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We explore the simulation and computational capabilities of dynamical systems. We r s t i n troduce and compare several notions of simulation between discrete systems. We g i v e a general framework that allows dynamical systems to be considered as computational machines. We introduce a new discrete model of computation: the analog automaton model. We determine the computational power of this model and prove that it does have super-Turing capabilities. We t h e n p r o ve that many very simple dynamical systems from literature are actually able to simulate analog automata. From this result we deduce that many dynamical systems have i n trinsically super-Turing capabilities.

Introduction

The computational power of abstract machines which compute over the reals in unbounded precision in constant time is still an open problem. We refer the reader to 18] for an up-to date survey. Indeed, a basic model for their computations has been proposed by Blum Shub and Smale 7] and subsequently modi ed by Koiran 13]. When restricted to discrete inputs, such m o d e l s w ere proved to compute in exponential time all boolean functions, and hence to have super-Turing capabilities. Recently, Siegelman and Sontag studied the computational power of analog recurrent neural networks, with real weights. They proved that analog neural networks also have super-Turing capabilities 23].

Thus it is possible to get computational machines with super-Turing capabilities, if the machines are able to compute with unbounded-precision reals. But, it may b e argued that these machines (BSS machines, analog recurrent neural networks) are purely theoretical machines. The aim of this paper is to show that, actually, many dynamical systems or hybrid system models proposed in the literature also have super-Turing capabilities. Hence, we show t h a t m a c hines with the computational power of the analog recurrent neural networks may b e p h ysically plausible 22].

The models studied in this paper are dynamical systems or hybrid systems. We call hybrid systems that combine discrete and continuous dynamic. Several formal de nitions have been proposed in the literature 16, 2 1 , 1, 20]. Some undecidability results are known 9, 1 , 1 1 , 2], but only a small number of papers have b e e n d e v oted to the study of hybrid systems as computational models: the work of Asarin, Maler and Pnuelli 4, 3] about Piecewise Constant Derivative systems and the work of Branicky 8] about simulation capabilities of Ordinary Di erential Equations can however be mentioned 4, [START_REF] Alur | Hybrid Automata: An algorithmic Approa c h t o t h e S p eci cation and Veri cation of Hybrid Systems[END_REF][START_REF] Blum | On a theory of computation and complexity over the real numbers : NP-completeness, recursive functions and universal machines[END_REF]. This paper can also be considered as a generalization of the undecidability results known about hybrid systems. In particular, we extend the results from 8, 4 , 3 , 1 9 ].

In the rst section we i n troduce the notions of o -line and on-line computation by a discrete system. The computational model of analog automaton is de ned. We p r o ve the super-Turing capabilities of this model, and characterize precisely its computational power as the computational power of analog recurrent neural networks 23]. Then, several notions of simulation are introduced and compared. First section is ended by a study of the computational power of iterations of piecewise linear functions: we extend the results of [START_REF] Koiran | Computing over the reals with addition and order[END_REF]12] and prove that the computational power of one-to-one piecewise linear functions is exactly the computational power of analog automata.

Section two is devoted to continuous dynamical systems. A general framework is rst given in order to consider the continuous systems as computational machines. The notions of computation, of discretization of a continuous system, and the notions of simulation of a discrete system by a continuous system are de ned. These notions are brie y compared to the notions in the literature, and some of their properties are stated. We p r o ve then that there exist some Turing machines or some analog automata that cannot be simulated by a n y continuous system in dimension 2.

In section three, we p r o ve t h a t e v ery analog automaton can be simulated by a c o n tinuous dynamical system in dimension 3: we prove that many continuous dynamical systems (mirror systems, piecewise constant derivative systems, ordinary di erential equations, and hybrid systems) do have at least the computational power of analog automata. For piecewise constant derivative systems, linear hybrid systems, and partially for Lipschitz ordinary di erential equations, we also prove that they cannot have m uch more computational power than analog automata. 1 2 Discrete machines

Transition systems without input and discrete computations

Our aim is to characterize the computational power of dynamical systems. Dynamical systems do not have a straightforward notion of input: we need to de ne the notion of transition system without input.

De nition 2 . 1 ( T ransition system without input 4]) A transition system without input (also called \discrete dynamical system") is a pair A = ( Q ) where Q is a set called space, and is a subset of Q Q. I f is a function from Q to Q, A is said to be deterministic.

A transition system without input is reversible if its transition function is one to one. We will call iterations of function f in dimension d a transition system without input de ned by A = ( X R d f ). A piecewise linear function in dimension d, i s a function de ned on X R d , where X can be partitioned in a nite number of convex closed polyhedra X i of non empty i n teriors, such t h a t f is a ne on every X i .

We n o w add some inputs to transition systems. We will distinguish the notions of o -line computations (the input is encoded in the initial con guration) and on-line computations (the input is given bit after bit, during the evolution of the system). The de nitions in this section and in the following section are derived from [START_REF] Koiran | Computing over the reals with addition and order[END_REF]12].

De nition 2.2 (O -line system) An o -line system is a 5-tuple S = ( Q A R ) where (Q ) is a transition system without input.

: f0 1g + ! Q is an encoding function. A R Q are subsets of Q, such that A \ R = , c alled the accepting and rejecting sets.

On an input u 2 f 0 1g + , a c omputation of S is a sequence (x(k)) k2N such that x(0) = (u) and (x(k) x (k + 1)) 2 for all k 2 N.

Call V the subset of the u 2 f 0 1g + such that there exists a computation x, a n d k 2 N, such that x(k) 2 A R.

The computation time is de ned o n V as t : V ! N u 7 ! minfkjx i sa computation on u and x(k) 2 A Rg The function computed b y S is the partial function F : f0 1g + ! f 0 1g, de ned on V by, if x is a computation on u such that x(t(u)) 2 A R, F(u) = 1 if x(t(u)) 2 A. F(u) = 0 if x(t(u)) 2 R.

The time complexity of the computation is the function T such that T(n) = max juj=n t(u)

where juj stands for the length of u.

Thus o -line computing consists in encoding the input into the initial con guration, and then evolving according to a transition system without input. We c a n now de ne the notion of on-line computation: De nition 2.3 (On-line system) An on-line system is a 5-tuple S = ( Q 0 1 q 0 A R ) where:

(Q ),(Q 0 ) and (Q 1 ) are t r ansition systems without input.

A R Q are subsets of Q, such that A \ R = , c alled r espectively the accepting and rejecting sets. q 0 2 Q is called the initial state. On an input u = u 0 u 1 : : : u juj;1 2 f 0 1g + , a c omputation of S is a sequence (x(k)) k2N such that x(0) = q 0 , (x(k) x (k+1)) 2 uk for 0 k < juj and (x(k) x (k+ 1)) 2 for all k j uj.

The computation time and the function computed b y S are de ned exactly as in de nition 2.2 So on-line computing consists in starting from a xed given state, the initial state, then evolving rst according to the bits of the input, and then according to a transition system without input.

We will say that a function F : f0 1g + ! f 0 1g is o -line computable by a class

C of transition systems, if F is computed by an o -line system S = ( Q A R )
where (Q ) 2 C . W e will say that a function F : f0 1g + ! f 0 1g is on-line computable by a class C of transition systems, if F is computed by an on-line system S = ( Q 0 1 q 0 A R ) where (Q

) (Q 0 ) (Q 1 ) 2 C .

Analog automata

We propose a new model of computation: an analog two stack automaton is a usual two stack automaton with the only di erence that it is able to change the whole content of one of its stack in constant t i m e 1 .

De nition 2.4 (Analog automaton) A deterministic analog (two stack) automaton is a system

M = ( Q q 0 F ) where Q is a nite set of states. is an alphabet. q 0 2 Q is the initial state. F Q is the set of nal states.
is a mapping from Q ( f g) 2 to Q f Nop Pop fPushg fAdviceg ! g 2 where ! is the set of words with nite or in nite length.

where q 2 Q is called the state of the automaton, and 1 2 2 ! are called the contents of the stacks. W e de ne the following relation `between IDs: for q 2 Q, a 1 a 2 2 1 2 0 1 0 2 2 ! , with convention that if a i = then i = , (q a 1 1 a 2 2 ) `(q 0 0 1 0 2 ) if, for i 2 f 1 2g, q 0 = 1 (q a 1 a 2 ), and

0 i = 8 > > < > > : i if i+1 (q a 1 a 2 ) = P o p a i i = No p ca i i = ( Push c) w = ( Advice w)
We de ne the relation ` as the transitive closure of `. W e s a y, w h e n i+1 (q a 1 a 2 ) = ( Advice w) that M uses w or makes advice w appear on stack i. The language L(M) accepted by M is de ned by L(M) = fw 2 f 0 1g + j(q 0 w ) ` (p 1 2 ) ^p 2 Fg The notion of non-deterministic two stack automaton is de ned in a similar way. We shall call discrete two stack automaton the usual notion of two stack automaton: that is, a discrete two s t a c k automaton is an analog automaton which never uses any advice. Any analog automaton (or discrete two stack automaton) M will also be considered as a transition system without input as M = ( Q ! ! `). Because a discrete two s t a c k automaton is an analog two stack automaton, and since discrete two stack automata can simulate Turing machines 10], analog automata are able to simulate Turing machines. The exact computational power of analog automata is given by the following theorem (for the de nition of the complexity classes P=poly and NP=poly, see 5]):

Theorem 2.1

Every language L f 0 1g + can be r ecognized by a deterministic analog two stack automaton in exponential time.

