max j=1 P Tmax;1 k=0 COMM i j k] = 1 8j k 0 j N l max 0 k T max ; comm P N c max i=1 P k+ comm;1 l=k COMM i j l] 1
To c heck that each communication is mapped on a link that goes in the right direction, we m ust impose, for each c o m m unication i, the following condition:

DIR i] t 0 B B B @ 1 N l east + 1 N l west + 1 N l south + 1 1 C C C A LINK i] DIR i] t 0 B B B @ N l east N l west N l south N l north 1 C C C A
The last set of constraints must ensure that dependences between two c o m m unications and dependences between communications and computations are respected, which can be easily expressed as we h a ve the expression of T p beg i] for any computation i and T c beg j] for any c o m m unication j. For instance if communication i 1 depends upon communication i 2 (in fact, the copy o f i 2 coming from the previous tile in the direction of i 2), we g e t t h e c o nstraint:

T c beg i 2] + DIR i 2] t 0 B B B @ ;T 1 T 1 ;T 2 T 2 1 C C C A + comm T c beg i 1]
We h a ve a similar set of constraints for dependences between computations and communications.

Objective function

As already stated, the objective function is approximated by (M 1 ; 1) j T 1 j + (M 2 ; 1) j T 2 j, which is not a linear expression. Fortunately, w e h a ve a n o t h e r way to express the optimization criteria which amounts to \minimize the total latency" min T1 T2 max 0 x x 0 M 1 0 y y 0 M 2 (xT 1 + yT 2 ; x 0 T 1 ; y 0 T 2)

We can transform this problem into a single linear problem by using the duality theorem as explained in 7, 8] :

8 > < > : Ap b Aq b max X(p ; q) () 8 > > > > > < > > > > > : X 1 A = X X 2 A = ;X X 1 0 X 2 0 min (X 1 + X 2)b
Clearly, our ILP problem formulation is much m o r e p o werful than the one of 4] and will lead to optimal solutions in the two examples given in Section 2.3.

However, a direct solution to our ILP problem is very expensive because many variables as forced to be integral. We h a ve tried several implementations of integer linear problem solvers (lp-solve: Unix public domain routine, PIP 9], Omega 16]) and we h a ve not been able to solve problems with more than 20 points in each tile (for example, the ILP problem expressed for the example of Section 2.1 using small twodimensional tiles of size 2 2 is composed of approximately 1200 unknowns and 2500 equations). This complexity justi es the use of heuristics. It might be more e cient to try standard branch-and-bound heuristics (as in 23]) than to directly use those in 4]. Another possibility i s t o s o l v e rst the problem with an unlimited number of communication links, then to use the computation ordering deduced from the solution of this problem to apply Chou and Kung's heuristics.

Also, the complexity of the problem motivates the search for an analytical exact solution in some particular cases. That is what we propose for linear tiles in the following section.

Scheduling unidimensional graphs

We suppose in this section that we a r e g i v en a unidimensional uniform dependence graph, with all dependence vectors going in the same direction east (otherwise, the graph would not be schedulable). Such a graph may come, for instance, from the single loop:

DO i=1,N A i]=f(A i-3],A i-7])
ENDDO It may a l s o c o m e f r o m a m ultidimensional nested loop where the computation points are built from all the inner loops so as to increase granularity. We w ant to map this graph onto a unidimensional processor array. E a c h processor will be assigned a linear tile of computation points. More precisely, e a c h tile will include n consecutive computation points of the graph (see gure 4).

If we call T 1 the o set between the starting times of two consecutive tiles, tile x will begin its computation at time xT 1 . T h us minimizing the total execution time is roughly equivalent to minimizing T 1 (if we assume that the number n 1 of tiles is not too small compared to n -this is the same approximation as in Section 3.1). This scheduling problem can (in theory) be solved by using the integer linear programming formulation shown in the previous section. However, this solution is not satisfactory because the number of variables grows very quickly as O(n 2), and the problem becomes intractable, unless heuristics are used.

Our goal in this section is to analytically determine the best possible value for T 1 . However, we restrict ourselves to the case where communication resources are unlimited. In the particular case of linear processor arrays, this hypothesis is not very restrictive, as b comm calc c links are su cient to eliminate all delays potentially due to communications. When targeting VLSI processor arrays, we e v en would be satis ed with a single communication link in the likely many cases where the inequality comm calc holds. This section is organized as follows: rst, we i n troduce some de nitions and preliminary results. Then we s o l v e the problem in the simple case of a single dependence vector. Finally we generalize to arbitrary unidimensional dependence graphs.

