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Abstract

Fast networks have made it possible to aggregate distributed CPU, memory,
and storage resources into Grids that can deliver considerable performance.
However, achieving performance on such systems requires good performance
prediction which is usually difficult due to their dynamic and heterogeneous
nature. This is especially true for parallel applications whose performance is
highly dependent upon the efficient coordination of their constituent compo-
nents (e.g. computation and data).

The goal of the AppLeS project is to develop application-level scheduling agents
that provide mechanisms for automatically scheduling individual applications
on production heterogeneous systems. AppLeS agents utilize the Network
Weather Service (NWS) to monitor and forecast the varying performance of
resources potentially usable by their applications. Each AppLeS uses static and
dynamic application and system information to select viable resource configu-
rations and evaluate their potential performance. The AppLeS then interacts
with the appropriate resource management system to implement the applica-
tion’s network transfers and computational tasks.

The next generation of AppLeS agents aims at providing templates that can
be used for scheduling classes of structurally similar applications. In this doc-
ument we introduce a template for scheduling Parameter Sweep applications
(application consisting of large number of independent tasks, with possible in-
put data sharing). We have designed a general scheduling algorithm that can
adapt to Grid environments and use a variety of strategies and heuristics to
assign tasks and data to resources. In order to evaluate and compare those
heuristics we have built a simulator as part of the template. The simulator
makes it possible to rapidly conduct large numbers of experiments in a vari-
ety of environments. Our starting point was to use widely accepted heuristics
that have been proposed in the litterature and venture improvements given our
Grid and application model. This document presents the implementation of
our simulator and explains how it will be used to obtain new research results
in the field of Grid scheduling.
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Résumé

Les réseaux haut débit ont permis de connecter des capacités de calcul et de
stockage distribuées en des grilles susceptibles de fournir des puissances de
calcul considérables. Cependant, 1'utilisation efficace de tels systeémes recquiert
de bonnes prédictions des performances des différentes ressources, ce qui est
généralement difficile en raison de I’hétérogénéité et du caractére dynamique
de ces environnements. Ce constat est tout particulierement vrai dans le cas
d’applications paralleles dont 'efficacité dépend de la bonne coordination de
ses différents composants.

L’objectif du projet AppLeS est de développer des agents chargés de l'or-
donnancement dans des environnement de calculs distribués hétérogenes et
spécialisés pour chaque application. Les agents AppLeS utilisent le Network
Weather Service (NWS) pour controler et prédire les performances des res-
sources disponibles pour les applications cibles ainsi que leur variations. Chaque
agent utilise des informations statiques et dynamiques sur les applications dont
il est responsable et sur I’environnement auquel il a acces pour effectuer ses
choix. Il peut alors utiliser les systemes chargés de la gestion de l’environne-
ment pour ’alllocation des fichiers et des calculs aux différentes ressources.
La prochaine génération d’agents AppLeS devrait étre des modeles, des agents
“types”, dédiés a des classes d’applications structurellement équivalentes. Dans
ce document, nous introduisons un modele d’agent dédié a ’ordonnancement
des applications de type Parameter-Sweep (des applications constituées d’un
grand nombre de taches de calcul indépendantes pouvant partager des fichiers
d’entrée). Nous avons congu un algorithme d’ordonnancement, général capable
de tenir compte des modifications de structure ou de performances de I’envi-
ronnement et d’utiliser un certain nombre d’heuristiques pour I’allocation des
données et des calculs aux différentes ressources. Nous avons développé un si-
mulateur avec lequel ’agent peut interagir pour pouvoir évaluer et comparer
ces heuristiques. Ce simulateur nous a permit de réaliser rapidement un grand
nombre d’expériences dans un environnement paramétrable a volonté. Notre
point de départ a été l'utilisation d’heuristiques tirées de la littérature et de
les adapter a notre type d’application. Ce document présente la mise en ceuvre
du simulateur et explique comment il va étre utilisé pour obtenir de nouveaux
résultats concernant ’ordonnancement dans des environnements instables de
type grille.

Mots-clés: Ordonnancement, Méta-computing, Calcul distribué, Grilles,
Applications indépendantes, Partage de fichiers



1 Introduction

The Grid [20] is one of the most exciting emerging technologies in the area of
distributed computing and numerous projects focus on the design and imple-
mentation of different parts of the Grid vision [19, 22, 12, 38, 5, 29]. Those
projects aim at providing operating systems, environment, and tools to har-
ness the tremendous amount of resources that are expected to be available for
production runs of large scale applications. Those resources include computing
and storage devices interconnected by various networks. The Grid is aimed at
inherently dynamic environments: resources are shared so that the contention
created by multiple applications often creates fluctuating delays and qualities of
service, and resources are federated which means they are transient and with
difficult to predict availability as there can be no centralized control. Further-
more, resources are heterogeneous and may not perform similarly for differ-
ent applications. This dynamic and heterogeneous aspect of this environment
makes it difficult to schedule applications in a way that maximizes appropriate
(application-level or system-level) performance metrics. There is a definite gap
between theoretical works concerning scheduling and what can be actually im-
plemented effectively in real distributed systems. The main goal of this research
work is to explore ways in which this gap can be bridged by designing practical
scheduling algorithms and by adapting well-known scheduling heuristics in or-
der to accommodate Grid-like environments A basic requirement is that these
algorithms should be flexible enough that different strategies/heuristics can be
easily “plugged in” to account for diverse applications and environments. The
evaluation and validation of these heuristics and strategies as well as the impact
of Grid characteristics is accomplished by simulations and experiments. As a
starting point we focus on application-level scheduling for a restricted class of
applications: parameter-sweeps; but will consider other applications in future
developments (e.g. applications structured as more general DAGs).

We define a parameter-sweep application as one that is composed of a large
number of independent tasks. By large we mean that the number of tasks is
usually one order of magnitude larger than the number of available computing
resources. We model the computing environment as a federation of clusters
containing hosts that can be used for computation. The performance of the
hosts and network links are dynamic and each cluster may or may not have a
storage device accessible to all its hosts. From now on, we will call this specific
environment the grid (for the sake of brevity) as opposed to the Grid which we
view as the software infrastructures and methodologies described in [20].

The problem is to schedule a complete run of the application onto the grid in a
way that optimizes a chosen performance metric. For now we address one of the
most intuitively appealing metrics: the makespan [30] of the application, that is
the time elapsed between the beginning of the application and the completion
of its last task. Other metrics will be considered in future work (e.g. various
cost models).

Various scheduling strategies and heuristics can be used in a view to reducing
the makespan. However, it is very difficult to conduct experiments that would
allow comparisons in different grids in a reproducible manner. A good way of
tackling this problem is to use a simulator. We have therefore implemented
a simulator as part of our software (see Section 7). This simulator allows us
to simulate very diverse types of applications and grids while obtaining perfor-



mance results quickly and easily. Furthermore, since the simulator is integrated
with the rest of our software, it is possible to design, test, and evaluate schedul-
ing algorithms in “simulation mode”. Once a scheduling algorithm is deemed
appropriate it can then be taken out of simulation mode with absolutely no
change to the algorithm’s implementation.

Section 2 describes related work. Sections 3 and 4 describe precise models
for the the application and the grid. Section 5 describes the skeleton of our
scheduling algorithm and different heuristics. Section 6 describes the template’s
implementation whereas Section 7 focuses on the simulator. Finally, Section 8
presents an early simulation experiment and discusses how such experiments
will be used to obtain general results concerning Grid scheduling.

2 Related Work and Contribution

The numerous works related to our effort can be roughly categorized as ei-
ther applied or theoretical. As stated in the introduction, our work is located
somewhat in between since (i) we design our scheduler with the goal to being
implemented as part of deployed Grid applications and (ii) we set to exploit
results provided by theoretical scheduling works and try to adapt them to Grid
environments.

As stated in the introduction, we eventually plan to use the Grid as a soft-
ware platform for deploying our scheduling strategies. We must therefore use
and interact with projects that aim at providing Grid infrastructures [19, 22],
as well as Grid middlewares and services [38, 12, 5, 29, 28, 43]. Section 6.3
describes our first steps towards an implementation of our software using some
of the software generated by those projects. Many references to projects that
are mainly focused on scheduling issues can be found in [7]. This research is
part of one of these projects, AppLeS [9, 8, 10], which is focused on developing
a methodology supported by the dynamic forecasting services of the Network
Weather Service (NWS) [43] for application scheduling in shared computational
Grid environments. AppLeS methodology, supported by NWS forecasting ser-
vices, has yielded a set of high-performance, dynamically schedulable Grid ap-
plications, and provided compelling evidence that dynamic scheduling is key
to achieving Grid application performance. However, the process of building
AppLeS/NWS-enhanced applications is often time- and labor-intensive as it
may require considerable customization of the client application so that it can
receive directives from the scheduler and be deployed on the Grid. This often
requires a tight application-scheduler integration that makes the implementa-
tion difficult to maintain and upgrade. Accordingly, a new trend in the AppLeS
project is to focus on ways to provide modular and extensible implementations
of AppLeS/NWS-enabled applications. The idea is to consider classes of struc-
turally similar Grid applications and develop templates that are able to capture
the relevant performance behavior of applications having similar structures. A
template can be used as a framework for developing distributed applications
whose instantiations will result in a Grid application which knows how to dy-
namically schedule itself. The overall goal is to provide a usable, performance-
oriented, rapid application development environment for the user. This work is
a first attempt at designing and implementing a template: the Parameter-Sweep
Template (PST) that targets scheduling of applications composed of indepen-



dent tasks in a Grid environment (see Section 6).

The Nimrod project [3, 4] (and Clustor, its commercial counterpart available
from [2]) is targeted to computational applications based on the “exploration of
a range of parameterized scenarios” which are similar to the applications we are
targeting. A current effort, Nimrod/G, aims at providing an implementation
of Nimrod on top of Globus [19]. Our work differs from the Nimrod project in
multiple ways. First, as far as implementation and deployment are concerned,
we do not make any restriction on the Grid software being used. We show in
Section 6 that our software is built so that it can use any available software
as long as that software complies with a few requirements and provides a few
key functionalities. We expect our work to be deployed on top of Globus as
well as other software platforms. A large part of Nimrod is concerned with
user interfaces whereas we keep this part of our project to a minimum (but
general enough that appropriate interfaces could be built if needed) so that we
can focus primarily on scheduling research. To the best of our knowledge, the
scheduling algorithm in Nimrod does not try to monitor Grid conditions as we
do with the NWS. In addition, a contribution of our work is to integrate the
file locality aspect with the scheduling. We believe that many parameter sweep
applications will require large amounts of data to be transfered to remote sites
and that careful scheduling of these transfers can have a major impact on the
application’s performance. Our work should in fact be applicable to the Nimrod
framework and one can realistically imagine an implementation of Nimrod that
uses our framework to do data-aware scheduling on the Grid.