The languages L f 0 1g + accepted by deterministic (respectively: non{ deterministic) analog two stack automata in polynomial time are exactly the languages belonging to the complexity class P=poly(resp: NP=poly).

Proof: W e shall only detail the deterministic case: Let L f 0 1g + be a language. Let the word , of possibly in nite length, be the concatenation, with delimiters, by increasing word length order, of all the words of L. Let M be an analog automaton that, on input w 2 f 0 1g + on its rst stack, makes advice appear on its second stack. Then M seeks in if w is present. If it is, M accepts. M stops processing as soon as it encounters a word of length greater than the length of w. L is recognized by M in exponential time.

Let k be the number of di erent advices that the analog automaton M can possibly use. In polynomial time p(n), M can at most read the p(n) r s t letters of the k advices. So it is possible to simulate M with a Turing machine M 0 , which gets as advice of polynomial size kp(n) t h e p(n) rst letters of each of the k advices of M, and then simulates M. Hence the computational power of analog automata is bounded by P=poly.

Let L be a language in P=poly. By de nition, L is recognized by a T uring machine M 0 with an advice function f : N ! f 0 1g + (see 5]). We c a n construct a word of in nite length as the concatenation, with delimiters, of f(1) f (2) etc:::. In order to recognize L, an analog automaton M, o n i n p u t w 2 f 0 1g + , rst makes advice appear. Then M seeks in the value of f(jwj). This operation can be done in polynomial time, since there exists a polynomial p, s u c h that, for all i 2 N, the size of f(i) i s b o u n d e d b y p(i): so M has at most to read p(1) + p(2) + : : : + p(jwj) c haracters, that is at most a polynomial number of characters. Finally, M simulates Turing machine M 0 on (w f(jwj)). Hence L is recognized by M in polynomial time.

Therefore, we h a ve shown that the computational power of analog automata is exactly the computational power of recurrent analog neural networks: see 23]. It is well known 10] that there exist some languages L f 0 1g + which cannot be recognized by T uring machines. Since, from theorem 2.1, L can be recognized by an analog automaton, we conclude that the analog two stack automata do have super-Turing capabilities.

Simulation notions between discrete systems

In this section, we de ne several notions of simulation between discrete systems. We shall compare these notions later. The notion of simulation used in 14, 1 2 ] i s the following: De nition 2.5 (K-simulation) Let A 1 = ( Q 1 1 ) and A 2 = ( Q 2 2 ) be two transition systems without input. Let D Q 2 be stable by 2 and an onto function from D to Q 1 . A 2 K-simulates A 1 via if 8q 1 q 2 2 D (q 1 q 2 ) 2 2 , ( (q 1 ) (q 2 )) 2 1 That is, A 2 K-simulates A 1 if there exists a sub-system of system A 2 which i s identical to A 1 , m o d u l o . W e de ne the notion of trajectory of a transition system cutting a subset: De nition 2 . 6 Let A = ( Q ) be a t r ansition system without input.

There i s a t r ajectory T from x to x 0 of real length i 2 N and virtual length 1 cutting Y Q, if there exists a i-tuple (x = x 0 x 1 x 2 : : :

x i = x 0 ) such that 8 < : i) 80 j < i (x j x j+1 ) 2 ii) 80 < j < i x j 6 2 Y ii)
x x 0 2 Y There i s a trajectory T from x to x 0 of real length i 2 N and virtual length j 2 N cutting Y if there exists a j-tuple (x = x 0 x 1 x 2 : : : x j = x 0 ) such that, for all k 2 f 1 2 : : : j g, there exists a trajectory cutting Y of real length i k and of virtual length 1 from x k;1 to x k where i = i 1 + i 2 + : : : + i j . We will note length real (T ) = i and length virt (T ) = j. That allows us to de ne the notion of Q-simulation (inspired from 4]): we extend the notion of K-simulation by the possibility that a transition of system A 1 can be realized by several transitions of system A 2 .

De nition 2.8 [START_REF] Asarin | Reachability analysis of dynamical systems having piecewise-constant derivatives[END_REF]) Let A = ( Q ) be a t r ansition system without input.

Let q 2 Q. W e n o t e L(A q) the set of the trajectories of A starting from q: that is the sequences (q 0 q 1 : : : q k : : : ), with q = q 0 , such that (q k q k+1 ) 2 , for all k 2 N. Let 2 L(A q). We note = ( q 0 q 1 q 2 : : : ). L et ' be a function from Q to a subset Q 0 , onto, possibly partial. In a point x 2 Q, where ' is not de ned, we will write '(x) = ?. W e s a y t h a t ' is a state abstraction function from Q to Q 0 . We note '( ) the sequence (q 0 0 q 0 1 q 0 2 : : : ), where q 0 i = '(q ji ), w i t h for all i 1 j i = m i n fjjj > j i;1 ^'(q j ) 6 = ?g and j 0 = 0 .

From these de nitions we get the notion of abstraction between transition systems:

De nition 2.9 (Abstraction 4]) Let A 1 = ( Q 1 1 ) and A 2 = ( Q 2 2 ) be t w o transition systems without input. Let ' be a state abstraction function from Q 2 to Q 1 .

We say that A 1 is an abstraction of A 2 , o r A 2 '-realizes A 1 via ', denoted by A 1 ' A 2 , i f :

8x 2 Q 1 8y 2 ' ;1 (x) 2 L(A 2 y ) ) '( ) 2 L(A 1 x ) (1) 8x 2 Q 1 8 1 2 L(A 1 x ) 9y 2 Q 2 9 2 2 L(A 2 y ) 1 = '( 2 ) (2) 
That means that, A 1 is a '-abstraction of A 2 , if the set of the trajectories of A 1 is exactly the set of the abstractions of the trajectories of A 2 , for the state abstraction function '. W e de ne the notion of simulation between classes of systems, for a given notion of simulation, by: De nition 2 . 1 0 Let C and C' be two classes of transition systems without input. We say that C' simulates C, if for all system S 2 C , there exists a system S 0 2 C 0 such that S' simulates S.

Properties

We study the links between the di erent notions of simulation: Theorem 2.2 All the previous notions of simulation are r e exive and transitive Let A 1 = ( Q 1 1 ) and A 2 = ( Q 2 2 ) be two transition systems without input.

The following implications are true:

A 2 K-simulates A 1 ) A 2 Q-simulates A 1 ) A 1 ' A 2
Assume that A 2 K-simulates (respectively: Q-simulates) A 1 , a n d A 2 is deterministic, then A 1 is deterministic. Assume that A 2 K-simulates (respectively: Q-simulates) A 1 , a n d A 1 is deterministic, then A 2 is deterministic.

We have the following relations between the computational models: { The non-deterministic analog automata K-simulate the deterministic analog automata and the non{deterministic discrete two stack automata { The deterministic analog automata K-simulate the discrete deterministic two stack automata. { The non-deterministic discrete two stack automata K-simulate the deterministic discrete two stack automata and the non-deterministic nite state automata.

{ The deterministic discrete two stack automata '-realize the non{deter--ministic nite state automata. { The non-deterministic nite state automata K-simulate the deterministic nite state automata Proof: All the results are straightforward from the de nitions. The only intricate point is that the discrete deterministic two s t a c k automata '-realize the non-deterministic nite state automata: let A = ( Q ) be a non-deterministicnite state automaton. Let d = m a x q2Q jfv=(q v) 2 gj be the maximum of the outgoing degrees of the vertices of the graph G = ( Q ). In every state q 2 Q, we call e q 1 e q 2 : : : e q nq the outgoing edges starting from q in G. Note that, by de nition of d, necessarily, n q d. W e construct A 0 = ( Q 0 = Q 0 ) as a deterministic discrete two s t a c k automaton, with stack alphabet de ned by = f1 2 : : : d g. W e de ne the transition function 0 of A 0 such that, in a state q, when A 0 reads symbol s 2 on the top of its rst stack, A 0 pops s, and makes a transition to state q 0 , where e q s = ( q q 0 ). It can be checked that A 0 '-realizes A, via the function ' de ned on every q 0 = ( q 1 2 ) 2 Q 0 as '(q 0 ) = q.