De nition and preliminary results

De nition 1 A schedule S is a set of starting times for the n points within a tile. A schedule is valid if: there is at most one computation during each time interval of length calc dependences are r espected

The e ciency of a schedule S is given by the period T 1 (S) which is the elapsed time between the starting time of a tile and the starting time of the following tile.

First we prove Lemma 1 which allows us to \normalize" the computation time and the communication time.

Lemma 1 The best schedule for calc = 1 and comm = 0 gives an order for executing the points of a tile which leads to the best schedule for any positive value of calc and comm .

Proof: Let S(0 calc 0 comm) b e t h e s e t o f v alid schedules for calc = 0 calc and comm = 0 comm . L e t S 1 2 S(0 calc 0 comm). As dependence vectors all go in the same direction, we can apply the cut theorem 17] and consider that the communication cost is 0.

We obtain a schedule S 2 2 S(0 calc 0) where the points of a tile are executed in the same order, with T 1 (S 2) = T 1 (S 1) ; 0 comm . Then we can choose a clock s t e p s u c h that 0 calc = 1 . T h us we o b t a i n a s c hedule S 3 2 S(1 0) with T 1 (S 3) = T1; 0 comm 0 calc .

Reciprocally, given a schedule S 4 2 S(1 0), it is obvious to derive a v alid schedule S 5 2 S(0 calc 0 comm) with the same execution ordering and T 1 (S 5) = 0 calc T 1 (S 4) + 0 comm .

As the two transformations described are non-decreasing functions of T 1 , the optimal schedule in S(0 calc 0 comm) and in S(1 0) are obtained for the same order.

For the sake of clarity, w e l e t calc = 1 and comm = 0 in the following. Thus we just have t o c heck that any t wo execution steps are di erent and that dependences are respected. Moreover, we will consider only schedules where all points of a tile are executed consecutively:

Lemma 2 Given a valid schedule S 1 , there exist a valid schedule S 2 such that all points of a tile are e x e cuted c onsecutively and T 1 (S 2) T 1 (S 1) Proof: If there is a \hole" in schedule S 1 , i.e. no point i s s c heduled at a given step i whereas some points are scheduled later, then we simply delete the holes and construct S 2 so that points are executed consecutively, with the same order as in S 1 . Clearly, S 2 is a valid schedule and its period is not greater than T 1 (S).

A small example

The problem to solve n o w has two kinds of parameters. First, the number and lengths of the dependence vectors, second, the size of each t i l e . It turns out that even the problem with a single dependence vector is not obvious to solve. Indeed, consider the problem with one dependence vector of length l = 3, the size of the tile being n = 7 . We n umber the points of the tile from 1 to n and we l e t t i be the execution time of point i.

The rst obvious valid schedule is the naive s c hedule: t i = i. This schedule is represented on Figure 5. We see that we cannot compute the rst point of the second tile before step 6 thus, for this schedule, T 1 5. In fact we c heck that T 1 = 5 leads to a v alid solution. In general, if the period T is chosen so that the l rst points of the second tile are scheduled correctly , than T i s a v alid period for the schedule (one does not have t o c heck dependences for all the other points of the second tile).

1 2 3 4 5 6 7 6 7 8 9

Figure 5: The naive s c heduling A greedy approach w ould be the following: if we w ant to minimize the period, we should try to start the second tile as soon as possible (assuming we c hoose to start the rst tile with its rst point). To a c hieve t h i s g o a l w e compute all points in the dependence path leading to the rst point of the second tile as soon as possible. This is done in Figure 6. We t a k e t 2 = 2 a n d t 5 = 3 so that the rst point of the second tile can be executed at step 4. But we h a ve to cope with the cyclicity constraint. Indeed, as we h a ve s c heduled the second point of the rst tile just after the rst point, this property m ust remain true in the second tile, thus the second point of the second tile must be executed at step 5. This is not possible as some dependences are necessarily violated. Thus T 1 = 3 cannot be reached with this strategy. 1 2 3 4 5

Figure 6: A wrong schedule

In fact, we h a ve t wo problems: one is to nd the minimum period that we can nd for a given problem the other is to nd a schedule which a c hieves this period. In our example, we shall show that the minimum period is T 1 = 4, which is obtained by the schedule of gure 7.