Another effort for scheduling independent tasks on the Grid is described
in [13] and is part of the NetSolve [12] project. That work, called task farming,
does not at the moment exploit information such as data sharing among tasks.
However, there is an very active collaboration between the AppLeS, NetSolve,
and IBP teams to enable the exploitation of such data patterns. The research
in this work will provide scheduling mechanisms that will be used in the infras-
tructure provided by NetSolve/IBP. Our current implementation makes use of
NetSolve as a possible interface to the Grid, and we are currently investigating
using IBP for data storage.

A large number of theoretical works attack the question of mapping a set of
tasks onto a heterogeneous set of processors [26, 15, 27, 36, 42]. These works
usually propose models that are supported by simulation results with suitable
sets of assumptions. A large subset of that body of work addresses the specific
case where the tasks are independent which interests us in the first step of our
research. Among these are works that take the batch scheduling approach [23,
24]: tasks can be grouped in batches and a fixed overhead is paid for sending a
batch to a resource. In that setting, large batches lead to low overhead but may
cause load-imbalance whereas small batches lead to high overhead but achieve
good load-balance. We decided not to use such a model for our computational
environment for two reasons. First, the concept of a fixed overhead for batches
of tasks is difficult to justify in a Grid environment as connectivity to difference
resources is disparate. Second, even though the batch model is applicable to
some subset of the applications we are considering it does not seem generally
applicable in our setting (e.g. the fixed overhead assumption is violated). This
is mostly due to the fact that our model pays special attention to data storage
issues, in a view to being more realistic.

A recent reference concerning the scheduling of independent tasks without
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Figure 1: Application model

batch scheduling is [31] and it is a good source of commonly used heuristics.
That paper considers a scheduler that reacts to incoming requests on-the-fly or
that processes groups of requests at a time. It is the second mode of execution
that can be applied to our work since in our current model we initially know
all the tasks that are to be performed. The model in [31], unlike ours, does not
take into account data storage and data sharing issues. We propose a strategy
for deciding on the intervals between our scheduling events (see Section 5.6.1)
aiming at accounting for the Grid instability whereas the scheduling events
in [31] are based on task inter-arrival times. We describe optimization techniques
that are relevant in a view to an actual implementation of the scheduler on the
Grid and also propose new heuristics that are adapted to a Grid environment.
The simulation results in [31] assume truncated Gaussian distribution for task
execution times whereas we designed our simulator to perform simulations with
actual traces from real measurements (e.g. from the NWS). Finally, we allow
dynamically changing number of resources (accounting for resource failures or
additions).

Finally, a number of recent references address the question of simulating
heterogeneous distributed environment for the purpose of evaluating scheduling
strategies. The motivation for simulation is that a large number of performance
data can be obtained very quickly and with 100% reproducibility. However,
only a few projects provide actual implementations. Among such projects one
can mention Bricks [41] and Osculant [1]. Bricks seems to be more general as it
is designed to be extensible and can integrate various components in the simu-
lation. The simulator that we have developed for our purpose (see Section 7.1)
does not aim at providing a general Grid simulator and is really tailored to our
application framework (parameter-sweep for now). Futhermore our approach is
event-driven whereas Bricks uses queuing theory. It could be interesting to see
how a framework like Bricks, when it becomes available, could be used for our
purposes.



3 Application Model

We define a parameter sweep application as a set of n independent computa-
tional tasks {T;}i=1,...n. By independent we mean that there is no inter-task
communications or data dependencies (i.e. task precedences). We assume that
the input to each task is a set of files and that other input is negligible in terms
of byte size. This assumption is motivated by the applications that we are
currently targeting (see Section 6.1) and the term file should be understood as
datum. Let F be the set of all files that are input to at least one of the tasks. For
each task T; we denote the set of its input files by I; € 2F. From this definition
it is clear that an input file may or may not be shared by multiple tasks. Each
task produces an output (which may consist of one or multiple files, or may be
of negligible size). With no loss of generality we denote the output of task T; by
O; and view it as a single file (of possible null size). At the moment, we assume
that a task runs on a single host (no intra-task parallelism). Figure 1 depicts
our application model and shows an example of input file sharing among tasks.

4 Grid Model

We view the grid available to the user as a set of clusters {C}};=1,. that are
accessible via k network links denoted {L;};=1,. . Cluster j contains m; hosts
that can be used for computation; we denote these hosts { H; 1 }r—1,..,m,;- A host
can be any computing platform, from a single-processor workstation to an MPP
systems, and can be made available in interactive or batch mode. The different
model for interactive or batch mode should be encapsulated in our running time
estimates (see Section 5.2) and is not part of our model per-se. We allow for a
dynamic number of available hosts within a cluster as well as a dynamic number
of clusters. In addition we assume that a shared storage facility is available at
each cluster so that files can be shared among the processes running on different
hosts in the cluster. From now own we will call hosts and network links resources
and all are conceptually modeled as FIFOs. Figure 2 depicts this model. Let
us justify and discuss our assumptions.

From now own, we will call the user’s host the origin. The assumption that
there is exactly one link between the origin and each cluster is not entirely
realistic. However, it is generally the case that the complexity of real network
infrastructures precludes the use of tractable models. For instance, the possible
dynamic routing of messages in an Internet setting cannot be captured by our
model. We do not have immediate plans to move towards more complex models
of the network and claim that our model suffices for our purpose.

The storage infrastructure that we require at the cluster level can be imple-
mented in various ways including distributed file systems (NFS, AFS, etc.) or
lower-level facilities [18, 6]. Production clusters usually provide at least one of
these facilities. For the time being we assume that storage space is infinite or in
other words that it is always possible to store any file within any cluster. This
may not be realistic in real environments for certain scenarios (multiple appli-
cations sharing the storage, several extremely large data file, etc.). However,
taking into account limited storage would require the investigation of differ-
ent policies (fixed quota, replacement policy, etc.) and we leave this for future
work. However, we give elements for building heuristics that we expect be more
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applicable in a limited storage setting.

One can notice on Figure 2 that we do not model network links between
clusters. However, in a real environment, hosts on different clusters could ex-
change files directly rather than obtaining them from their original location (e.g.
on storage attached to the origin). We leave this kind of possibilities for future
work. Similarly, we do not model network connections within a cluster. This
implies that we cannot model contention when multiple hosts in the same cluster
try to access the shared storage. The expectation is that since we are primarily
targetting wide-area networks, the bottleneck of network transfers should be the
links between the origin and the clusters. Modeling intra-cluster contention is
left for future models.

At this point we do not impose any constraints on the performance character-
istics (both static and dynamic) of the difference resources in the grid (networks
and hosts). We just require that there be a way to obtain some estimates of
the current achievable performance on each resource (e.g. including possible
queue waiting times and actual computation times). Our scheduling decisions
are based on those estimates. We do not impose any constraints on the accu-
racy of these estimates. However, if guarantees on the estimates’ accuracies are
available our scheduler should be able to make use of them. See Section 5.2 for
a discussion of the estimation procedures. We believe that the simplifying as-
sumptions in our grid model make it possible to obtain initial meaningful results
while keeping the simulation reasonably simple.

5 Scheduling

5.1 Input/Output Policies

In the description of our application model in Section 1, we did not specify
anything about the possible/desirable locations of the input and output files
to the different tasks. As far as input files are concerned, there are multiple
scenarios. For now we will assume that all the input files, of known sizes, are
initially available to the origin; and according to our current assumption of no



inter-cluster communication (Section 4), the origin is then the only site that is
authorized to distribute input files. Future scenarios will include cases where the
input files are already distributed and possibly duplicated at different locations
(e.g. Web servers over the Internet) before a run of the application.

We currently assume that the output files generated by the tasks must be
returned to the origin. Other scenarios include ones where the output files
must be re-directed to other locations (e.g. for post-processing or storage in
databases) and are left for future work. Depending on the application, the size
of the output generated by a task may not be known a-priori. We consider cases
where the size of each output files is known, or cases where the sizes must be
estimated (see Section 5.2).

5.2 Resource Performance Estimation
5.2.1 Running Time Estimates

The design of most scheduling algorithms is based on the fact that some esti-
mate of the running time of a task on a resource is available. This is especially
true when the tasks to schedule exhibit dependencies. In the case of inde-
pendent tasks, there are schemes such as simple work-queue algorithms (e.g.
self-scheduling [23]) or work-stealing strategies [11, 37] that may not need any
a-priori knowledge about the expected running time of the tasks to be sched-
uled. Since the target applications for this work are composed of independent
tasks, one may wonder why we pay attention to performance estimation tech-
niques. The first reason for taking into account running time estimates is that
the set of tasks and available hosts may exhibit affinities (as defined in [31]).
This means that different resources are best for different tasks. It is often de-
sirable to assign a task on the machine that performs it the fastest, that is the
one with the smallest estimated running time for that task. To keep our work
general and applicable to a wide variety of applications we then need to exploit
possible affinities. The second reason is that, in a view to producing a more
realistic model, we consider network links as resources and subdivide each task
of the application into dependent subtasks (Section 5.4 describes this in detail).
The efficient scheduling of dependent tasks must use estimates for task running
times. A third reason for needing running time estimates is that the perfor-
mance of the application is generally improved thanks to scheduling heuristics
that make use of those estimates (see Section 5.6.3). In order to further verify
the need for these estimates, we perform simulations to compare our scheduling
algorithm to the standard self-scheduled work-queue.

The running times that may need to be estimated are the execution times of
the computational sub-task of each T} on each processor H; ; and the file transfer
time for each input and output file over each network link. Computations of
these estimates can make use of three different types of information: (i) user-
supplied; (ii) historical; (iii) forecasted. Let us discuss each type in more detail.
The first type is pretty obvious. It is highly likely that the user possesses some
knowledge about his/her application (e.g. expected execution time for single
tasks or comparisons between tasks). We must allow our estimation techniques
to take any input from the user into account. Second, historical information
is usually application-related or grid-related time-stamped data series that can
be stored and retrieved in some database. Examples include past load averages



on processors, past network bandwidth, past tasks execution times, past file
transfer times, past queue waiting times (for hosts that are available via a
batch system). Usually, grid-related historical information can be retrieved
from deployed Grid information services like the NWS [43], the MDS [17], or
directly from Grid resources, whereas application-related historical information
may be captured by the scheduler itself as the application is running. Third,
forecast information can be obtained directly from forecasting services such as
the ones provided by the NWS or computed by our scheduler based on historical
information, or based on a mixture of historical information and NWS forecast.
In fact, it is even possible to use the NWS forecasting modules to perform
forecasting on arbitrary time series, including the application-related historical
information gathered by our scheduler.