We can go further and precise the relations between the notions of simulation by: Theorem 2.3

The notion of Q-simulation is strictly more p owerful than the notion of K-simulation. The notion of abstraction is strictly more p owerful than the other notions.

Proof: It is easy to construct a transition system A 2 that simulates every step of a transition system A 1 by t wo steps. A 2 Q-simulates A 1 but A 2 does not K-simulate A 1 . So the rst point is straightforward.

The deterministic discrete two s t a c k automata '-realize the non-deterministic nite state automata from previous theorem, but the deterministic discrete two stack automata cannot Q-simulate or K-simulate the non-deterministic nite state automata from theorem 2.2.

The proof of the previous theorem shows that the notion of abstraction is very interesting, because this notion, unlike the other notions, allows non-deterministic systems to be simulated by deterministic systems. We will need the following result: Theorem 2.4 Every deterministic (respectively: non-deterministic) analog two stack automaton M can be Q-simulated i n p olynomial time by a deterministic (resp: nondeterministic) reversible analog two stack automaton M 0 .

Proof:

We only give a s k etch of the proof here. Let be the stack a l p h a b e t o f M.

We will write every word 2 ! as an in nite sequence a 1 a 2 : : : a n : : :with a k = , for all k > j j. Let 0 1 : : :and p;1 be p words of ! . For i 2 1 p ],

we can write i = a i 0 a i 1 a i 2 : : : a i n : : :2 ! . W e de ne the mix operation as mix( 0 1 : : : p;1 ) = b 1 b 2 : : : b n : : :2 ! , where for all j > 0, b j = a imodp idivp , where div is the integer division, and mod is the remainder of the integer division. Let 1 2 : : : q be the q di erent advices that analog automaton M can possibly use in a computation. Call = mix( 1 2 : : : q ). At a n y time, let 1 2 ! (respectively: 2 2 ! ) be the content of the rst (resp: the second) stack o f M.

Call = mix( 1 2 ). M = ( Q M M ) i s Q -s i m ulated by M 0 = ( Q M 0 M 0 ) v i a '
, where M 0 and ' are built as follows: at any time M 0 keeps the simulated values of the contents of the two stacks of M by k eeping in its rst stack. That, is at any time, the state (q 0 0 1 0 2 ) 2 Q M 0 of M 0 is such that, there exists w 2 with 0 1 = w . Before simulating any step of M, M 0 makes advice appear on its empty second stack, and keeps this value in its second stack: that is, at any time, there exists w 0 2 , s u c h t h a t 0 2 = w 0 . M 0 is built by s i m ulating M on = mix( 1 2 ). It can be checked that M 0 is able to simulate all the operations of M on . I f M tries to read a character in one of its advice, M 0 can simulate the operation by reading the characters of . The reader can check that it is possible, using this way, to get an analog automaton M 0 that Q-simulates M in polynomial time.

Now remark that the advice appears only in the rst step of any simulation of M by M 0 , appears only on the second stack o f M 0 a n d o n l y o n a n e m p t y stack. If we except the rst step that makes advice appear, M 0 is a discrete two stack automaton, that is a Turing machine. Since we k n o w t h a t a T uring machine can always be simulated, modulo a polynomial time overhead, by a reversible one (see for example: 6]), we claim that M 0 , from second step, can be built reversible. It can be checked that the rst step (the apparition of advice on the empty second stack o f M 0 ) is reversible, and that the second step (that is the beginning of the reversible process of \Turing machine" M 0 on and ) is only reachable by the rst step. Thus M 0 is reversible at any step and Q-simulates M in polynomial time.

We will also need the following result: Lemma 2.1

Let F : f0 1g + ! f 0 1g be c omputed i n p olynomial time by an o -line system S = ( X f A F).

Suppose that:

{ X is a compact subset of R n . { f 2 LP d =poly: that is, f is Lipschitz, and f : X ! X can be approximated i n p olynomial time by a Turing machine with advice: see 1 4 , 1 2 ] .

{ is in P E d =poly, that is : f0 1g + ! X can be a p p r oximated i n polynomial time by a Turing machine with advice: see 1 4 , 1 2 ] .

{ A R are c onvex polyhedra o f R n . Then F 2 P=poly. Let F : f0 1g + ! f 0 1g be c omputed i n p olynomial time by an on-line system S = ( X f f 0 f 1 q 0 A R ).

Suppose that:

{ X is a compact subset of R n . { f f 0 f 1 2 LP d =poly. { A R are c onvex polyhedra o f R n .
Then F 2 P=poly. Proof: This is an easy generalization of 14, 1 2 ].

Computational power of piecewise linear functions

We study now the computational power of iterations of piecewise linear functions. The results are extensions of 15, 1 4 , 1 2 ]. We prove in this section that it is possible to use one to one functions. First we need the following de nition: De nition 2.11 (Disconnected piecewise linear function) A function f is called disconnected piecewise linear with real coe cients (respectively: rational coe cients) if, for some n 2 N, 1. there exist n closed intervals I i = a i b i ], with a i b i 2 R (resp: a i b i 2 Q).

2. f can be written f : C = i j2f1 2 ::: ng

C i j 0:1] 2 ! 0 1] 2
where, for all i j 2 f 1 2 : : : n g, C i j is de ned a s C i j = I i I j .

3. all the I i are at a strictly positive distance: there exists such that, for all i 6 = j, x 2 I i y2 I j , d(x y) .

on each

C i j , f is a ne of type f(x 1 x 2 ) = ( i j 1 + i j 1 x 1 i j 2 + i j 2 x 2 ),
where i j 1 i j 2 i j 1 and i j 2 are r eal (resp: rational) positive constants.

Our main results come as:

Theorem 2.5

Every deterministic (respectively: reversible) discrete two stack automaton M can be K-simulated by iterations of a disconnected ( r esp: one to one) piecewise linear function f : C 0 1] 2 ! 0 1] 2 with rational coe cients.

Every deterministic (respectively: reversible) analog two stack automaton M can be K-simulated by iterations of a disconnected ( r esp: one to one) piecewise linear function f : C 0 1] 2 ! 0 1] 2 with real coe cients.

Proof:

We will only detail here the case of an analog automaton M being simulated by iterations of a disconnected piecewise linear function with real coe cients. To get the case of a discrete two s t a c k automaton M being simulated by iterations of a disconnected piecewise linear function with rational coe cients, just consider M as an analog automaton which d o e s n o t m a k e a n y advice appear: the proof gives then a function with rational coe cients, instead of real coe cients.

We can suppose w.l.o.g. that the state set of M is Q = f1 3g p1 f 1 3g p2 , a n d that the letters of , the stack alphabet of M, are encoded onto the alphabet f1 3g. Let p = dlog 2 j je be the number of bits needed to encode each letter of .

Each I D ( q 1 2 ) o f M is encoded in the radix-4 expansion of a point ( x 1 x 2 ) o f 0 1] 2 where, if q = ( q 1 1 q 1 2 : : : q 1 p1 q 2 1 q 2 2 : : : q 2 p2 ) 2 Q = f1 3g p1 f 1 3g p2 and i 2 ! can be written on alphabet f1 3g as i = s i 1 s i 2 : : : s i n : : : ,

x i = pi X j=1 q i j 4 j + 1 X j=1 s i j 4 pi+j
We will note abc the real number with radix-4 expansion abc. Let I 1 l1 I 2 l2 be all the sets de ned by: I i li = l i l i + 1 =4 pi+p ] a n d l i = 0:q i 1 q i 2 : : : q i pi s i 1 s i 2 : : : s i p or I i li = fl i g and l i = 0:q i 1 q i 2 : : : q i pi for any s i j and q i j elements of f1 3g.

The stack is nonempty in the rst case, and empty in the second one. In what follows, we will not make a n y more this distinction, and we will suppose, in the case of an empty stack, that s i 1 s i 2 : : :

s i p = 0 . Let C = l1 l2 I 1 l1 I 2 l2
Function f will be de ned as piecewise linear on C, and the (I j lj ) j2f1 2g lj will play the role of the (I i ) i2 1:::n] of de nition 2.11.

Assume that (x 1 x 2 ) 2 I 1 l1 I 2 l2 encodes the ID (q a 1 1 a 2 2 ) o f M at time t, w h e r e a 1 a 2 2 , 1 2 2 ! and q 2 Q. Call x i = x i ; l i , f o r i 2 f 1 2g.

Write q a 1 and a 2 as q = q 1 1 : : : q 1 p1 q 2 1 : : : q 2 p2 , a 1 = s 1 1 : : : s 1 p and a 2 = s 2 1 : : : s 2 p .