The last thing to point out is that the respective v alues of n and l (if we h a ve one dependence vector) are not independent. If n ^l 6 = 1 2 , consider the reduced graph of 1 2 3 4 5 6 5 7 9 7

Figure 7: The optimal schedule Figure 8 where a single tile is represented: dependences going out of the tile are re-sent as inputs to the same tile. We h a ve n ^l connected components in this reduced graph.

Thus, the cyclicity condition has no impact on the schedule of two p o i n ts belonging to distinct connected component. It means exactly that we c a n independently schedule each connected component (see Figure 9). The problem is then reduced to scheduling a smaller tile whose size is relatively prime to the dependence vector length.

Scheduling a linear tile with one dependence vector

Each tile contains n points, and the length of the dependence vector is l. Thanks to Lemmas 1 and 2 we suppose that calc = 1 and comm = 0. Also, following the previous discussion, we can restrict ourselves to the case n ^l = 1 without loss of generality.

To simplify notations, we write T instead of T 1 to denote the period between the computation of two consecutive t i l e s .

Case l = 2

We begin with a simple case, i.e the length of the dependence vector is 2. The number n of points in a tile is odd (n = 2 k + 1 to ful ll the hypothesis n ^l = 1) .

Theorem 1 For n = 2 k + 1 k 0 and l = 2 , the optimal scheduling has a period T opt of:

T opt = 3n ; 1 4 Remark Remember that in Theorem 1 we assume calc = 1 a n d comm = 0. Using Lemma 1, we obtain T opt = 3n ; 1 4 calc + comm in the general case. Proof The rst computed point in the tile is the rst or the second, i.e t 1 = 0 o r t 2 = 0 . W e rst suppose that t 1 = 0. The last point to be computed is the ultimate or the pen-ultimate point, i.e t n;1 = n ; 1 o r t n = n ; 1 (w e see that all the points can be executed consecutively). If t n;1 = n ; 1, the computation of the second tile begins at least at step n and T n. It is not a good solution (not faster that if all the points were computed sequentially). We consider the second case, t n = n ; 1 (see Figure 10.) t n = n;1 and there is a dependence between the last point of a tile and the second point of the next tile, so t 2 + T n

The rst point of the second tile is computed at step T. There is a dependence between the pen-ultimate point of the rst tile and the rst point of the second tile so, t n;1 +1 T There are n;3 2 arcs in the dependence path to go from the second point of the tile to the pen-ultimate one, hence T is, at best, equal to d 3n;1 4 e. I f w e can nd a solution with T = d 3n;1 4.3.2 Case l 3

We consider now tiles of n points and with one dependence ve c t o r o f l e n g t h l, n^l = 1 . We suppose n = lp + k, k p integers and 0 < k < l 0. Assuming that n ^l = 1 , there is only one connected component in the reduced graph but, inside each tile, the dependence paths de ne l components. As n and l are relatively prime, the components are not independent and during the transition from a tile to the next, there is a change of connected component. We c a l l X i1 X i2 : : : X il the di erent components. The indices i 1 i 2 : : : i l are chosen in such a s u c h a w ay that:

X i1 is the component whose rst point is the rst point executed in the tile during the transition from a tile to the next, there is a dependence from the last point o f X i1 to the rst point o f X il , from the last point o f X il to the rst point of X il;1 , ..., from the last point o f X i2 to the rst point o f X i1 .

X i1 ! X il ! ::: ! X i2 ! X i1

See Figure 12 when n = 5 a n d l = 3 .

First component (X i1) Second conponent (X i3) Third conponent (X i2)

Figure 12: Components for n = 5 a n d l = 3

The length of a component c a n b e p ; 1 o r p according to the value of k (there are k components of length p, the others are of length p ; 1). In the case of Figure 12, there are two components of length p and one of length p ; 1.