As seen in Section 5, our scheduling algorithm would benefit from estimates
of expected completion times of currently running subtasks. This is a little dif-
ferent from estimating just running time because more information is available.
Indeed, for each currently running sub-task, the scheduler knows exactly when
the sub-task was started and what was its predicted running time at that time.
If reasonably accurate, that information should provide good insight when try-
ing to estimate the remaining time to completion. In some sense, this is similar
to trying to obtain an estimate of the percentage of the sub-task that has al-
ready been executed. Such an estimate may be provided by the application itself
(this is however not the case for our initial target applications described Sec-
tion 6.1) or computed with simple heuristics or more sophisticated techniques
using historical information. A simple heuristic could be as follows. If the sub-
task currently running is not overdue with respect to its initial running time
estimate, then one assumes that it is going to complete according to that esti-
mate. If instead it is overdue, then one assumes that it is going to complete in
some constant amount of time. Such a heuristic may actually prove effective for
environments that have fairly stable and predictable behaviors. Other heuristics
and more sophisticated techniques can make use of historical grid-related infor-
mation to try to actually understand why the task is overdue and how badly it
has been slowed down. At this time, such techniques are under investigation.
Our current approach is to use past CPU load measurements from the NWS
in order to see what portion of the CPU was dedicated to the sub-task under
consideration and hence estimate what progress has been made.

Other kinds of estimates might be needed in order to help our scheduler
making better choices. For instance, if the expected size of the output file of a
task is not known a-priori, it may be possible to estimate it based on previous
runs, assuming that tasks will exhibit similar patterns. For instance, one can
assume that the volume of output generated by all tasks are roughly the same,
or one can try to establish a relationship between the volume of input and
the volume of output (e.g. linear regression [16]). This issue is not critical at
the moment as the users of our initial target applications know precisely the
amount of output to expect. Nevertheless, we will conduct some experiments
in our simulation in order to assess the impact of unknown output sizes on the
execution.
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Figure 3: Scheduling scheme

5.2.2 Quality of Information

We have already stated that we impose no constraints on the accuracies of the
running time estimates, or in other words the gquality of the information con-
cerning performance prediction. Intuitively, stable resources will lead to good
quality of information whereas instable resources will make it difficult to ob-
tain reasonably accurate estimates. The question is to know how the quality
of information impacts scheduling algorithms. And furthermore, how should
schedulers adapt to the presence of low quality information (noisy or chaotic
performance measurements) ? The answer to those questions depends heavily
on the resource behaviors and on the heuristics used within the scheduling al-
gorithms. We use simulations to examine multiple ways of obtaining estimates
in order to make comparisons and understand the impact of their accuracy on
the schedule. We consider cases where all estimates can be computed (i) with
one-hundred percent accuracy; (ii) with a bounded percentage error; (iii) with
techniques that aim at discovering the nature of the probability distributions
of performance characteristics; (iii) with forecasting techniques that use histor-
ical data (our goal here is not to design new forecasting techniques and we just
use NWS standard predictors combined with our application-related historical
information). Section 7.1 describes the different models that can be used for
resource performance. Simulations combining models for resource performance
with the aforementioned models for the computation of estimates should give
us good general ideas of the impact of quality of information on scheduling and
we present results in Section 7. We believe that this area is of great relevance
to Grid scheduling and its impact on parameter-sweep application is only our
first exploration of that domain.

5.3 General Scheduling Scheme

Figure 3 shows the general scheduling scheme. Let us assume that we have
designed a scheduling algorithm (let us call it do_plan()) that takes into account
user-supplied, historical, and forecasted information about the grid and the
application, and generates a plan (a series of actions) for the scheduling of
tasks that have not yet been assigned to hosts. In our current implementation,
the scheduling algorithm runs on the origin host. In a perfectly predictable
and stable computing environment, do_plan()should be called only once at
the beginning of the application. However, in a Grid environment, scheduling
decisions lose their validity as the environment changes and the schedule of
the application must be re-evaluated at times. We call these times scheduling



events and denote them {#;};—0,.. as shown on the figure. The frequency of the
scheduling events must be high enough to account for the level of instability of
the grid.

It is a common assumption that an execution of a scheduling algorithm is
instantaneous (e.g. in [31]). In that case, one can be conservative and call it
more often than really needed (a straightforward possibility is then to have fre-
quent, evenly spaced scheduling events). It is also a very convenient assumption
as it implies that the environment and the computations do not evolve or make
any progress while the scheduling algorithm is running. This assumption is usu-
ally justified by the fact that scheduling algorithms often implement heuristics
that have polynomial time complexity as they try to approximate solutions to
NP-complete problems [25] and that polynomial time if “good”. Even so, when
the number of tasks and resources is large, it can become impractical in a real
implementation to call a polynomial-time algorithm too often. More impor-
tantly, our scheduling algorithm may need to dynamically obtain information
about the current and past state of the grid from some information service, and
that may cause some overhead. Finally, the computation of estimates for the
completion times for currently running sub-tasks (see Section 5.2) may cause
overhead if it relies on historical data rather than simple heuristics. In fact, for
large pools of resources, it will probably not be possible to gather all relevant
information at each call of do_plan()and the scheduler will have to use out-of-
date information. There is then an interesting trade-off to be made in between
the amount of out-of-date information and the execution time of the scheduling
algorithm [32]. It may be that a scheduling algorithm that takes the time to ob-
tain better information could outperform one that uses “too much” out-of-date
information. Lastly, even though the scheduling heuristics we are considering
in this work are not prohibitively expensive (complexity-wise), one can imagine
that more sophisticated ones may lead to longer execution times for the schedul-
ing algorithm. Our simulator allows us to simulate different running times for
the scheduling algorithm (i.e. meaningful at the simulation time-scale).

To address the aforementioned issues and determine how far apart the schedul-
ing events should be, we investigate simple techniques that aim at: (i) tuning
the intervals in between scheduling events in order to adapt to the instability
of the grid without being overly conservative; and (ii) taking into account that
the application and the environment have time to evolve while the scheduling
algorithm is trying to make decisions. Section 5.6.1 gives the details of these
techniques and also explains why more scheduling events may be generated
“on-the-fly” to account for dynamic additions of resources to the grid.

5.4 Task Model

Our scheduler assigns a task T; onto some host H; . For the task to execute
on that host, all the input files in I; must be present in the shared storage at
cluster C;. Some of these files may already be there (from previous file transfers
for other tasks), and some may need to be transfered from the origin. Then
the actual computation can take place and its output must be returned to the
origin (see Section 5.1). The execution of a task T; on Hj  can be viewed at the
execution of a simple dependency graph of sub-tasks, as depicted in Figure 4.
The sub-tasks for input and output file transfers must be scheduled on a network
link to some cluster and the central computational task must be scheduled on

10



for files that are not

Input file transfers
on cluster C;

Computation

Cb Output file transfer

Figure 4: Task T; on host Hj

do_plan(){
(1) compute t;11
(2) create a new Gantt Chart, G
(3) foreach currently running sub-task
compute an estimate of the completion time
fill in the corresponding slots in G
select a subset of the tasks that have not started execution: T
compute A
until each host has been assigned work after ¢;,1 + A
use heuristics to assign slots in G for tasks in T’
(7) convert G into lists of instructions

N
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Figure 5: Scheduling algorithm

a processor in that cluster. In the current implementation of the PST software
and of its interaction with Grid components the splitting of each task of the
application into a dependency graph of sub-tasks can be easily accomodated,
and we anticipate this to be the case for future implementations as well.

5.5 The Scheduling Algorithm

We assume that at each scheduling event our scheduler has access to: (i) the cur-
rent topology of the grid (number of clusters, number of hosts in those clusters,
network links); (ii) the number and locations of copies of input files; (iii) the
list of sub-tasks currently running. This is natural from an implementation
standpoint.

Figure 5 shows the general skeleton of the scheduling algorithm. Let us
go through all the steps involved. Assuming that the call to do_plan()takes
place at the ith scheduling event, step (1) of the algorithm determines when
the next scheduling event should occur (by computing #;11). Possible ways of
performing that computation are presented and discussed in Section 5.6.1. Step
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Figure 6: Sample Gantt chart

(2) consists in creating a Gantt chart [14] with as many columns as resources
(hosts and network links). Let us note that in the case of a multiprocessor
computing resource, we would have to create as many columns in the Gantt
chart as processors available on that host. The Gantt chart will be used in
the rest of the algorithm to store task-processor assignments. Figure 6 shows a
sample Gantt chart associated with a grid composed of two clusters with two
and three hosts in each cluster respectively (the other elements in the figure will
be explained later).

Step (3) takes care of the tasks that are currently running. In the current
version of our scheduling algorithm we do not allow task migration. This means
that once a sub-task has been started on a resource it will complete on that
resource unless the resource fails. The Gantt chart must be seen as an drawing
board for the future of the computation and as such, one must first draw ele-
ments that can not be changed, such as the sub-tasks already running. Hence,
for each running sub-task one must estimate when it is going to complete ac-
cording to methods that were introduced in Section 5.2 and insert it in the
Gantt chart. No subsequent sub-task assignment will occupy the slots occupied
by currently running sub-tasks. Note that we view the processor load generated
by processes that are not part of our application as background load, that is as a
processor slowdown over which we have no control. The running time estimates
aim at taking into account that load for completion time predictions.

Two examples of running sub-tasks are shown on Figure 6 as black-filled
rectangles in slots at the beginning of the chart. Once step (3) has been per-
formed, it becomes possible to plan assignments of new sub-tasks to resources.
The number of resources in the Gantt chart and the number of unscheduled
tasks may be both fairly large and may hence make the scheduling algorithm
too expensive if it were to consider them all. Steps (4) aims at bringing a solu-
tion to this problem when it arises by allowing only a subset of the unscheduled
tasks to be considered. The choice of this subsets, say 7', depends on the com-
plexity of the decision making process performed in step (6) and on the number
of available hosts. Note that even though there is no task ordering in our ap-
plications, the choice of T' should take into account possible input file sharing
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between tasks. Heuristics for making that choice are discussed in Section 5.6.2.