On I 1 l1 I 2 l2 , w e de ne f such t h a t f(x 1 x 2 ) = ( x 0 1 x 0 2 ) with

x 0 i = 0:q 0 i 1 : : : q 0 i pi + x 0 i where q 0 1 1 q 0 1 2 : : : q 0 1 p1 q 0 2 1 q 0 2 2 : : : q 0 2 p2 = 1 (q a 1 a 2 ) and x 0 i de ned by:

x 0 i = 4 p x i if i+1 (q a 1 a 2 ) = P o p x 0 i = si 1 4 p i +1 + : : : + si p 4 p i +p + x i if i+1 (q a 1 a 2 ) = No p x 0 i = ci 1 4 p i +1 + : : : + ci p 4 p i +p + si 1 4 p i +p+1 + : : : + si p 4 p i +2 p + xi 4 p if i+1 (q a 1 a 2 ) = ( P ush c = c i 1 : : : c i p ) x 0 i = b1 4 p i +1 + b2 4 p i +2 : : : + bn 4 p i +n + : : : if i+1 (q a 1 a 2 ) = ( Advice = b 1 b 2 : : : b n : : : )

It can be checked that, in any c a s e , f is built such t h a t f(x 1 x 2 ) encodes the ID of M at time t+1: that is encodes ID (q 0 0 1 0 2 ) where (q a 1 1 a 2 2 ) `(q 0 0 1 0 2 ). So M is K-simulated by the iterations of function f. F unction f is a disconnected piecewise linear function with real coe cients, and the result for non (necessarily) reversible analog automata follows.

Suppose now that analog automaton M is reversible: we p r o ve that, in this case, function f is one to one on C. Assume that there exist x = ( x 1 x 2 ) 2 C and y = ( y 1 y 2 ) 2 C such t h a t f(x) = f(y). We w ant t o p r o ve that x = y. We need to de ne a Mo doperator: let r 2 N. Let z 2 0 1=4 r . Assume that z has a nite radix-4 expansion. We can write this unique nite expansion as z = 4 ;r 0: 1 2 3 : : : k , where k 6 = 0 and k 2 N. Suppose that z does not have any nite expansion: in this case, we write the unique in nite expansion of z as z = 4 ;r 0: 1 2 3 : : :and we take k = 1.

In any case, we de ne the Mo doperator on z as Mo d r (z) = 4 ;r 0: 0 1 0 2 0 3 : : : , where, for all 1 j k, 0 j = 1 if j = 0or j = 1 3 if j = 2or j = 3 From now, we will denote by a n x exponent the de nitions relative t o x, a n d by a n y exponent the de nitions relative t o y. We will only deal with x in the de nitions. De nitions relative t o y are to be understood in a similar way.

There exists l x 1 l x 2 , w h e r e l x i = 0:q x i 1 q x i 2 : : : q x i pi s x i 1 : : : s x i p , i 2 f 1 2g, s u c h that x 2 I x = I 1 l x 1 I 2 l x 2 . Let x i = x i ; l x i . W e h a ve 0 x i < 1=4 pi+p . Let q x = q x 1 1 q x 1 2 : : : q x 1 p1 q x 2 1 q x 2 2 : : : q x 2 p2 .

Let s x i = s x i 1 s x i 2 : : : s x i p , for i 2 f 1 2g.

Let f(x) = ( x 0 1 x 0 2 ). So, if x is corresponding to a valid encoding of an ID (q a 1 1 a 2 2 ) o f t h e analog automaton M, with q 2 Q a 1 a 2 2 , then q x s x 1 s x 2 are respectively such that q x = q,s x 1 = a 1 and s x 2 = a 2 . Let q 0x = q 0x 1 1 q 0x 1 2 : : : q 0x 1 p1 q 0x 2 1 q 0x 2 2 : : : q 0x 2 p2 = 1 (q x s x 1 s x 2 ) and l 0x i = 0:q 0x i 1 q 0x i 2 : : : q 0x i pi . By the de nition of f, w e h a ve x 0 i = l 0x i + x 0 i where 0 x 0 i < 1=4 pi and y 0 i = l 0y i + y 0 i where 0 y 0 i < 1=4 pi . F rom f(x) = f(y) w e g e t l 0x i = l 0y i (3)

x 0 i = y 0 i (4) 
De ne x = ( x 1 x 2 ) as, for i 2 f 1 2g, x i = l x i + Mo d pi+p ( x i ), Since we do not change any digit of the radix 4 expansion before the p+p i +1th digit, we h a ve x 2 I x .

Let f(x) = x 0 = ( x 1 0 x 2 0 ). We know t h a t f is linear on I x . By studying the di erent possibilities, it can be checked that in any case

x i 0 = l 0x i + Mo d pi ( x 0 i ) (5) 
We de ne in a similar way y = ( y 1 y 2 ), where, for i 2 f 1 2g , y i = l y i + Mo d pi+p ( y i ).

Let f(y) = y 0 = ( y 1 0 y 2 0 ). Like what happens for x, for y, w e h a ve i n a n y case

y i 0 = l 0y i + Mo d pi ( y 0 i ) (6) 
From ( 3),( 4),( 5) and ( 6) we get, for i 2 f 1 2g, x i 0 = y i 0 .

So we h a ve f(x) = f(y). Now, it can be seen that x and y are encoding valid IDs. Call ID x , a n d ID y the IDs encoded by respectively x and y. Since f K-simulates M, w e get that f(x) e n c o d e s ID 0 , where ID 0 is given by ID x `ID 0 . Similarly, w e get that f(y) encodes also ID 0 , with ID y `ID 0 . F rom the fact that M is reversible, we g e t ID x = ID y . T h us, we get also necessarily I x = I y . N o w, f is de ned as a one to one linear function on every I = I 1 l1 I 2 l2 . T h us we obtain x = y, a n d that f is one to one.

Note that, a disconnected piecewise linear function f : C ! 0 1] 2 with rational (respectively: real) coe cients can be completed for example by triangulation, to a piecewise linear continuous function f : 0 1] 2 ! 0 1] 2 with rational (respectively: real) coe cients.

a disconnected one to one piecewise linear function f : C ! 0 1] 2 with rational (respectively: real) coe cients can be completed to a one to one piecewise linear function f : 0 1] 2 ! 0 1] 2 with rational (resp: real) coe cients.

So in theorem 2.5, all the results can be stated with continuous or one to one piecewise linear functions on all 0 1] 2 instead of disconnected piecewise linear functions de ned only on C 0 1] 2 .

We n o w g i v e some technical considerations about the one to one disconnected piecewise linear functions f given by theorem 2.5, in the case of a reversible analog (or discrete) two stack automaton M. We use the notations of de nition 2.11.

From theorem 2.5 we k n o w that f is one to one on C. For i j 2 1 : : : n ], call

C 0 i j = f(C i j )
. Since f is one to one, we h a ve necessarily:

(i j) 6 = ( i 0 j 0 ) ) C 0 i j \ C 0 i 0 j 0 = (7) 
Let i j 2 1 : : : n ]. We h a ve C i j = I i I j , with I i = a i b i ] and I j = a j b j ].

Call the boundaries as c

1 c 2 d 1 d 2 with c 1 = a i c 2 = a j d 1 = b i d 2 = b j , s u c h t h a t C i j = c 1 d 1 ] c 2 d 2 ].
On C i j , f can be written f(x 1 x 2 ) = ( i j 1 + i j 1 x 1 i j 2 + i j 2 x 2 ). Let l 2 f 1 2g. W e know that the constants i j l i j 1 are positive. Since f is one to one on C, w e g e t t wo possible cases: either i j l is strictly positive. either i j l = 0 a n d c l = d l The interest of these remarks will appear later in this paper. With Theorem 2.5, we are able to generalize all the results of 14, 1 2 ] to one to one piecewise linear functions. Thus, we get: Theorem 2.6 Every function F : f0 1g + ! f 0 1g can be o -line computed b y iterations of a function f : I 1 = 0 1] ! I 1 , one to one, piecewise linear, with real positive coe cients in dimension 1 in exponential time.

Moreover, the encoding function is computable by Turing Machine (that is in P E 1 : s e e 14, 12]), is one to one, and independent from F. T h e a c cepting and rejecting sets are also independent of F, and de ned as intervals with rational boundaries.

Proof: Nothing to do, but say that the functions used in 14, 1 2 ] a r e o n e t o o n e functions.

We also get: Theorem 2.7 Every function F : f0 1g + ! f 0 1g in P (respectively: in P=poly) can be o -line computed, in polynomial time, by iterations of an one to one piecewise linear function, with rational (resp: real) positive coe cients, in dimension 2. The encoding function is computable by a Turing machine (that is in P E 2 : 14, 12].). can be on-line computed, in polynomial time, by iterations of an one to one piecewise linear function, with rational (resp: real) positive coe cients in dimension 2. The \encoding functions" are one to one, piecewise linear in dimension 2, with rational positive coe cients.