We de ne the l-tuple (1 2 ::: l) so that j = 1 if the length of the component X ij is p, and 0 if its length is p ; 1, i.e j = jX ij j ; (p ; 1). We de ne the values (t 1 t 0 1), (t 1 t 0 1),...,(t j t 0 j) ,...,(t l t 0 l) so that the rst point of the component X ij is executed at step t j in the rst tile and its last point a t s t e p t 0 j . Lemma 3 We have the following inequalities between the beginning and the nishing dates of the connected c omponents: 8 1 j l ; 1 (i) t 0 j+1 t j + T ; 1 (ii) t 0 j t j + (p ; 1) + j the new ILP formulation that leaves the whole solution space open for searching. On the contrary, Chou and Kung's heuristics, while very simple, imposes very restrictive limitations, as shown by the examples given in the paper. One possibly better heuristic would be rst to solve the problem with an unlimited number of links (which i s m uch simpler) so as to derive an initial ordering in the tile and to apply Chou and Kung technique. Another possible solution would be to apply classical linear programming heuristics (like b r a n c h and bound for example) to our ILP problem. Anyway, comparing and evaluating heuristics is an interesting direction for future research.

From a theoretical point o f v i e w , i t w ould be very interesting to extend the analytical solution given in the case of unidimensional tiles to arbitrary dimensions, as well as to propose optimal algorithms for the general case. However, scheduling problems are known to be di cult 5], and that of multidimensional tiles with limited resources is very challenging !

Figure 2 :

 2 Figure 2: Communication network for the example

Figure 3 :

 3 Figure 3: Inter-cell communications

Figure 4 :

 4 Figure 4: Example of linear tiling, n = 5 , l = 3 in the direction east (unlimited communication resources) for the sake of simplicity. The only possible scheduling vectors are positive m ultiples of = (1), hence Chou and Kung's heuristic will always lead to execute points from the left to the right. The o set

Figure 8 :

 8 Figure 8: Connected components when l ^n = 1 and when l ^n = 3

Figure 9 :

 9 Figure 9: Independent s c hedules for the connected components (l ^n = 3)

Figure 10

 10 Figure 10: n = 2 k + 1 l = 2

This assumption can be easily eliminated: guess a value for Tmax if it leads to an empty solution set for the linear problem, increase the value iterate until a solution is found. More e cient methods to determine a good constant Tmax are given in

23].

We write gcd(u v) = u ^v

e, it will be an optimal scheduling.

Throughout, we write f (n) g(n) i f l i m n!1 f(n) g(n) = 1

Example of a solution with T = d 3n;1 4 e for j even, t j = d 3n;1 4 e ; n+1;j 2 for j odd, { if j < 2(d 3n;1 4 e + 1) ; n, t j = j;1 2 { if j 2(d 3n;1 4 e + 1) ; n, t j = j+n;2 2 The rst point of the rst tile is executed at step t 1 = 0, the rst point of the second one is executed at step T. Starting from T (rst point of the next tile), dates of execution are decremented backwards the path dependence, they are incremented from 0 to n;1 along the other path dependence in taking into account that some dates have already been used. For an example of such a solution, see Figure 11. t n = n ; 1 t 2 + T = 2 d 3n;1 4 e ; n;1 2 t 2 + T 2 3n;1 4 ; n;1 2 = n t 2 + T > t n Besides, t 1 + T > t n;1 All dependences are respected. Thus, the solution is feasible and it is an optimal solution.

Proof (i) During the transition from a tile to the next there is a dependence between the last point of the component X ij+1 and the rst point of the component X ij (X ij+1 ! X ij). The last point of the component X ij+1 of tile x is executed at t 0 j+1 + xT and the rst point of the component X ij of tile x + 1 a t t j + (x + 1) T so, t 0 j+1 + xT t j + (x + 1) T ; 1 Thus (i) is demonstrated.

(ii) The length of the component X ij is p ; 1 + j . There are at least p ; 1 + j tops between the execution of the rst point of the component X ij and the execution of the last point. This gives (ii).

We w ant to nd lower bounds for T. L e t X if be the component which c o n tains the last point executed in a tile.

With Lemma 3, we h a ve: n ; 1 t 0 f t f;1 + T ; 1 t f;1 + (p ; 1) + f;1 t 0 f;1 t f;2 + T ; 1 : :

Summing up all previous inequalities, we obtain:

Hence, if f 6 = 1 , w e obtain T 2p. In the same way, i f f = 1, i.e the same component X i1 contains the rst and the last point executed in a tile, we obtain:

We w ant to improve this bound and to show t h a t e v en when f = 1 (the same component begins and nishes) we h a ve a l o wer bound in 2p for T. Lemma 4 If the same component X i1 contains the rst and the last executed p oint in a tile, we have the following inequalities: 8 2 j l n + (l ; j)p ; (l ; j + 1) T + P l i=j+1 i t j (j ; 1)(T ; p) ; P j i=2 i n ; 1 + (l ; j + 1)(p ; T) + P l i=j i t 0 j (j ; 1)(T ; p) + p ; 1 ; P j;1 i=2 i Proof By induction on j. The lower inequalities are satis ed for j.