The rest of the scheduling algorithm considers the tasks in 7" and assign slots
to their sub-tasks in the columns of the Gantt chart for hosts and corresponding
network links. The chart gets then filled along the time axis as the scheduling
algorithm makes progress. Sample assignments are shown on Figure 6. Since
the scheduling algorithm will be called again at t;41, it is not necessary to as-
sign slots in the Gantt chart for sub-tasks that would start after ¢;1,. This
is important if the heuristics used to assign sub-tasks to resources have some
non-negligible computational cost. However, there is some uncertainty on the
execution time of the sub-tasks. In particular, if sub-tasks execute faster than
estimated some host may remain idle until ¢;1. One possible way to account for
this uncertainty is to fill in the Gantt chart until each resource under considera-
tion has been assigned a sub-task that is estimated to start after time ¢;1; + A
where A is to be chosen heuristically. The higher the confidence in the estimates
obtained for the running times while filling in the Gantt chart, the smaller can
A be chosen. However, being conservative in choosing the value of A should not
have a dramatic effect on the running time of the scheduling algorithm (after
all, the heuristics in use had better be in polynomial time). And choosing too
small a value can lead to idle time. For instance, choosing A = t;1 — t; might
be an acceptable choice based on the assumption that running-times estimates
are at most twice as large as actual running-times. Another possibility is to
dynamically tune the value of A, starting the scheduling algorithm with a large
value and modifying it at each scheduling event to account for fluctuations in
grid stability. Our simulations will explore a few of those strategies.

Step (6) is the core of the scheduling algorithm as it decides on assignments
of sub-tasks to resources. Until the Gantt chart is full, meaning that no sub-
task has been assigned to start after time ¢;11 + A, one uses heuristics to make
decisions for assigning sub-tasks of tasks in T to slots in the chart. A possible
heuristic would be to pick a task at random among the ones in 7" and assign its
computation sub-task to the host that leads to the smallest execution time of
that sub-task. Different heuristics are detailed in Section 5.6.3 and we compare
them all in our simulations. Examples of slot assignments are depicted on
Figure 6 as gray areas. The slots assigned to the sub-task of one of the T; are
shown in dark gray. Two input files are transfered on link L, followed by the
computation on host H; ;, and the output is transfered back to the origin via
link L, after the computation is completed. In light gray are shown two tasks
that both take the same file as input. That file is transfered on link Lo and
both tasks can then start simultaneously on hosts H»; and H>». Each tasks
produces one output file and these files are both transfered back to the origin
via link Lo.

5.6 Strategies and Heuristics

Our discussion of the scheduling algorithm in the previous section is focused on
the general scheduling scheme and structure of the algorithm. All the “smarts”
of the scheduler reside in the heuristics employed to make decisions. The fol-
lowing sections describe several heuristics and techniques for different parts of
the algorithm, some from the literature, and some that we specially designed
to answer our needs. We expect that the bulk of the research fostered by this
work will take place in the design of new heuristics. The main rule of thumb in
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designing heuristics is that they should not be overly sophisticated because we
want them not only to be computationally inexpensive but also because given
the dynamic nature of Grid environments it seems intuitive that little could be
gain by increasing sophistication beyond a certain point.

5.6.1 Scheduling Events

How is t;y1 to be computed in step (1) of the algorithm ? One possibility
is to set t;y1 — t; to a constant value for all i. That value should be larger
than the average running time of a task. However, in a dynamic, heterogeneous
grid environment there might be no clear estimate of that average. In fact, a
dynamically tuned value for ¢;1 — ¢; seems more appropriate. At each call of
do_plan(), one can compute some measure of the deviation with the planned
schedule. A way to compute this deviation is to add a step (8) in the algorithm
where one computes which sub-tasks should be running on which resources
at time t;11. When do_plan()is called at time t;;1, one then compares the
currently running sub-tasks with what was predicted. The deviation can then
be defined as a percentage of correct predictions for the sub-tasks that should
be running. This is not a perfect solution as it does not take into account
individual resource behaviors. For instance, if half the resources are very stable
and the other half are very instable or it is likely that the deviation will always
lie around 50%. A possibility then is to assign weights to individual deviations
to take into account that no matter how small ¢;;1 — ¢;, some resources will
be unstable. The goal is to detect unstable resources and lower their weight in
the computation of the global deviation with the planned schedule. Based on
the measure of deviation, ¢;17 — ¢; can be increased or decreased. A common
strategy is to allow it to increase slowly as long as the deviation is below some
threshold, and decrease it fast when that threshold is overcome. We wil use
variations on this theme in our simulations.

To summarize, here are the three strategies we simulate for choosing the ;
sequence:

(S1) constant value for ¢;11 — t;,
(S2) t;y1 — t; based on deviation,
(S3) t;y1 — t; based on deviation with resource weighting.

For all three strategies we need to chose the initial value for ¢; —to. Choosing
a conservative value for strategy (S2) and (S3) is a good choice since it will
be allowed to increase as the execution makes progress. A possibility is to
determine the cost of the scheduling algorithm and start with the maximum
allowed calling frequency on the origin (e.g. with a user-specified percentage
of the CPU allowed for scheduling). For strategy (S1) we will use a number of
values in our simulations.

The strategies described above do not explicitly take into account the fact
that the number of resources is dynamic. The important case is when new re-
sources become available in between scheduling events. At the moment, these
resources would stay idle until the next scheduling event. A way to prevent
this is to call do_plan()each time new resources are added. This is a practi-
cal solution because it is easy to implement and because we do not expect to
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have resources added too often. When resources become unavailable, it seems
reasonable to wait for the next scheduling event rather than re-scheduling. We
simulate environments with varying resource pools and compare strategies that
never re-schedule, re-schedule for resource creations, for resource deletions, or
for both.

As we mentioned in Section 5.3, we do not assume that running the schedul-
ing algorithm is instantaneous but that on the contrary the computation may
make progress during a call to do_plan(). The difficulty without that assump-
tion comes from the fact that we have no accuracy guarantee on the estimates
for the completion time of currently running sub-tasks (see Section 5.2). The
idea is then simply to leave ”a few” of the previously scheduled tasks untouched,
so that if a resource becomes available while do_plan()is running it can start
on previously scheduled tasks. This technique may prove useful to avoid idle
time in the case of a scheduling algorithm that runs for a non negligible amount
of time (see Section 5.3). We perform simulations to evaluate the validity of
such a technique. From the implementation point of view, one just needs to
have the scheduling algorithm check on sub-task completions regularly. This is
not an issue given the architecture of our software (see Section 6) and can be
implemented without difficulties.

The discussion in this section may not be relevant for some versions of the
scheduling algorithm that demand very little computation and we take this into
account in our simulations.

5.6.2 Reducing the Task-space

Steps (4) of the scheduling algorithm allows reductions of the number of tasks
considered by the algorithm. Parameter-sweep applications contain very large
number of tasks, and an application that consists of tens of thousands of tasks
will not be unrealistic in the close future. When confronted with such large
numbers of tasks, some scheduling heuristics may lead to prohibitive execution
times (of the scheduling algorithm). For instance, a common behavior for step
(6) of the algorithm would be to inspect the whole task space for each task/host
assignment. Even though it is possible to limit the number of assignments to be
performed (by lowering the A value as explained in Section 5.5), extremely large
task spaces could be a problem. There are several possibilities for limiting the
number of tasks. One can chose T' as a random subset of fixed size of the set of all
tasks. This may cause problems because exploitable patterns in the task space
may be ignored. Another possibility is to select subsets with a maximal number
of tasks sharing at least one large input file in a view to maximizing data re-use.
Such a heuristic will probably be effective in limited-storage environments (left
as future work for now). The size of T depends on the complexity of step (6) in
the algorithm as well as on the number of hosts. We perform a few simulations
to understand the impact of task-space reduction on the scheduling algorithm
running time and the validity of the schedule.

One could think of also limiting the number of hosts in order to cut down on
the computation time for do_plan(). This is not as easy to justify. Indeed, this
would leave hosts idle which in general is not desirable for the application (the
trade-off is in between running an expensive scheduling algorithm or not using
some of the resources available to the application). Besides, from a practical
standpoint, we do not expect our implementation to use prohibitively large
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numbers of hosts (or at least in the close future).

5.6.3 Task/Host Selection Heuristic

In this section we describe the main heuristics for building a schedule for the
application, the ones that can be used in step (6) of the scheduling algorithm.
All the heuristics that we consider aim at iteratively choosing task/host assign-
ments. Formal description of all the heuristics mentioned hereafter are given in
Appendix C.

Three common heuristics

Three heuristics for completely independent tasks (no sub-tasks, no input file
sharing) are proposed in [31]. They are based on work in [25] (in which the
scheduling problem is recognized as NP-complete). These heuristics are called
respectively Min-min, Maz-min, and Sufferage. We refer to [31] for their com-
plete description and we just describe the main ideas.

The Min-min heuristics considers all the tasks in 7" and for each task com-
putes its completion time on each available host. It is then possible to compute
for each task its Minimum Completion Time (MCT) and determine the host
that achieves it. The task that has the smallest MCT is then assigned to the
corresponding host. That task is removed from T and the heuristic iterates until
enough tasks have been assigned resources. It is said in [31] that the complex-
ity of this heuristic is linear in the number of resources and quadratic in the
number of tasks. The rationale behind Min-min is that assigning tasks to hosts
that complete them fastest will lead to a overall reduced makespan.

The Max-min heuristic is very similar to Min-min and has the same com-
plexity. The only difference is that it assigns the task with the largest MCT to
the host that achieves it. The rationale behind Max-min is to allow long tasks
to run concurrently with short tasks. This is not really an issue if the tasks in
the application are all identical in terms of computational cost and amount of
I/0.

The idea behind the Sufferage strategy is that a host should be assigned to
the task that would suffer the most in terms of completion time if not assigned
to that host. The heuristic, as described in [31], computes the completion
times for all tasks in 7" on each host assigns tasks to the host leading to MCT.
However, that assignment may be canceled for the benefit of a task with higher
sufferage value (difference between best and second-best assignment in terms
of completion time). Once a task has been assigned that way, it is considered
assigned to the host for good. Our version of Sufferage (detailed in Appendix C)
is actually a little more involved as it computes global maxima of sufferage
values, as opposed to the cancellation/re-assignment described in [31].