Proof:

Let M be a reversible discrete (resp: analog) two stack automaton that recognizes F . F rom theorem 2.5, we know t h a t M is K-simulated by the iterations of a piecewise one to one linear function f, via a function . Function F is computed by the o -line system S = ( 0 1] 2 f A R ) where A R are the subsets of 0 1] 2 that encode respectively the accepting and rejecting con gurations of M. M o r e o ver, it can be checked that is in P E 2 : see 14, 1 2 ] . Let M 0 (respectively: M 1 ) be the reversible discrete two stack automaton that, on every step, pushes systematically 0 (resp: 1) on its rst stack, and leaves its second stack u n c hanged. Let M be a reversible discrete (resp: analog) two stack automaton that recognizes F r , where F r (a 1 a 2 : : : a n ) = 1 i f a n d only if F (a n : : : a 2 a 1 ) = 1 . F rom theorem 2.5, we know that there exist f 0 , f 1 and f that K-simulate M 0 , M 1 and M, via the functions 0 , 1 and respectively. It can be checked that, if the state sets of M 0 and M 1 are chosen to be the same as the state set of M, then functions 0 , 1 and are identical. We claim then, that function F is computed by the on-line system S = ( 0 1] 2 f f 0 f 1 q A R ), where A R are the subsets of 0 1] 2 of points that encode the accepting and rejecting con gurations of M, a n d q 0 2 0 1] 2 is the encoding of the initial state of M.

Actually, w e can give an upper bound to the computational power of iterations of piecewise linear functions, using results from 13]: Theorem 2.8

Let F : f0 1g + ! f 0 1g be a function o -line computed b y iterations of a piecewise linear function f in dimension d: t h a t i s b y a n oline system S = ( X f A R), w h e r e X R d . Assume that:

{ is computable by a linear machine: there exists a linear machine (restriction of the BSS machine 7] which is only allowed t o c ompute linear operations: i.e. which is not allowed t o c ompute multiplications between its variables 13]) that is able, given w 2 f 0 1g + , t o r eturn the real number (w). { A R X are c onvex polyhedra. { F is computed i n p olynomial time. Then F is in P=poly.

Let F : f0 1g + ! f 0 1g be a function on-line computed by iterations of piecewise linear functions f 0 f 1 fin dimension d: that is, by an on-line system S = ( X f 0 f 1 f q 0 A R ), where X R d . Assume that:

{ A R X are c onvex polyhedra. { F is computed i n p olynomial time. Then F is in P=poly.

Proof: The hypotheses of the theorem are chosen so that, in any case, it is possible to construct a linear machine 13] M that simulates the evolution of S. From the fact that the computational power of linear machines with discrete inputs is bounded by P=poly(see: 13]), we get that F 2 P=poly.

As a conclusion, from the two previous theorems, and from the fact that the iterations of piecewise linear functions with rational coe cients can be simulated by the Turing machines, we get that the computational power of iterations of one to one piecewise linear functions with rational (respectively: real) coe cients from R p to R p , f o r p 2, is exactly P (resp: P=poly) in polynomial time. EXP (resp: unbounded) in exponential time.

3 Continuous dynamical systems

Continuous systems

The continuous systems that we shall study can be formalized by: De nition 3.1 (Continuous system)

A continuous system is a pair H = (X F) where, { X is a set, called space. { F is a set of functions f : R! X. { 8t 2 R 8f 2 F , (f + t) 2 F , w h e r e (f + t) : R ! X is de ned for all t 0 2 R by (f + t)(t 0 ) = f(t + t 0 ). A trajectory of H starting from x 2 X is a function f 2 F such that f(0) = x.

There i s a t r ajectory of time-length t between x and x 0 if there exists a function f 2 F such that f(0) = x and f(t) = x 0 . If, for all x 2 X, there is exactly one trajectory starting from x, t h e c ontinuous system is said to be deterministic. The continuous systems H = ( X F) t h a t w e will study in this paper are all such that there exists an integer p, s u c h t h a t X R p . W e will call p the dimension of H. Note that continuous deterministic systems can be de ned in an equivalent w ay using a ow: Proposition 3.1 A c ontinuous system H = ( X F) is deterministic if and only if 9' : X R + ! X such that:

8 < : i) '(x)(0) = x ii) 8t t 0 2 R + 8x 2 X '(x)(t + t 0 ) = '('(x)(t))(t 0 ) iii) F = f'(x)(:)jx 2 Xg
A t r ansition system without input A = ( Q ) is a discretization by section, or S-discretization of H via ', state abstraction for H to Q, i f t h e r e exists t 0 2 R, such that, for all x x 0 2 ' ;1 (Q), there i s a t r ajectory of time-length t 0 from x to x 0 if and only if ('(x) ' (x 0 )) 2 . A t r ansition system without input A = ( Q ) is a discretization by i n terval, or I-discretization of H via ', state abstraction for H to Q, if for all x x 0 2 ' ;1 (Q), there i s a t r ajectory of H from x to x 0 cutting ' ;1 (Q) if and only if ('(x) ' (x 0 )) 2 . A t r ansition system without input A = ( Q ) is a discretization by i n terval and by section or SI-discretization of H via ', state abstraction for H to Q, if A is simultaneously a S{discretization of H via ' and an I-discretization of H via '. A t r ansition system without input A = ( Q ) is a discretization by abstraction, o r A-discretization of H via ', state abstraction for H to Q, if the set of the trajectories of A is exactly the set of the '-signatures of the trajectories of H. We get the notions of simulation by: De nition 3 . 6 Let H = ( X F) be a c ontinuous system.

Let A = ( Q ) be a t r ansition system without input.

H I-simulates

A if A is an I-discretization of H. H S-simulates A if A is a S-discretization of H. H SI-simulates A if A is a SI-discretization of H.
A is an abstraction of H, o r H '-realizes A, denoted b y A ' H if A is an A-abstraction of H. The links between these de nitions and the de nitions in literature can be stated as follows. Our de nition of I-simulation for deterministic systems is similar to the de nition of 8], if we a d d t h a t ' must be continuous, ' ;1 (Q) m ust be an open set, and there must exist > 0 s u c h that, in de nition 3.4, t 1 and t 3 ; t 2 . De nition 3.4 is also changed so that necessarily '(f(t 1 )) = '(f(t 2 )) = ?. Our de nition of I ; simulation for deterministic systems is similar to the de nition of Q;simulation in 3] i f w e a d d t h a t ' must be an one to one function, and if conditions t 1 = 0 , t 2 = t 3 are added to de nition 3.4. Our de nition of S ; simulation for deterministic systems is similar to the notion of S ; simulation in 8] if we add that ' must be continuous. Our de nition of A ; simulation for deterministic systems is similar to the notion of abstraction in 4], if we a d d t h a t ' must be such that, for all q 2 Q, ' ;1 (q) is a convex relatively open set, and ' is not necessarily required to be surjective. In all the coming results of this paper, it is possible to add the previous hypotheses (' continuous, one to one,t 1 = 0 , t 3 = t 2 ,etc...) without any loss of generality. As a consequence, all our results can also be stated using the de nitions of the notions of simulation in 4, 3, 8].

Notions of computation

We de ne the notion of input for continuous systems, by considering their discretizations:

De nition 3.7 (O -line computation) Let S be a class of continuous systems.

A d e cision function F : f0 1g + ! f 0 1g is o -line S-computable (respectively: I-computable, SI-computable, A-computable) b y S in time T, if there exist H = (X F) 2 S , a state abstraction ' : X ! Q for H to Q, an o -line system S = (Q A R ) that computes F in time T , such that A = ( Q ) is a S-discretization (resp: I-discretization, SI-discretization, A-discretization) of H = ( X F) via '.