Lemma 5 Assuming that the same component begins and nishes, if there exists j such that t 0 j t 0 j+1 then T 2p + k+ P l i=2 i; j l;1

Proof Assuming 9j=t 0 j t 0 j+1 :

The inequalities of the previous lemma as satis ed and we h a ve: t 0 j+1 n ; 1 + (l ; j)(p ; T) + P l i=j+1 i t 0 j+1 lp+ k ; 1 + (l ; j)(p ; T) + P l i=j+1 i t 0 j+1 2lp+ k ; 1 ; jp+ jT; lT + P l i=j+1 i and t 0 j (j ; 1)(T ; p) + p ; 1 ; P j;1 i=2 i so, 2lp+ k ; 1 ; jp+ jT; lT + P l i=j+1 i jT; jp; T + p + p ; 1 ; P j;1 i=2 i 2lp+ k ; lT + P l i=j+1 i 2p ; T ; P j;1 i=2 i 2(l ; 1)p + k + P l i=2 i ; j (l ; 1)T T 2p + k+ P l i=2 i; j l;1 Lemma 6 Assuming that for any j, 1 j l ; 1 we have t 0 j t 0 j+1 then T 2p ; 1 Proof We assume that 8 1 j l ; 1 t 0 j t 0 j+1 and T 2p ; 1.

We call (u 1 u 2 : : : u l;1) the number of points of the components (X i1 X i2 ::: X il;1) executed between t l and t 0 l;1 . t 0 l t l;1 + T ; 1 t 0 l t l + p ; 1 + l + P l;1 i=1 u i t l;1 t l + p ; 1 + l + P l;1 i=1 u i ; T + 1 t l ; t l;1 T ; p ; l ; P l;1 i=1 u i If T 2p ; 1 then, t l ; t l;1 p ; 1 ; l ; P l;1 i=1 u i t l ; t l;1 p ; 1 + l;1 ; u l;1 so, p ; 1 ; l ; P l;1 i=1 u i p ; 1 + l;1 ; u l;1 P l;2 i=1 u i ; l ; l;1 So, P l;2 i=1 u i = 0 and u 1 = u 2 = ::: = u l;2 = 0 (see Figure 13 Theorem 2 For l 3 and n^l = 1 , T is asymptotically equal to 2b n l c. M o r e p r ecisely, we have:

Proof We see that in any case, T 2p ; 1. If we can nd a feasible solution with T = 2 p + 2, the theorem will be proven.

The cyclic algorithm The l components are numbered in such a w ay that X i1 ;! X il ;! X il;1 ;! ::: ;! X i2 ;! X i1 . Our strategy is the following: the rst component X i1 is wholly executed, then the second, ..., etc until the l th . The second tile begins after T = b2 n l c + 2 tops.

In these conditions, we h a ve: t i1 = 0 t 0 i1 = p ; 1 + 1 t i2 = p + 1 t 0 i2 = 2 p ; 1 + 1 + 2 : : t ij = (j ; 1)p + P j;1 i=1 i t 0 ij = jp; 1 + P j i=1 i : t il;1 = (l ; 2)p + P l;2 i=1 i t 0 il;1 = (l ; 1)p ; 1 + P l;1 i=1 i t il = (l ; 1)p + P l;1 i=1 i t 0 il = lp; 1 + P l i=1 i

If we x T = b2 n l c + 2 , w e obtain a feasible solution. By construction, inside each tile, the dependences are respected. Besides, t 0 j = jp; 1 + P j i=1 i t j;1 = (j ; 2)p + P j;2 i=1 i t 0 j = t j + 2 p ; 1 + j;1 + j t 0 j t j + T ; 1 So, during the transition from a tile to the next, the dependences are also respected. All the constraints are respected and this algorithm gives a feasible solution with T = 2 p+2.