Extending sufferage

Our intuition is that a sufferage strategy should lead to better performance than
pure Min-min or Max-min. In our setting, we expect the fact that input files
may or may not be present on a remote cluster to have a great impact on the
sufferage value. In other terms, a task may be running faster than some other
on some host, but the priority should be given to the task whose input files are
more available to that host if the network is slow or if the files are large. Trying
to fully explore the possibilities here will undoubtedly lead to an exponential
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time algorithm, and we believe that a simple metric like the sufferage value
leads to good approximations of an optimal schedule. As it will be seen in the
simulation results, applying the classical version of Sufferage to our problem
does not yield good results. This is due to the fact that the Sufferage heuristic
does not take into account the distribution of computing resources into clusters.
We extended the Sufferage heuristic so that sufferage values are computed at
the cluster level. For each task, one can compute the MCT of that task on each
cluster (over all hosts in the cluster), and the sufferage value can be computed
with those cluster-level minima.

Furthermore, the computation of the sufferage values can a little more sophis-
ticated than in the traditional approach. Rather than computing the sufferage
value for a task as the difference between the best and second-best achievable
completion times, we try to discern groups of clusters that lead to “similar”
performance and we define the sufferage value as the average achievable perfor-
mance difference between the best and second-best cluster groups. We call this
heuristic Extended Sufferage. We have also tried a new way of computing
sufferage (Sufferage IT) which has proven to be quite efficient in most cases.
The basic idea is to introduce an additional level of sufferage computation. Ap-
pendix C describes these two heuristics in detail.

Randomization

We also explore techniques that introduce a random factor in some of the
heuristics described above. Randomizing is a known technique for scheduling
and balancing load in heterogeneous systems [32, 33]. Our experiences proved
that introducing some degree of randomness in several of the heuristics for host
selection can lead to better scheduling decisions in certain cases. In all the
heuristics, it is required to repeatedly chose a task to schedule based on the
minimum or maximum of some value (e.g. minimum MCT, maximum MCT,
maximum sufferage). It is often the case that multiple task choices achieve
or are very close to the required minimum or maximum. The idea is then to
pick one of these tasks at random rather than letting this choice be guided by
the implementation of the heuristics (e.g. by the way tasks and hosts data
structure are stored and ordered, etc.). In order to be fair, we also produced
such randomized versions of Min-min, Max-min, and Sufferage.

Summary
To summarize, the heuristics that we consider in our simulations and experi-
ments are:

HO0) Workqueue,

H1) Min-min,

(HO)
(H1)
(H2) Max-min,
(H3) Sufferage,
(H4) Extended sufferage,
(H5) Randomized Min-min,
(H6)

Randomized Max-min,
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(H7) Randomized sufferage,
(H8) Randomized extended sufferage,
(H9) Sufferage II.

5.6.4 Ordering Input Files

An issue that we have not addressed yet in our description of the scheduling
algorithm is the order in which input files to a task must be sent. Indeed,
since a task needs all its input files present before starting executing, we have
complete freedom for choosing the sending order. The strategy we use aims at
maximizing file locality. For each file we define its usage as the number of tasks
that have not started execution and make use of that file. OQur scheduler orders
the input files transfers by decreasing usage. In other terms, files that have the
highest probability of being re-used are sent first. Recall that an input file may
not need to be sent at all if its already present on the target remote cluster.

5.6.5 Adaptation to Unexpected Delays

Step (7) of our scheduling algorithm converts the Gantt chart into sequences of
sub-tasks for each resource. The implementation of the scheduler is then sup-
posed to go through these sequences in order to launch sub-tasks. According to
the task model in Section 5.4 there are some dependencies between sub-tasks,
and these dependencies were taken into account when building the Gantt chart,
and hence when building the sequences. However, due to unpredicted resource
behaviors, it is possible that the sub-task ordering decided when building the
Gantt chart precludes the execution of sub-tasks that could be executed im-
mediately. In fact, this should happen only for network links and for output
files. Let us clarify this with an example. Say that an output file is scheduled
for retrieval on a network link before the transfer of an input file via that link.
Now, if the sub-task generating the output file is running late, the network link
stays idle when it could send the input file. A simple way of solving this problem
would then be to always start the first possible sub-task in a sequence, or at least
for file transfers. In our example, it would mean sending the input file before
retrieving the output file. However, this modifies the ordering decided by the
scheduling heuristics and may have dramatic side effects on the overall run of
the application; especially if the task that was blocking the sequence was in fact
very close to completion. Our simulation tries both strategies (preserving the
order or allowing out-of-order execution) as well as hybrid ones to investigate
their impact on the application’s makespan.

6 The Parameter Sweep Template

6.1 Target Applications

Our work is motivated by real applications that need to exploit the Grid’s
computational power to its fullest. We are currently working in collaboration
with two different research institutions on two real-world applications. Both
these applications fit in our application model and can therefore benefit from
our scheduler.
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Figure 7: Parameter Sweep Template Implementation

INS2D [35, 34] developed at NASA Ames Research Center is a software
application that aims at solving the incompressible Navier-Stokes equations in
two-dimensional generalized coordinates for both steady-state and time vary-
ing flow. This software can then me used in many fluid mechanics modeling
problems (e.g. airfoil modeling at NASA). The code is mostly written in For-
tran 77 (with a few C routines) and current INS2D users run on traditional
supercomputers (Cray T3E, SGI Origin 2000) or network of workstations. It
seems that large-scale runs of INS2D will require the use of many (heteroge-
nous) distributed resources for computation and storage, or in other words, a
Grid environment. INS2D does not exhibit any data-sharing patterns among
computation task at the moment.

MCell [39, 40], developed at the Salk Institute and the Terry Sejnowski Lab
at Cornell University and is a general simulator for cellular microphysiology.
MCell uses Monte Carlo diffusion and chemical reaction algorithms in 3D to
simulate the complex biochemical interactions of molecules inside and outside
of living cells. As a Monte Carlo simulation, MCell must run large numbers
of identical, independent simulations for different values of its random number
generator seed. Unlike INS2D, MCell tasks usually share large data files and
exploiting this pattern is the key to performance in a widely distributed grid.

We expect these two applications to be a good testbed for our first attempt at
designing the Parameter Sweep Template. INS2D has a simpler structure than
MCell, and this will allow us to see how our scheduling algorithm accommo-
dates different applications. Other applications in other fields of computational
science are also being considered. SNP [21], a package for Semi-Non-Parametric
time series analysis with many application in economics, will probably be our
next target.
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6.2 Software Architecture

Figure 7 depicts the general architecture of the first implementation of the PST.
The scheduler is the main focus of this work and it is the central piece of our
software. It interacts with the outside world via 4 simple interfaces to 4 distinct
components. Interface (1) is to the application and its goal is to pass to the
scheduler all available information about the application structure (number of
tasks, input/output files, user estimates of task execution times, etc.). There are
two interfaces to the Grid: interface (2) is to the Grid operating system (for job
launching, monitoring, cancellation and data movements) whereas interface (3)
is to information services (for Grid topology, number of resources, status of
resources,etc.). Finally, interface (4) is to forecasting services that can be used
by our scheduler to compute the estimates mentioned in Section 5.2.

This architecture makes it very easy to plug in different components as long
as they comply with our interface requirements. In Section 7.1 we explained how
we were able to use that architecture for building our simulator by just replac-
ing the actual computational environment by a simulated grid. The following
section reviews each of the 4 interfaces and for each describes their current and
future implementations.

6.3 Implementation

Interface (1) to the application allows the scheduler to compile all the available
information about the user’s application. We have defined data structures to
describe parameter-sweep applications in a standard way and the interface al-
lows the creation of these data structures. In the current implementation the
interface uses a file in a pre-defined format in which the user must enter all
application information. As requested by our users, we have also built simple,
file-based, application-specific interfaces on top for that general interface (e.g.
for MCell). We do not have current plans to build more sophisticated inter-
faces but, for instance, it would not be difficult to implement graphical Web
interfaces.

Interface (2) to the Grid operating system enables our scheduler to launch,
monitor and cancel jobs as well as moving data between storage facilities. The
interface is defined as a simple API that contains 5 functions. The goal is to
implement these functionalities on top of different Grid infrastructure softwares.
For early prototyping purposes the first implementation of interface (2) was built
directly on top of the socket layer and standard UNIX system calls. We have
then developed a version on top of the NetSolve [12] system. Since the interface
specification is fairly simple the implementation on top of other Grid software
will not be a problem. We are currently designing an implementation on top of
the Globus system [19].

Interface (3) to Grid information services enables our scheduler to retrieve
information on available resources as well as on past and current measurements
on their performance characteristics. Our implementation uses NetSolve’s in-
formation services directly to gather availability and qualitative information on
the resources and the NWS to gather measurements of performance character-
istics of hosts and networks. In a scenario where interface (2) is implemented on
top of Globus, interface (3) could gather availability and qualitative information
from the Metacomputing Directory Service (MDS).
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Interface (4) is implemented on top of a forecasting service that is currently
available on the Grid: the NWS forecasting modules. Since these modules are
implemented as part of NWS, they can easily provide forecasts on NWS mea-
surement data, or be loaded into the scheduler to perform forecast on arbitrary
time series. As explained in Section 5.2 we use both possibilities to obtain our
running time estimates.

7 Simulation

7.1 Simulator Implementation

We have designed and built a simulator in order to quickly evaluate our dif-
ferent strategies and heuristics. An important feature is that the simulator
is completely integrated with the software architecture of the actual template
implementation described in Section 6.2. We have seen that the scheduler com-
municates with other components of the software via simple standard interfaces.
One such interface is to the grid system (to launch sub-tasks, check on their com-
pletion). Another is to the application (description of task structures, input file
sizes). Others are to what we call information services (e.g. NWS) for mea-
surements of available resource performance, or to forecast services (e.g. NWS
forecasting modules). One can then write a scheduler and run it in simulation
mode by plugging in simulated grid and application via the standard interfaces.
This is a very convenient design because: (i) once a scheduler has been written
and tested in simulation it can be re-used as is for real applications; (ii) different
simulations of the grid can be easily implemented as long as they implement the
standard interface; (iii) the actual running time of the scheduling algorithm can
be realistically evaluated (as opposed to just providing a complexity measure).

The simulator is designed so that arbitrary models can be used for grid in-
formation (CPU access delays and loads, network latencies and bandwidths).
It is therefore possible to simulate individual parts of the grid information as
constant values, random variables sampled from arbitrary distributions, or ar-
bitrary time series (e.g. from NWS measurements on actual systems). Our
simulator also makes it possible to simulate scenarios in which hosts or entire
clusters are dynamically removed or added to the grid. This allows us to simu-
late environments where resources are transients.