Thus function F : f0 1g + ! f 0 1g is considered as o -line recognized by c o ntinuous system H = ( X F) i n t i m e T , if there exists a function ' : X ! Q such that a discretization of H via ' computes o -line F in time T. L e t H and ' be xed. De ne A H = ' ;1 (A), R H = ' ;1 (R). A H X and R H X are called the accepting and rejecting sets of H. W e s a y t h a t x w 2 X encodes w 2 f 0 1g + if '(x w ) = (w). For q 2 Q, note V q = ' ;1 (q). We call encoding function a function : f0 1g + ! X that maps each w 2 f 0 1g + to w 0 = (w) s u c h t h a t w 0 encodes w. The de nition means that the words w 2 f 0 1g + accepted by H (that is such that F (w) = 1) are the words such that, for some x w that encodes w, there exists a trajectory f 2 F starting from x w (f(0) = x w ) that intersects the accepting set A H (that is there exists t 2 R + such t h a t f(t) 2 A H ) . T h e w ords w 2 f 0 1g + ! f 0 1g that are rejected by H, are the words such that, for some x w 2 X that encodes w, there exists a trajectory starting from x w that intersects the rejecting set R H . Thus, H is considered as a computational machine by using its discretization: a computation of H (that is what corresponds to a computation of S) is a trajectory of H. The acception or rejection is given by the fact that the trajectory crosses or not the accepting or rejecting sets. The computation time is given by the computation time of the discretization. For example suppose that A is a I-discretization or A-discretization of H: t i m e T of a computation of H is given by t h e n umber of sets V q = ' ;1 (q) crossed by the trajectory. That is, for a trajectory f 2 F from x 2 X (f(0) = x) t o x 0 2 X (f(t) = x 0 , for some t 2 R + ), T is given by n where q 1 q 2 : : : q n is the '-signature of trajectory f from x to x 0 . I f n o w for example A is a S-discretization of H, time T of a computation of H is given by T = t=t 0 where t 0 is the constant t 0 of de nition 3.5.

Note that there might be no correspondence between the time of a computation and the time of the continuous system: that is, T can be di erent from t. I n t h e case of a S-discretization (or SI-discretization) computation time T and continuous system time t are equivalent, but T and t are usually di erent in all the other cases.

Similarly, w e de ne the notion of on-line computation:

De nition 3.8 (On-line computation) Let S be a c l a s s o f c ontinuous systems.

A d e cision function F : f0 1g + ! f 0 1g is on-line S-computable (respectively: I-computable, SI-computable) b y S in time T , if there exist H = ( X F) 2 S ,H 0 = (X F 0 ) 2 S , H 1 = ( X F 1 ), a state abstraction ' : X ! Q, an on-line system S = (Q 0 1 q 0 A R ) that computes F in time T, such that A = ( Q ),A 0 = ( Q 0 ), A 1 = ( Q 1 )) a r e S-discretizations (resp: I-discretizations, SI-discretizations ) of respectively H = ( X F),H 0 = ( X F 0 ) and H 1 = ( X F 1 ) via same function '.

Let H = ( X F) H 0 = ( X F 0 ) and H 1 = ( X F 1 ) be xed. Thus, a computation is given by a trajectory f of a continuous system H 0 = ( X F 0 ) where F 0 is either F 0 F 1 or F depending of time: every computation trajectory f starts from a point x 0 that encodes q 0 (that is, '(x 0 ) = q 0 ). Suppose u = u 0 u 1 : : : u juj;1 2 f 0 1g + is the input. The evolution of trajectory f is rst given by a function of F u0 during one computation time unit (that is until time t 0 , where t 0 is the rst positive real with '(f(t 0 )) 6 = ? for the case of I-computability, or during time t 0 = t 0 for the case of S-computability): 9f 0 2 F u0 f 0 (0) = x 0 8t 2 0 t 0 ] f (t) = f(t 0 ). Then the evolution of trajectory f starts from f(t 0 ) and evolves during one computation time unit to f(t 1 ) according to a function of F u1 : 9f 1 2 F u1 f 1 (t 0 ) = f(t 0 ) 8t 2 t 0 t 1 ] f (t) = f 1 , then according to a function of F u2 , : : : , F u juj;1 , and nally according to a function of F for all the next computation time units. The acception or rejection is given by the fact that trajectory f crosses or not the accepting or rejecting sets A H , R H , where A H = ' ;1 (A) a n d R H = ' ;1 (R).

Properties

We can classify the notions of simulation by the following theorem: Theorem 3.1 The following relations between the notions of simulation are true:

The notions of S-simulation and I-simulation are not comparable. The notions of S-simulation and abstraction are n o t c omparable. The notion of abstraction is strictly more p owerful than the notion of Isimulation: H I-simulates A via ' ) A ' H. A ' H 6 ) H I-simulates A via '.

The following transitivity results are true: Suppose that a class C of continuous systems I-simulates a class C 0 of transition systems without input. Suppose that class C 0 Q-simulates a class C 00 of transition systems without input. Then class C I-simulates class C 00 . Suppose that a class C of continuous systems '-realizes a class C 0 of transition systems without input. Suppose that class C 0 '-realizes a class C 00 of transition systems without input. Then class C '-realizes class C 00 . Proof: First two p o i n ts are straightforward. Third point i s p r o ved using arguments similar to theorem 2.2: a deterministic continuous system H that ' realizes a non-deterministic system A is built. Non-deterministic system A cannot be Ssimulated or I simulated by deterministic system H via '.

Let H be a continuous system that I-simulates a transition system without input A via '. Suppose that A Q-simulates a transition system without input B via . Then, it can be checked that H I-simulates B via '. The rst transitivity r e s u l t follows.

Let H be a continuous system that '-realizes a transition system without input A via '. Suppose that A realizes a transition system without input B via . Then H '-realizes B. Second transitivity result follows.

As before, the notion of abstraction for continuous systems is very powerful since with this notion non-deterministic machines can be simulated by deterministic continuous systems.

The previous notions of simulations give us the tools to study the computational power of continuous systems. Several such systems will be studied in section 4. In order to simplify these studies, we relate them to the simulations of analog two stack automata. We need the following de nition: De nition 3 . 9 Suppose that a class S of continuous systems simulates (whatever the notion of simulation used) a class C of transition systems without input: for all C 2 C , C = ( Q M M ) there exists a system S C = ( X C F C ) 2 S such that S C simulates C via a function ' C .

Proof: It is easy to construct an analog or discrete two s t a c k automaton M such that its abstraction relative t o M is not a planar graph. Henceforth, theorem 3.3, proves that M can not be simulated by a deterministic system with continuous trajectories in dimension 2, via a function ' which is regular relatively to M .

Note that the condition of state regular simulations avoids the unfolding on the plane of the transition graph of the machine to be simulated. As a conclusion, dimension 2 is not su cient to get universality, unless non deterministic systems, non continuous trajectories or non regular state simulations are used. Hence, from now, we are mainly going to focus on continuous systems in dimension 3. We will show that in dimension 3, deterministic systems with continuous trajectories do have super-Turing capabilities. [START_REF] Asarin | Reachability analysis of dynamical systems having piecewise-constant derivatives[END_REF] Computational power of continuous systems

Mirror systems

In 19], Moore studies the unpredictability and the undecidability of dynamical systems. He proposed a transformation called Generalized Shift Map, that has the computational power of Turing machines. He claims that it is possible, using planar and parabolic mirrors, to conceive p h ysical systems that realize the generalized shift map transformations. We generalize the results of Moore and prove that mirror systems are also able to realize analog automata. This generalization is similar to the one done in 22].

De nition 4.1 (Mirror system)

A mirror system (or billiard) is a physical system made of a nite number of mirrors. A trajectory of the system is given by the evolution of a particle in the system: the particle re ects on the mirrors according to the physical re ection laws. Between two re ections, the trajectory of the particle is a straight line.

A planar parabolic mirror system S is a mirror system such that all the mirrors of S are either planar or parabolic. We claim: Theorem 4.1 Planar parabolic mirror systems I-simulate deterministic analog t w o stack automata. Thus, it is possible to conceive a p h ysical system that has the computational power of analog two stack automata. The computation is done by a particle that re ects on the mirrors. The sequence of the states of the system is given by t h e sequence of the intersections of the particle trajectory with a xed section of plane (see proof and gure 1).

Proof: W e prove that every deterministic reversible analog two stack automaton M can be I-simulated by a planar parabolic mirror system S. The result follows from theorems 2.4 and 3.1 since every deterministic analog two stack automaton can be Q-simulated by a r e v ersible one.

From theorem 2.5, we k n o w that M is K-simulated by the iterations of a disconnected one to one piecewise linear function f. W e use the notations of de nition 2.11 and the notations of the technical considerations in section 2.5 page 12. Let P be the plane section P = f(x y 0)j(x y) 2 0 1] 2 g in the space (O x y z). We build S such that, if a particle p crosses P perpendicularly in a point ( x y 0) in z > 0 direction, then particle p necessarily crosses again P perpendicularly in z > 0 direction, in (x 0 y 0 0), where (x 0 y 0 ) = f(x y). only one path C i j has been represented.)

In 19], using homothetic parabolic mirrors, Moore gives a way to realize every dilation of coe cient k with k > 0: see gure 2. Using planar mirrors, for each C i j = a 0 1 b 0 1 ] a 0 2 b 0 2 ] w e build a \path" P i j that brings a particle p crossing P in (x y 0), with (x y) 2 C i j , through parabolic mirror systems that realize dilations on x and y direction by the coe cients i j 1 and i j 2 corresponding to function f(x 1 x 2 ) = ( i j 1 + i j 1 x 1 i j 2 + i j 2 x 2 ) o n C i j . Then, using other planar mirrors, path P i j brings particle p to cross again P in (x 0 y 0 0), where (x 0 y 0 ) = f(x y) 2 C 0 i j : see gure 1. Remark that, from the considerations page 12, for all l 2 f 1 2g, either the dilations are by strictly positive coe cients ( i j l > 0) either i j l = 0 implies c l = c l , that is that no dilation at all is needed. Only a translation by i j l is required. Hence, the whole construction can be done using only dilations by strictly positive coe cients.