Scheduling a linear tile with several dependence vectors

Consider now a linear tile but with several dependence vectors. We rst demonstrate a preliminary technical lemma that will useful in the following.

Lemma 7 Let l 1 l 2 be two integers verifying l 1 < l 2 and l 1 ^l2 = 1 : for any n, n (l 1 ; 1)(l 2 ; 1), there exist two non negative integers u and v such that n = l 1 u + l 2 v.

Proof Let m be an integer between 1 and l 1 ; 1, let us divide ml 2 by l 1 : ml 2 = q m l 1 + r m 1 r m l 1 ; 1 r m 6 = 0 because l 1 ^l2 = 1 and the r m are all di erent otherwise by di erence there would be a contradiction too with the condition l 1 ^l2 = 1 . r m > 0 so, q m l 1 < m l 2 q m < m l1 l 2 q m < l 2 Let us consider the interval I = (l 1 ; 1)(l 2 ; 1) (l 1 ; 1)l 2 ; 1]. I contains l 1 ; 1 consecutive i n tegers. Each i n teger in I can be written (l 1 ; 1)(l 2 ; 1) + r m ; 1 with all the r m for 1 m l 1 ; 1 (t h e r m are distinct integers between 1 and l 1 ; 1, l 1 ; 1 i s the length of the interval).

(l 1 ; 1)(l 2 ; 1) + r m ; 1 = l 1 l ; l 1 ; l 2 + r m = l 1 l 2 ; l 1 ; l 2 + ml 2 ; q m l 1 = (l 2 ; 1 ; q m)l 1 + (m ; 1)l 2 0 0

All the numbers in I can be written under the form ul 1 + vl 2 with u 0 and v 0. It is also true for the number (l 1 ; 1)l 2 . So, we h a ve l 1 consecutive n umbers that can be written under the form ul 1 + vl 2 with u 0 a n d v 0. It is also true for all numbers greater than these l 1 numbers. Theorem 3 Consider a linear tile with two dependence v e ctors of length l 1 and l 2 verifying l 1 ^l2 = 1 . Then, T is asymptotically equal to the number of points of the tile: lim n!1

T n = 1

Proof A point m ust be executed after its predecessors along all dependence paths.

If two p o i n ts p 1 and p 2 are distant from a length d greater than (l 1 ; 1)(l 2 ; 1), we see with the previous lemma that there is a dependence between p 1 and p 2 (d can be written ul 1 + vl 2 , u 0, v 0). Let us consider the point executed at T in the second tile, it depends on at least n ; (l 1 ; 1)(l 2 ; 1) + 1 point in the previous tile so,

T n ; (l 1 ; 1)(l 2 ; 1) + 1 For an example of scheduling with two dependence vectors l 1 , l 2 with l 1 ^l2 = 1 , see Figure 14. This result basically says that the problem is inherently sequential with two dependence vectors whose lengths are relatively prime.

Theorem 4 Consider a linear tile with n points and two dependence v e ctors of size l 1 , l 2 such that l 1 ^l2 = d, d 6 = 1 and n ^d=1. Then, (i) if d = 2 , T is asymptotically equal to 3n=4, (ii) if d 3 T is asymptotically equal to 2n=d.

Proof Since l 1 ^l2 = d, as in the case with one dependence vector, there are d components in the path de ned by the dependence vectors. As n ^d = 1, the components are not independent and during the transition from a tile to the next there is a change of component. We de ne the two i n tegers l 0 1 and l 0 2 such a s l 0 1 = l 1 =d and l 0 2 = l 2 =d.

We consider now the two f o l l o wing problems:

Problem 1 We consider tiles of n points with one uniform vector of length d. W e see from Theorems 1 and 2 that optimal values for the period T 1 are the following: if d = 2 , T 1 asymptotically equal to 3=4n, if d 3 , T 1 asymptotically equal to 2n=d. l 1 ^l2 = d, there exist two i n tegers k 1 and k 2 such that l 1 = k 1 d and l 2 = k 2 d. S o , problem 1 is equivalent t o o u r s c heduling problem (n points and two dependence vectors) but with some additional dependences, and therefore T T 1 Problem 2 We consider tiles of n 0 = n ; (l 1 ; 1)(l 2 ; 1) ; max(l 1 l 2) p o i n ts and with one uniform dependence vector of length d. As for problem 1, we see that the optimal values for the period T 2 are the following: if d = 2 , T 2 3=4n 0 3=4n 3 , if d 3, T 2 2n 0 =d 2n=d.