The description of the simulated application is passed to the scheduler via
the standard interface. However, in simulation mode the scheduler receives
additional information concerning input and possibly output file sizes (since
no actual files exist) as well as information about task-host affinities (see Sec-
tion 5.2). The following sections describe the current state of the simulator’s
implementation. Some of the features mentioned in earlier sections are still to
be implemented (e.g. computing the deviation from the planned schedule as
described in Section 5.6.1). However, the current implementation contains all
the elements pertaining to the comparison of the task/host selection heuristics.

7.2 Data-structures Management

The PST software uses four fundamental data-structures (Disk, Host, File and
Work) as part of its standard interface. These structures are also used by
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the simulator (see Figure 8). They are used to keep track of the state of the
application and of the grid. Note that the origin is connected to a cluster with
a single network link and that there is a single storage device per cluster. In
the current implementation of our simulator, we can therefore use a single data
structure, Disk, to describe both the storage device and the network link. In
what follows, we will use “Disk” to denote either the cluster, the network link or
the storage device. Sections 7.2.1 and 7.2.2 describe how one can define virtual
grids and applications for the purpose of simulation. In this section we are only
concerned with the four fundamental data structures. A lot of information is
stored in these structures (e.g. URLs, IP addresses, etc.). Basically, a Disk
is described by a name, a list of Files physically present on the Disk and a
list of Hosts that can access files on the Disk. Each Disk maintains a FIFO
of Files to be transfered. These FIFOs are manipulated by the scheduler. A
Host maintains a list of Disk it can access (in our representation, we need each
Host to access only one Disk to ensure a real clusterized architecture). As for
a Disk, a Host maintains a FIFO of Works to be executed on that Host. A
Work represents an application task and consists of a list of input Files, a list
of output Files and additional information that is irrelevant for the simulation,
such as location of the executables for each type of architecture for instance.
Files are described by a name, a size and a list of Work that use or produce
them. All four structures possess meta-data describing their behaviors (CPU-
load for Hosts, latency and bandwidth for Disks), their running time estimates
on different architectures (for Works) or estimated sizes (for output files).

7.2.1 Grid description files

A Grid description file describes events that are going to happen during a run of
the application, such as host failures or changes in network behavior. This file
is parsed in order to create a list of events that is used during the simulation.
To each resource (network link or host) in the simulated grid is associated a
symbolic name for identification purposes. Furthermore, the behavior of each
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resource (in terms of deliverable performance) is described in a separate file, a
behavior file. A behavior file contains a circular time series of values (possibly
tuples) that represent the evolution of the resource’s performance throughout
time. In our current implementation and experiments we have chosen a 5 second
interval in between values (but this is easy to customize).

Link Behavior A file describing the behavior of a Link starts with a header
that specifies the number of latency/bandwidth tuples present in this file. An
infinite loop through these values simulates the behavior of the link. The latency
is given in milliseconds and the bandwidth in byte per second.

Host Behavior A file describing the behavior of a Host starts with a header
that specifies the number of values for CPU availability present in this file. An
infinite loop through these data simulates the behavior of the Host. The values
are in percentage.

Using such a structure for behavior files allows the simulator to be very flexi-
ble. Indeed, simulating stable resources can be done by creating a file with one
single value (since the time-series are viewed as circular). One can also simulate
resources whose performance values are sampled from some given distribution
by putting such samples directly in a behavior file. Lastly, one can create a
behavior file with historical performance data measured on real resources. The
NWS can provide such data. Let us now describe the syntax for each event in
a simulated grid:

Events Files describing the grid start with a header that specifies a software
version number. There are six possible events with the following syntax:

e <time>:ADD_CLUSTER <cluster_name> <behavior_file_name> <offset>:
At time time, a cluster with symbolic name cluster_name is added to the
grid. The bandwidth and latency for this cluster are simulated according
to the time-series in file behavior_file_name. The offset is the index of the
starting point in the time-series. This allows to use the same behavior file
for different resources while introducing some de-synchronization among
these resources.

e <time>:ADD_HOST <cluster_-name> <host_name> <behavior_file_.name>
<offset> <ARCH_TYPE>: At time time, a Host with the symbolic name
host_name is added to the cluster named cluster_name. The CPU avail-
ability for this Host is taken from file behavior_file_name and one can also
specify an offset. ARCH_TYPE is the architecture type for that Host.
It is thus possible to simulate task/architecture affinities by introducing
hosts with different architecture types in the grid.

e <time>:REMOVE_CLUSTER < cluster_-name>: At time time, the cluster named
cluster_name is removed from the grid and any Host belonging to this clus-
ter shutdowns. Tasks running on these Hosts fail and files in that cluster’s
storage are unavailable until the cluster comes back up.
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e <time>:REMOVE HOST <host_name>: At time time, the Host named host_name
is removed from the grid and the tasks running on that Host are considered
to have failed.

e <time>:CHANGE_HOST_BEHAVIOR <host_name> <behavior_file_name> <offset>:
At time time, the behavior of Host host_name changes to one that is de-
scribed by file behavior_file_name. As usual, one can also specify an offset.

e <time>:CHANGE_CLUSTER_BEHAVIOR <cluster_-name> <behavior_file_name>
<offset>: At time time, the behavior of the network link to cluster clus-
ter_-name changes according to file host_file_name. One can specify an
offset.

Events are sorted by time and blank lines or lines beginning with ‘#’ in
the grid description file are ignored so that comments can be inserted. Being
able to change the behavior of a Host or of a network link makes it possible to
simulate sudden network contention or CPU load in order to test the scheduling
algorithm’s robustness to sudden changes. An example of grid description file
is given in appendix A.

7.2.2 Application description files

A file describing an application starts with a header that specifies a software ver-
sion number, a number of Files (file_number) and a number of tasks (task_number).
That header is followed by file_number file description lines and task_number
task description lines. A file description lines has the following syntax: File:
<File_.id> <Fileename> <real size> <estimated_size>. File_id is a unique
number comprised between 0 and file_number— 1; File_name is a symbolic name
for the file (not used by the simulator but convenient for the user); real_size is
the size of the file (used in the simulator). But as exact file sizes might not
necessarily be known (for instance for output files), it is possible to give an es-
timated size that will be used in the scheduler. This makes it possible to study
the effect of inacurrate or incomplete information on the schedule. A task de-
scription line follows the following syntax: Work: < Work_id> <input : File_id;
... File_idippyt> <output : File_.id; ... File_idyytpy:> <ARCH : run_time; ...
run_timeasgrcg> <ARCH : est_run_time; ... est_run_timeagrcg>. Work_id is
a unique number comprised between 0 and task_number — 1. Other parameters
are respectively the input files, the output files, the running time on each differ-
ent architecture (used in the simulator) and the user’s estimated running time
on each different architecture (used in the scheduler). The only line ordering
requirement is that a file must be declared before it is used by a task. As before,
comments might be added thanks to a ‘#’ at the beginning of a line and blank
lines are ignored. An example of an application description file is provided in
Appendix B.

7.3 Event-driven scheduler

The interaction between the scheduler and the Grid software is in some sense
”bi-directional”. On the one hand, the scheduler can initiate computations or
file transfers within the Grid by calling a set of functions (the do_* functions
that are the object of Section 7.3.4). On the other hand, the scheduler can be
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Figure 9: Scheduler structure

notified of Grid events by calls to another set of functions (the sched_* func-
tions, Section 7.3.2). It is the responsibility of the PST software to interface
to the Grid operating system to capture those events and call the appropri-
ate functions (in simulation mode or not). Our scheduler is an event-driven
scheduler: the scheduler is called only when some particular events occurs
(an host failure, the end of a computation or of a file transfer, ... ). The
core of the scheduler consists of two functions, do_plan()and do_schedule().
do_plan()has already been introduced and is in charge of making long term
planning for the schedule of the application. Each time that function is called it
takes into account changes in the grid and application states in order to refine
the planned schedule. The implementation of do_plan()is described in detail in
Section 7.4. do_schedule () reacts to events and takes into account the long-term
planning generated by do_plan()to assign tasks to resources. However, since
do_plan () computes its long-term schedule with possibly inaccurate predictions
on resource performance, it is not practical to try to follow that exact schedule.
For instance, it may be that a resource becomes unexpectedly unloaded and is
able to get ahead of the schedule. do_schedule()is in charge of coping with
such behavior and the hope is that do_plan()will be called again in order to
adapt to changing conditions. do_plan()fills in the Host’s and Disk’s FIFOs
we mentioned in Section 7.2 and do_schedule()pulls out tasks from these FI-
FOS for execution. The structure of the scheduler is depicted in Figure 9 and a
detailed description is given in the following sections.

7.3.1 Structure

Our simulator makes progress according to a global “clock”. Each event in the
grid description file is supposed to happen at a given time (see Section 7.2.1).
When the global clock reaches that time, a call to an appropriate sched_*
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function is generated. Some of these functions call do_schedule () which may
assign file transfers to free links or assign computations by calling one of the
do_* functions. All these functions are described in following sections.

There are two ways of calling do_plan(). As seen in Figure 9 it can be
called at given times (see Section 5.3). It is also possible for do_schedule()to
call do_plan()directly if it deems it necessary. For instance, it may be that a a
new cluster becomes available in the grid or that a host becomes idle unexpect-
edly and that its computational power stays untapped until do_plan()is called.
Deciding when do_schedule()should call do_plan()is not entirely straightfor-
ward. For instance, some scheduling heuristics may decide to leave some hosts
unused on purpose. The hope is that if the {¢;} series is well chosen there
should be no need for do_schedule () to call do_plan()unless new hosts become
available.

Finally, we mentioned earlier that our simulator takes into account the
execution time of do_plan(). Indeed, since the heuristics implemented in
do_plan()may be computationally expensive, it seems more realistic to let the
application make progress while the schedule is being computed. In that view,
an additional parameter to the simulator is the average simulated execution
time of do_plan(). This is implemented in the following way. Just before a
call to do_plan(), each Host and Disk is assigned a temporary FIFO that is
filled with a few Works or Files that are to be performed while the schedule is
being computed. These FIFOs are merged with the real ones (the ones used
by do_schedule()) when the clock reaches do_plan()’s simulated completion
time.