From equation ( 7) page 12, we know that none of the path P i j , f o r i j 2 1 n ], have t o i n tersect each another. So, all the path P i j can be built independently, a n d we get that M is I-simulated by system S, made of the union of the paths P i j of planar and parabolic mirrors.

It is interesting to outline that, with theorem 4.1, the unpredictability and undecidability of mirror systems is actually greater than claimed by Moore. For example, Moore proved that any non-trivial property is undecidable for mirror systems. But, we can go further and state that, in fact, there exist mirror systems S that cannot be simulated by T uring machines: that is, there exist physical systems S that are so complex that no Turing machine is able to give the state of system S, a t t i m e n, for an arbitrary n 2 N. N o t e t h a t i t w ould be possible to construct Turing machines that give the state of these mirror systems at time n, i f w e do not suppose n arbitrary in N, but bounded by a n i n teger n 0 2 N.

We can now also consider mirror systems as computational models, using theorem 3.2. Proof: J u s t c heck for the second point that the simulation of analog automata by planar parabolic mirror systems given by theorem 4.1 is actually done via transition independent functions.

We also get, from theorems 2.2 and 

Piecewise constant derivative systems

The notion of simulation used in previous section was the notion of I-simulation. We go further and present here systems that simulate analog automata using the SI-simulation notion. Actually we pursue the work of 4, 3 , 1 7 ] about Piecewise Constant Derivative systems: De nition 4.2 (PCD System 17, 3]) A P i e cewise Constant Derivative system (PCD) is a pair H = ( X g) where X is the state-space, g is a (possibly partial) function from X t o a n i t e s e t o f v e ctors C X, and for every c 2 C, g ;1 (c) is a nite union of convex polyhedral sets. The trajectories of the PCD system are given by the solutions of the di erential equation _ x = g(x).

In other words, a PCD system consists of partionning the space into convex polyhedral sets, called regions, and assigning a constant derivative, called slope, to all the points sharing the same region. The trajectories of such systems are broken lines, with the breakpoints occuring on the boundaries of the regions 3]. The reachability problem for PCD system was proved to be decidable for PCD systems in dimension 2 17], and undecidable for PCD systems in dimension 3 3]. We go further and prove that, in dimension 3, PCD systems are also able to simulate analog automata: Proof: The proof is quite similar to the proof of theorem 4.1: we p r o ve t h a t every deterministic reversible analog two stack automaton M can be SI-simulated by a PCD system S in dimension 3. Since every deterministic analog two s t a c k automaton can be Q-simulated by a r e v ersible one, the results follow from theorems 2.4 and 3.1.

From theorem 2.5, we know that M is K-simulated by the iterations of a disconnected one to one piecewise linear function f. W e will use the notations of de nition 2.11 and the notations of the technical considerations in section 2.5 page 12. Let P be the plane section P = f(x y 0)j(x y) 2 0 1] 2 g in the space (O x y z). We build S such that, if a trajectory t crosses P perpendicularly in a point ( x y 0) in z > 0 direction, then trajectory t necessarily crosses again P perpendicularly in z > 0 direction, in (x 0 y 0 0), where (x 0 y 0 ) = f(x y), one unit time later. So we will get SI-simulation of M by S.

We claim that, with a PCD system, it is possible to compute every multiplication of one of the coordinates by k, for k 0: on region Z 1 = f(x y z)j0 x 1 ^0 y 1 ^0 z 1 ; xg the slope is de ned as (0 0 1). On region Z 2 = f(x y z)j0 x k ^0 y 1 ^1 ; x z 1g the slope is de ned as (k 0 1). Every trajectory entering in (x y 0) at time 0 in Z 1 will leave Z 2 in (kx y 1) at time 0: see gure 4. We call such a part of a PCD system a dilation unit. We claim that, with a PCD system, it is possible to realize a \right angle": on region Z 1 = f(x y z)j0 x < 1 ; z ^0 y 1 ^0 z 1g the slope is de ned as (0 0 1). On region Z 2 = f(x y z)j1 ; z x < 1 + z ^0 y 1 ^0 z 1g the slope is (1 0 0). On region Z 3 = f(x y z)j1 + z x < 2 ^0 y 1 ^0 z 1g the slope is chosen as (1=3 0 0). Every trajectory entering in (x y 0) at time 0 in Z 1 will leave Z 3 at time 3 in (2 y 1;x): see gure 5. We call such a part of a PCD system a right angle unit. It is also possible to build linear units, of length l, and time-length t, f o r a n y l t 2 R + : on region Z 1 = f(x y z)j0 x 1 ^0 y 1 ^0 z lg the slope is chosen as (0 0 t = l ). Every trajectory entering in (x y 0) at time 0 in Z 1 will leave Z 1 in (x y l) at time t: see gure 6.

O x y (x,y) 1 1 Z 1 2 Z (1-x,y) 2 Z 3
Using linear units and right angle units, for each C i j , w e build a \path" P i j that brings any trajectory t crossing P in (x y 0), with (x y) 2 C i j through dilations units, that realize the x and y dilations by the coe cients i j 1 and i j 2 corresponding to function f(x 1 x 2 ) = ( i j 1 + i j 1 x 1 i j 2 + i j 2 x 2 ) o n C i j . Then using linear and right angle units, path P i j brings back trajectory t to cross again P in (x 0 y 0 0), where (x 0 y 0 ) = f(x y) 2 C 0 i j : see gure 7. Note that actually, as in theorem 4.1, from technical considerations of page 12 only dilations by strictly positive coe cients are needed: see proof of theorem 4.1. Similarly, none of the paths P i j have t o i n tersect, and the paths can be built The right angle, linear and dilation units are made such that the time t i j taken by a trajectory t to follow e n tirely path P i j , from (x y 0) (x y) 2 C i j to (x 0 y 0 0) (x 0 y 0 ) = f(x y) 2 C 0 i j , is independent of trajectory t (i.e: independent o f ( x y)). We call time-length of P i j the value of t i j Let i 0 j 0 be such t h a t t i0 j0 = maxft i j ji j 2 1 n ]g. P i0 j0 is the slowest path. It is always possible to adjust the time-lengths of the linear units of all the other paths, such that the time-lengths of all paths P i j , for i j 2 1 n ], are set to the same value t i0 j0 . Note that, by m ultiplying all slopes by the constant 1 =t i0 j0 , is is possible to set the time-lengths of all the paths to exactly one time unit.

Hence, we g e t t h a t M is SI-simulated by S.

Since analog two stack automata can simulate Turing-machines, the undecidability results of 4, 3] can be seen as consequences of theorem 4.2. We can determine the computational power of PCD systems by the following results: Corollary 4.3 Every function F : f0 1g + ! f 0 1g in P=polyis o -line and on-line SI-computable in polynomial time by a PCD system in dimension 3.

Every function F : f0 1g + ! f 0 1g is o -line and on-line SI-computable in exponential time by a PCD system in dimension 3.

Proof: Immediate from theorem 3.2: it can be checked that the SI-simulation of reversible analog two stack automata by PCD systems in dimension 3 given by theorem 4.2 is done via transition independent functions.

Actually we c a n p r o ve a converse theorem:

Theorem 4.3 Let F : f0 1g + ! f 0 1g be a function o -line I{computable (respectively: S-computable, SI-computable) by a PCD system H = ( X F), where X R p .

{ such that an encoding function is computable by a linear machine: that is, there exists a linear machine 13] that is able, given w 2 f 0 1g + , t o return the real number (w).

{ the accepting and rejecting sets are c onvex polyhedra o f R p .

{ Each trajectory of H crosses at most a polynomial number, in the size of the input, of regions. Only one path P i j have been represented.

Then F 2 P=poly. Let F : f0 1g + ! f 0 1g be a function on-line I-computable (respectively:

S-computable, SI-computable) by PCD systems.

{ such that the accepting and rejecting sets are c onvex polyhedra o f R p .

{ Each trajectory crosses at most a polynomial numbe r , i n t h e s i z e o f t h e input, of regions.

Then F 2 P=poly. Proof: The hypotheses are chosen so that, it is always possible to simulate the computation of the PCD systems by linear machines in polynomial time. The result follows from a result in 13]: every language recognized in polynomial time by a linear machine with discrete inputs is in P=poly.