We s a w (Lemma 7) that the rst point of a component in the basic problem depends on all the n ; (l 0 1 ; 1)(l 0 2 ; 1) + 1 rst points in the previous component. Problem 2 is equivalent to our scheduling problem but with less points and with less dependences. So, we h a ve T T 2 .

T 1 T T 2 . Besides, T 1 and T 2 have the same asymptotic behavior:

Theorem 5 Consider a linear tile with n points and two dependence v e ctors of size l 1 and l 2 , l 1 ^l2 = d and n ^d = d 0 , d 0 6 = 1 . Then, the optimal scheduling is obtained f o r :

Proof The problem is equivalent t o d 0 separate problems with n 0 = n=d 0 points and two dependence vectors of length l 0 1 = l 1 =d 0 , l 0 2 = l 2 =d 0 . l 0 1 ^l0 2 = d=d 0 , n 0 ^d=d 0 =1.

(i) If d = d 0 , the result is given by Theorem 3. T n 0 = n=d.

(ii) and (iii) The result is given by Theorem 4. If d=d 0 = 2 , T 3=4n 0 = 3n 4d 0 . If d=d 0 3, T 2n 0 d=d 0 = 2 n=d.

Generalization to the case of m dependence vectors Lemma 7 can be generalized to the case of m integers and so, the previous theorems can be generalized to m dependence vectors.

Lemma 8 Let us consider m integers (l 1 l 2 :::l m) such that gcd(l 1 l 2 :::l m) = 1 . Then, there exists an integer A such that for any n A, there exist m non negative integers 1 2 : : : m such that: n = 1 l 1 + 2 l 2 + ::: + m l m

Proof By induction on m. The lemma is true for m = 2 (Lemma 7). Let us assume that the lemma is true for m 2 and prove that it is also true for m + 1 . Let us consider m + 1 i n tegers l 1 l 2 : : : l m l m+1 such a s gcd(l 1 l 2 :::l m l m+1) = 1 . gcd(l 1 l 2 :::l m) = p so gcd(l 1 =p l 2 =p :::l m =p) = 1 .

The lemma is true for m integers so, there exists an integer A such that for any n A n = 1 l 1 =p + 2 l 2 =p + ::: + m l m =p with i 0.

gcd(l 1 l 2 :::l m l m+1) = 1 s o p and l m+1 are relatively prime.

There exists an integer A 0 such that for any n A 0 n = p + l m+1 with 0 and 0.

Consider n A p + A 0 , n = A p + m with m A 0 . So 9() s u c h that m = p + p with 0 a n d 0. n = A p + p + l m+1 = (A +) p + l m+1 . But, 9(1 2 ::: m) such A + = 1 l 1 =p + 2 l 2 =p + ::: + m l m =p so, n = 1 l 1 + 2 l 2 + ::: + m l m + l m+1 with i 0 and 0.

Theorem 6 Generalization: all previous theorems can be generalized to a tile with m dependence v e ctors, i.e: Consider a tile of n points with m dependence v e ctors of size l 1 , l 2 , ..., l m , gcd(l 1 l 2 : : : l m) = d and gcd(n d) = d 0 ,

Proof With Lemma 8, all the previous demonstrations can be easily transposed to the case of m dependence vectors.

Summary and Future Work

Tiling is a quite powerful technique to increase granularity and data locality. The atomicity constraint used by researchers targeting DMPC computers 10, 1 8 , 2 0 , 2 1 , 3] has a great impact upon the simplicity of SPMD code generation. However, such a constraint imposes two restrictions:

tiles cannot depend upon each other, which restricts the search space for valid schedulings the capability o f m o d e r n D M P C c o m p u t e r s t o o verlap communications and computations of modern DMPC is not taken advantage of We believe that removing the atomicity constraint can lead to very interesting perspectives, in particular when targeting VLSI processor arrays (see 14] in this respect). The work of Chou and Kung 4] opens new directions for scheduling tiled processor arrays while assuming limited computation and communication resources. Our main contribution in this paper is to have g i v en a formulation of the problem in terms of an ILP problem which t a k es all constraints into account. Clearly, the size of this ILP problem makes the use of heuristics unavoidable, but the choice of these heuristics can rely upon