7.3.2 sched_* functions

There are seven sched_* functions that are part of the scheduler and must be
called by the PST software when particular events occur.

e int sched new host(HostList host): This function makes the sched-
uler aware of a new host(s) in the system that is available for computation.
New Hosts are moved to a global list of available Hosts. This function calls
do_schedule()in order to assign work to a Host as soon as it is ready.

e int sched new work(WorkList work): This function gives more work
units to the scheduler. New Hosts are moved to a global list of Works to be
done. This function does not need to call do_schedule ()since adding new
wotk to the application should have little impact on the tasks currently
running. For our current target applications (see Section 6.1) all tasks are
known a-priori and this function is only called once.

e int sched work_done(WorkList work): When the transport mechanism
determines that some work unit(s) have successfully completed their com-
putation, it must call this function to notify the scheduler. Works given in
parameter are moved from a global list of running Works to a global list
of completed Works. do_schedule()is called by this function since some
Hosts are now available.

e int sched host_failed(HostList host): When the transport mecha-
nism determines that some hosts in the system have shutdown or have
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become unreachable, it must call this function to notify the scheduler.
Hosts are moved to a global list of failed Hosts. If a Work was running on
this Host, sched work failed() is called. Each Host’s FIFO is emptied
and Works are moved to a list of Works to do. This function doesn’t need
to call do_schedule () (since tasks are independent).

e int sched work_failed(WorkList work): When the transport mecha-
nism determines that some work unit(s) has failed, it must call this func-
tion to notify the scheduler. As all tasks are independent, the Work is just
postponed until a call to do_plan(). In our case only sched host_failed()
calls sched work_failed(). There is no need to call do_schedule ()since
in our current model the failure of a Work might only be due to the failure
of an Host.

e int sched disk_failed(DiskList links): When the transport mecha-
nism determines that some Disk (i.e. cluster) in the system has shutdown,
it must call this function to notify the scheduler. Disks are moved to a
global list of failed Disks. Each Host connected to that Disk (i.e. in that
cluster) is considered to have failed and sched host_failed() is called
for each host. The FIFO of Files to transfer to that Disk is emptied. This
function doesn’t need to call do_schedule () (once again, it is due to the
independence of the tasks).

e int sched fileTransfer_done(File *file, Disk *1ink); When the
transport mechanism determines that a file transfer Disk(s) has completed
successfully, it must call this function to notify the scheduler. Disks are
moved from a global list of busy Disks to a global list of available Disk.
This function calls do_schedule()in order to assign file transfers to a Disk
as soon as it is available.

7.3.3 do_schedule()

This function follows the algorithm described in Figure 10. As an optional
feature, it is possible to allow do_schedule ()to perform Work Stealing within
a Cluster (line 7-8 of Figure 10’s algorithm). Assignments of file transfers and
computations are done by calling one of the do_*() functions. In Section 5.6.5
we described the fact that there are different ways of handling scheduled file
transfers over a network link. The algorithm as it is written in Figure 10 uses a
greedy strategy (this is done in steps (12-13)). We have not yet experimented
with other strategies.

7.3.4 do_x functions

These functions are part of the PST software since they enable the scheduler to
interact with the grid:

e char *do_store(Disk *disk, File xfile): This function initiates the
transfer of a File to a Disk and returns a capability.

e int do_remove(char *capability): This function removes a File from
a Disk given a capability.
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do_schedule () {
foreach currently available Host
if there is a Work in the head of its FIFO
if this Work is ready
remove the Work from the head of the FIFO
assign the computation of this Work to this Host
else
if another Host on the same cluster has a ready Work to do
assign it to the available Host
calldoplan = 1
foreach currently available Disk
if there is a File to transfer in the head of its FIFO
while this File is a non ready outputFile
try the next File in the FIFO
if this File is a ready File
remove the File from the FIFO
assign the transfer of this File to this Disk
if (calldoplan == 1) call do_plan()

N e e e e e e e

Figure 10: Scheduling algorithm

e int do_retrieve(Work *work, Host *host): This function initiates the
transfer of the output Files to a Work that was scheduled on a given Host.

e int do_computation(Work *work, Host ¥host): This function initiates
a Work’s computation on a Host.

e int cancel_computation(Work *work, Host *host): This function can-
cels a Work’s computation. This will be useful in case we allow task
duplication.

7.4 Planning

This section aims at presenting the different steps in our implementation of the
do_plan()function and the different aspects of this implementation that might
need tuning for future developments. do_plan()is implemented as a sequence
of the 5 following steps:

e Truncating the FIFOs: When do_plan()is called, it is generally the case
that Hosts and Disks still have a fair amount of sub-tasks that had been
scheduled but have not started execution. This is due to a conservative
choice for the value of A (see Section 5.5). These remaining sub-tasks
should be removed from the Hosts’ and Disks’ FIFOs so that they can
be reconsidered for scheduling. However, since we simulate the fact that
do_plan()does not execute instantaneously (Section 3), we must leave a
few sub-tasks in those FIFOs. This is a way to ensure that do_plan()’s ex-
ecution can be overlapped with actual compuattions and file transfers. The
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current implementation truncates the Hosts’ FIFOs to a a fixed number
of Work and leaves in Disk’ FIFOs only Files that are used or generated
by those Works.

e Task set selection: We explained in Section 5.6.2 that it is often desir-
able to select a subset of the tasks that have not started execution for
scheduling. Among those tasks, our scheduling algorithm will only sched-
ule enough to “fill” the Gannt chart appropriately. This selection might
be done using affinity between different tasks in terms of file sharing for
instance. In the current implementation, we do not select any subset but
instead use the entire set of tasks that remain to be executed. We sched-
ule a number of task proportional to the number of available Hosts in an
attempt at filling the Gantt chart evenly.

e Gantt Chart creation: The core of our scheduler uses a structure named
linkPlan. It consists of a table (Hosts x Works) and of FIFOs (one for
each resource, i.e. Disk or Host) in which time-stamped sub-tasks can
be inserted. The table is used for keeping track of completion times and
the FIFOs form a GanttChart. The Works and Files that have been left
in the Host” and Disks’ FIFOs are inserted in the Gannt chart (i.e. the
FIFOs of the 1inkPlan structure).

e Heuristic: A typical heuristic takes in input a linkPlan structure, the
number of tasks to schedule and returns a filled-in Gantt chart.

¢ Updating FIFOs: The content of the Gantt chart is used to add Works
and Files to the Hosts” and Disks’s FIFOS.

8 Some Early Experimental Results

The simulator generates a consequent amount of results. Indeed, simulating
10 task/host selection heuristics on 4 different grids for 4 different applications
leads to 160 makespan measurements. Since we aim at simulating and ana-
lyzing many more configurations it became quickly necessary to design some
framework for obtaining, gathering, exploring, and plotting simulation results.
In that view, we wrote a series of Perl scripts (for a total of 1,500 lines). One
script is in charge of assisting the user for generating application description
files. For instance, the script makes it easy to create regular file access patterns
(e.g. subsets of tasks sharing a same input file), to generate non-random or ran-
dom (with precise probability distributions) file sizes and task execution time,
to perform random perturbations in the file access patterns, or to modify the
computation/communication ration (CCR) of the application. Another script
is in charge of running the simulator and storing the results inside a structured
database. This is fairly convenient as the simulator’s user needs not be con-
cerned with avoiding running the same simulation multiple times, keeping track
of the results, etc. Lastly, a set of scripts can be used to easily extract and
sort database entries and obtain corresponding performance graphs. One such
graph is shown in Figure 11.

The grid environment simulated for obtaining the results in Figure 11 con-
stists of three clusters. All hosts in the system are identical but with different
load conditions. The clusters respectively contain four 100% available hosts, six
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Figure 11: Effect of shared file size on different scheduling strategies

70% available hosts, and twelve 30% available hosts. All network links from the
origin to the cluster are identical and deliver a constant 10 Kbyte/s bandwidth.
There are not host failures during the run of the application. This sytem is not
very realistic since there is no CPU or network load fluctuations. However, we
believe that such systems provide adequate initial guidance for the understand-
ing of scheduling algorithms’ behaviors. Future work will include experiments
with more realistic grid environments. The application we simulated consists of
400 tasks subdivided into 8 chunks of 50 tasks. Tasks within the same chunk all
share one large input file and all tasks of the application take two non-shared
input files. Each tasks produces one output file. Tasks’ computation times in
seconds are uniformely distributed on the interval [90,110]. The sizes of the
un-shared input file and output files in Kbytes are uniformly distributed on
the interval [8,12]. This simulation assumes perfectly accurate running time
estimates for all sub-tasks and files are transfered on network links on a first
available basis (see Section 5.6.5). The graph is obtained by simulating six
heuristics for increasing sizes of the shared input files.

The first observation is that the workqueue (HO) leads to very bad perfor-
mance because it cannot take advantage of the input file sharing within chunks
of tasks in the application. The same is true of the basic version of Sufferage
(H3) since it computes sufferage values at the host level and not at the clus-
ter level (see Section 5.6.3). All curves are pseudo-linear but for the Max-min
heuristic (H2). The heuristics leading to best performance for all file sizes are
Extended Sufferage (H4) and Sufferage II (H9). The Min-min heuristic (H1)
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fails to capture all file access patterns and hence leads to worse performance
than sufferage-based ones.

Let us note to interesting facts about that example. First, randomized
heuristics (H5), (H6), (H7), (H8) led to identical performance as their non-
randomized counterparts. Proving or disproving the usefulness of randomzation
in our framework will be the object of future work. Second, Max-min (H2) ex-
hibits a peculiar behavior. For shared file sizes 4800 Kb and 9600 Kb it yields
the same performance as the sufferage-base heuristics. The aforementioned Perl
scripts allow in-depth exploiration of the database and in particular a complete
description of each application’s run. Examining such data for the last two
runs of Max-min reveals that the good performance of its schedule is due to a
special idiosyncrasis of the application’s structure vs. the grid’s topology. In
other words, that behavior cannot be observed in the general case. Such a phe-
nomenon shows that care must be taken when interpreting simulation results
and that only a wide variety of results will prove meaningful when comparing
heuristics. In this example, changing a few parameters in the grid description file
would cause Max-min’s performance cureve to be linear, somewhere in between
Min-min’s and Sufferage’s curve and this seems to be the general case.

Even though the purpose of this document is not to present new results
concerning scheduling heuristics but rather to describe our initial models and
the framework that will enable us to push research further, these first results
are encouraging and indicate that simulation can indeed provide insight when
developing a scheduling algorithm for the Grid.

9 Conclusion

The purpose of our research is to evaluate and compare different scheduling
strategies for a given class of applications, i.e. parameter-sweeps, in grid en-
vironments. Simulation seemed the appropriate way to tackle this problem as
(i) running real applications on real environments is extremely time consuming
and wastes computational and network resources; (ii) real environment make it
very difficult to obtain reproducible and meaningful comparison results; (iii) real
environments are not as parameterizable as simulated ones. Our first implemen-
tation of a simulator was detailed in Section 7 and has been used to obtain initial
results. Some of these results were presented in Section 8 and they provide ele-
ments for comparison of different task/host selection heuristics. The two basic
lessons learned there were that (i) workqueue strategies are not well adapted to
our applications when there are file-sharing patterns; (ii) sufferage-based heuris-
tics are more adapted to the exploitation such file-sharing patterns. Those are
only our very first experiments and there are countless possibilities, in terms of
grid environments and application structures, for further simulations. Obtain-
ing new results and providing meaningful interpretations are going to be one of
the focuses of our upcoming research.

There are many ways in which the simulator itself can be extended. We al-
ready mentioned that some features described in Section 5 were not implemented
in the simulator as of now. Implementing those features will make it possible to
study the impact of various factors on the task/host selection scheduling heuris-
tics. These factors include but are not limited to quality of information (see
Section 5.2.2), schemes for choosing intervals between scheduling events (see
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Section 5.6.1), short-term ordering of output file transfers on network links (see
Section 5.6.5).

Once we have accumulated and anlysed enough experimental results to draw
general conclusions and rules concerning the use of different heuristics in dif-
ferent environments, we will be able to perform experiments in real-world grids
with real applications (such as the ones highlighted in Section 6.1). We have
also started giving some thought to new task/host scheduling heuristics that
strive to “understand” the structure of the application a little more in depth.
The challenge is to manage a good trade-off between computational complexity,
effectiveness, and sensitivity to bad quality of information. These investigations
will be the object of a future document.
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A An Example of Grid Description File

The following file describes a grid that contains 6 clusters with transient hosts.

GridDescription 1

:ADD_CLUSTER <cluster3> <stable_100Kb> <5

:ADD_HOST <cluster3> <host3.1> <stable_50> <1> <0>
:ADD_HOST <cluster3> <host3.2> <stable_50> <0> <1>
:ADD_CLUSTER <cluster4> <stable_100Kb> <12>

:ADD_HOST <cluster4> <host4.1> <stable_70> <2> <0>
:ADD_HOST <cluster4> <host4.2> <stable_50> <0> <1>
:ADD_CLUSTER <clusterb> <stable_100Kb> <13>

:ADD_HOST <clusterb5> <hostb.1> <stable_90> <4> <0>
:ADD_HOST <clusterb5> <hostb.2> <stable_100> <2> <1>
:ADD_CLUSTER <cluster6> <stable_100Kb> <12>

:ADD_HOST <cluster6> <host6.1> <stable_100> <0> <0>
:ADD_HOST <cluster6> <host6.2> <stable_100> <0> <1>
200:REMOVE_CLUSTER <cluster3>

553 :CHANGE_HOST_BEHAVIOR <host4.2> <loaded_2> <4>
1000:ADD_CLUSTER <clusterl> <stable_10Kb> <2>
1000:ADD_HOST <clusterl> <hostl.1> <stable_70> <4> <0>
1000:ADD_HOST <clusteri1> <host1.2> <stable_70> <3> <1>
1000:ADD_CLUSTER <cluster2> <stable_1Mb> <0>
1000:ADD_HOST <cluster2> <host2.1> <stable_50> <4> <0>
1000:ADD_HOST <cluster2> <host2.2> <stable_90> <2> <1>
1500:REMOVE_CLUSTER <cluster4>

1550 : CHANGE_CLUSTER_BEHAVIOR <cluster3> <stable_100Kb> <2>

O O O OO OO O OO OO

B An Example of Application Description File

The following file describes and application that consists of 12 tasks.

WorkDescription 1 22 12

# Input files

File: <0> <file_0> <10456>  <10456>
File: <1> <file_1> <22356>  <22356>
File: <2> <file_2> <1230456> <1230456>
File: <3> <file_3> <234559> <234559>
File: <4> <file_4> <1130456> <1130456>
File: <5> <file_b> <1230456> <1230456>
File: <6> <file_6> <230456> <230456>
File: <7> <file_7> <1334559> <1334559>
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File: <8> <file_8> <120456> <120456>
File: <9> <file_9> <1223456> <1223456>
# Output files

File: <10> <file_10> <230456> <230456>
File: <11> <file_11> <323459> <323459>
File: <12> <file_12> <230456> <230456>
File: <13> <file_13> <334559> <334559>
File: <14> <file_14> <230456> <230456>
File: <15> <file_15> <234559> <234559>
File: <16> <file_16> <230456> <230456>
File: <17> <file_17> <323459> <323459>
File: <18> <file_18> <230456> <230456>
File: <19> <file_19> <334559> <334559>
File: <20> <file_20> <230456> <230456>
File: <21> <file_21> <234559> <234559>

# Tasks

Work: <0> <3 : 012><1: 10 > < 3 : 600 500 600 > < 3 : 610 503 602 >
Work: <1> < 3 : 1 23><1: 11 > < 3 : 600 500 600 > < 3 : 590 502 604 >
Work: <2> <3 : 345><1: 12> < 3 : 700 600 600 > < 3 : 703 604 623 >
Work: <3> <3 : 268> <1 : 13 > < 3 : 300 200 600 > < 3 : 304 206 601 >
Work: <4> < 3 : 58 9>< 1 : 14 > < 3 : 500 300 600 > < 3 : 502 308 578 >
Work: <b> <3 : 723>< 1 : 15 > < 3 : 300 200 600 > < 3 : 303 210 600 >
Work: <6> < 3 : 41 2><1: 16 > < 3 : 600 500 600 > < 3 : 610 503 592 >
Work: <7> <3 : 926>< 1 : 17 > < 3 : 600 500 600 > < 3 : 612 512 600 >
Work: <8> < 3 : 24 9>< 1 : 18 >< 3 : 700 600 600 > < 3 : 689 603 620 >
Work: <9> <3 : 26 8>< 1 : 19 > < 3 : 300 200 600 > < 3 : 256 202 577 >
Work: <10> < 3 : 3 85>< 1 : 20 > < 3 : 500 300 600 > < 3 : 512 301 609 >
Work: <11> < 3 : 6 23> <1 : 21 > < 3 : 300 200 600 > < 3 : 300 200 600 >

C Task/Host Selection Heuristics

Let us define some terminology that will be used to describe the different heuris-
tics. We denote by Compl(T;, Hj ;) the estimated completion time of task T;
on host Hj yt. We also introduce the argmin operator defined as follows:

Definition C.1 Given a function f from R” into R, we define argmin, cpn f(2)
such that:

flaxgmin, ez f(2) = min £ (@)

Note that the operator only denotes one of the possible vectors that achieves
the minimum of the function f. The choice of that vector is then left to the
implementation. Randomizing that choice leads to the randomized versions
of the heuristics as discussed in 5.6.3. For each heuristic, we describe how a
task/host assignment is chosen among all possible assignments.

Min-min : For each task T;, the host that achieves the MCT is H o) ,m),
with: S

(i, n{") = argmin,  (Compl(T;, Hj 1),
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then, one determines the task that has the lowest MCT, say T as:
s = argmin, (Compl (73, Hcgl)7h51))).
Task T is then assigned to host Hcgl)’hgl).
Max-min : Similarly to Min-min, on can write:
(e, h(") = argmin; , (Compl(T}, Hy 1)),
and
s = argmax; (Compl(T;, Hcgl)’hl(_l))).

Task T is then assigned to host Hc(l) B -

Sufferage : For each task T}, the hosts that achieve the best and second-best
completion time are HC(_l) e and Hc(_z) h(2)s with:

Ch
(c}

The sufferage value of task 7Tj is then defined as:

1)) = argminj7k(Comp1(Ti, H;)),

(Compl(Ti, Hj’k)).

B
2),h(

2 .
)) = argmin,_, )

Suffi = Compl(Ti,Hc(_z) h(_z)) — Compl(Ti, HC(_1) h(.l))'

Note that the sufferage value can be equal to 0 if the MCT can be achieved
on more than one host. The task Ts with the maximum sufferage value is such
that:

s = argmax; (Suff;).

Task T is then assigned to host Hc(l) B0 -

Extended Sufferage : For each task T; one can compute its estimated MCT
on cluster C}, say mé, as:

m; = rnkin Compl(T;, Hj 1)-
A natural way of computing a sufferage value would be to take the difference
between the best and second-best m; However, we propose here an extended
way for computing the sufferage.

Consider figure 12 where we plot the ordered cluster-level MCTs for two
tasks, (a) and (b). Instead of just limiting our analysis to the first two MCTs
we take a broader look at all the MCTs for all clusters. Intuitively we define
the sufferage value as the height of the first “jump” in the cluster-level MCT
curve. In the example of Figure 12, priority would be given to task (b). In
practice, we detect the jump by computing the approximate derivative of the
MCT curve, computing its mean and standard deviation. We define the first
jump as the first point where the value of the derivative is larger than its mean

38



MCT MCT

cluster cluster

@) (b)

Figure 12: Extendend Sufferage

plus one standard deviation. We denote by Suff; the height of the first jump.
This way of extending the notion of sufferage is intended to capture more of the
file access patterns in our application and its effectiveness is demonstrated in
simulation and experiments. As for the regular sufferage, the task T with

s = argmax; (Suff;).

is assigned to the host that achieves the MCT.

Sufferage II : Consider figure 13 where we plot the ordered cluster-level
MCTs for two tasks, (a) and (b).

MCT MCT

cluster cluster

@ (b)

Figure 13: Sufferage II

The idea here is to give priorities to tasks whose first jump is the closest
to the origin. In other terms, to tasks with the smallest number of clusters
that lead to “good” performance. For the two tasks shown on Figure 13, task
(a) should be given priority since it has the least leeway in terms of choosing
a “good” cluster. More formaly, if one denotes by Cluster(7;) the set of those
clusters that lead to MCTs before the first jump for task T; it is possible to
define an order on the tasks as :

| Cluster(T;) |<| Cluster(7}) |
or
| Cluster(T;) |=| Cluster(7}) |
and Suff(T;) > Suff(T})

T, T; &

Sufferage I1 is then easily defined as always scheduling the minimum task accord-
ing to order <. That task, say T; should be scheduled to a cluster in clust(T};)
(e.g. the one that leads to the best MCT).
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