As a conclusion, we h a ve c haracterized the computational power of PCD systems as exactly the computational power of analog automata: that is P=poly in polynomial time, and unbounded in exponential time.

Di erential systems

We a r e n o w going to focus on the computational power of di erential systems: we consider the class of continuous systems H = ( X F), where X R n , a n d F is given by the set of solutions of an ordinary di erential equation (ODE) _ x = g(x) o ver R n .

First remark is that PCD systems are di erential continuous systems: the trajectories of a PCD systems are given by the solutions of _ x = g(x), where g is de ned as a piecewise constant function. But function g is usually supposed to be Lipschitz, or at least continuous. One main reason is that the existence of solutions to a given ODE is easily proved only in these two cases. Cauchy theorem states that, with a g i v en initial condition, there is existence and unicity of a solution for Lipschitz ODEs, and only existence but not unicity for continuous ODEs. The question that we w ant to answer is to know if the previous results of super-Turing capabilities of dynamical systems can be generalized to Lipschitz ODE systems, or by default, to continuous ODE systems. Note that some results are already known: see 8]. Branicky proved that Turing machines, stack automata and nite state automata can be SI-simulated by continuous ODEs in R 3 , and that nite state automata can be I-simulated by Lipschitz continuous ODEs in R 3 . W e state: Theorem 4.4

Ordinary di erential equations de ned b y _ x = g(x), with g Lipschitz continuous piecewise linear on 0 1] 3 , SI-simulate deterministic reversible analog two stack automata.

Ordinary di erential equations de ned b y _ x = g(x), with g Lipschitz continuous piecewise linear on 0 1] 3 , I-simulate deterministic analog two stack automata.

Proof: The proof is based on the proof of theorem 4.2. We use exactly the same arguments, except that the right angle units, linear units and dilation units are not chosen to be exactly as in proof of theorem 4.2. The new units U are chosen such that the modulus of the speed of any trajectory entering an unit U is equal to 1, and such that the modulus of the speed of any trajectory leaving U is also equal to 1. Moreover, the speed g(x) i n a n y unit U is built as a continuous function. To d o so, interpolation regions are inserted in the right angle, linear and dilation units of theorem 4.2 to get the new ones.

Thus, the new linear unit, of length l, and time-length t, f o r l t 2 R + is de ned as: let = 1 =3, and such t h a t ( 2 ln( ) + ; 1)=(3 ( ; 1)) = t. O n Z 1 = f(x y z)j0 x l ^0 y 1 ^0 z 1g, function g is de ned as g(P) = (1 ; x=( l))(1 0 0) + x=( l))( 0 0) on P = ( x y z). On Z 2 = f(x y z)j l x (1 ; )l ^0 y 1 ^0 z 1g, function g is de ned as g(P) = ( 0 0). On Z 3 = f(x y z)j(1 ; )l x l ^0 y 1 ^0 z 1g g is de ned as g(P ) = ( l ; x)=( l)( 0 0) + (x ; l(1 ; ))=( l )(1 0 0). Any trajectory entering in Z 1 at time 0 with speed (1 0 0) in (0 y z ) l e a ves Z 3 at time t with speed (1 0 0) in (l y z): see gure 8.

The new right angle unit is build in the following way: on Z 1 = f(x y z)j0 x 3=2^0 y 1^0 z 1g function g is de ned as g(P ) = z(0 0 1)+(1;z)(1 0 1): that is, Z 1 is an interpolation region that interpolates speed from (0 0 1) to (1 0 1).

On Z 2 = f(x y z)j1=2 x 3=2^0 y 1^1 z 2g we de ne g(P) = ( 1 0 1). Z 3 = f(x y z)j3=2 x 5=2 ^0 y 1 ^1 z 5=2g is chosen to be an interpolation between (1 0 1) and (1 0 0): g(P) = ( 5 =2 ; x)(1 0 1) + (x ; 3=2)(1 0 0). On Z 4 = f(x y z)j5=2 x z + 1 ^0 y 1 ^3=2 z 5=2g, g(P) = ( 1 0 0). Z 5 = f(x y z)jz + 1 x z + 3 =2 ^0 y 1 ^3=2 z 5=2g is an interpolation region between speed (1 0 0) and (1=3 0 0): g(P ) = ( z + 3 =2 ; x)(1 0 0) + (x ; z ; 1)(1=3 0 0). On Z 6 = f(x y z)jz + 3 =2 x 4 ^0 y 1 ^3=2 z 5=2g we de ne g(P) = ( 1 =3 0 0). Z 7 = f(x y z)j4 x 5 ^0 y 1 ^3=2 z 5=2g is an interpolation region between (1=3 0 0) and (1 0 0): g(P) = ( 5 ; x)(1=3 0 0) + (x ; 4)(1 0 0). Any trajectory entering Z 1 at time 0 in (x y 0) with x y 2 0 1] with speed (0 0 1) leaves Z 7 in (5 y 2 ; x) a constant time later with speed (1 0 0): see gure 9.

The dilation unit is built in a similar way: we consider the dilation unit from theorem 4.2, for k > 0 and its two regions. We i n s e r t t wo i n terpolation regions Z 2 and Z 4 in between that do respectively interpolation from speed (0 0 1) to (k 0 1) and from speed (k 0 1) to speed (0 0 1): see gure 10. Any trajectory entering in (x y 0) with speed (0 0 1) at time 0 will leave Z 4 in (kx+ x y 1 + z at time , where x z and are some constants. As in the proof of theorem 4.2, the paths P i j are built using right angle, linear and dilation units. The time-lengths of the linear parts are chosen such that the time-lengths of all the paths P i j are identical, using a process similar to proof of theorem 4.2. All the dimensions can be dilated by some constants such t h a t t h e whole construction enters in 0 1] 3 . W e get then, a partially de ned function g that corresponds to the union of all the paths P i j , for i j 2 1 : : : n ]. Partial continuous piecewise linear function g can be completed, for example by triangulation, to a continuous piecewise linear function de ned on all 0 1] 3 . Since a continuous function on a compact subset is Lipschitz, the result follows.

Remark that we extend the results from 8]: theorem 4.4 implies that (respectively: reversible) Turing machines can be I-simulated (resp: SI-simulated) by bounded Lipschitz ordinary di erential equations. Furthermore, we h a ve p r o ved that bounded continuous piecewise linear functions can be used. We can also go further and state: Proof: Immediate from theorem 3.2, since the simulations of reversible analog two stack automata by Lipschitz ordinary di erential equations, given by t h e o r e m 4.4, are done via transition independent functions.

Hence, we get that Lipschitz ODEs have at least the computational power of analog automata. We turn now to the problem of nding an upper bound to the computational power of ordinary di erential equations: the following result shows the di culty of this problem: every deterministic discrete transition system is SIcomputable by a system de ned by a continuous ordinary di erential equation in dimension 3.

Theorem 4.6 (Consequences of 8]) Let A = ( Q ) be a deterministic transition system without input, where A Z n . Then, there exists a continuous system H = ( R 3 F ), w h e r e F is given by the set of the solutions of a continuous ordinary di erential equation in dimension 3, that SI-simulates A.

Proof: A state q = ( q 1 q 2 : : : q n ) 2 Z n of A can be encoded by i n teger p = Q n i=1 p qi i , where p i is the i th prime number. Hence, transition system A can be K-simulated by a transition system A 0 = ( Z 0 ). The result follows from theorem 5.7 in 8] applied to system A 0 . Note that, in the previous proof, unbounded spaces are used. However we g e t that the computational power of continuous ordinary di erential equations is unbounded in dimension 3. Proof: L e t A = ( Z ) be the transition system without input de ned, for all q 2 Z, b y (q) = ;1;F(q). Let H = ( R 3 F ) that SI-simulates A, g i v en by theorem 4.6.

Function F is o -line computed by the system S = ( Z A c c R ej), where Acc = f;2g, Rej = f;1g and : f0 1g + ! Zis the function that maps w to the integer that has w as radix-2 expansion. By de nition, we g e t t h a t F is o -line SI-computable in constant t i m e b y c o n tinuous ODEs.

Function F is on-line computed by the system S = ( Z 0 1 0 Acc Rej), where 0 (q) = 2 q and 1 (q) = 2 q + 1, with Acc = f;2g, Rej = f;1g. (Z ) (Z 0 ) a n d ( Z 1 ) can be SI-simulated by c o n tinuous ODEs on R 3 , f r o m theorem 4.6, via a same abstraction function ', since it can be checked that the simulations given by theorem 4.6 are simulations via transition independent functions. By de nition, we get that F is on-line SI-computable in linear time by continuous ODEs.

As a consequence, it seems that continuous di erential equations on unbounded spaces do not give \reasonable" computational models. Hence, from now, we f o c u s on Lipschitz ordinary di erential equations on bounded sets: at this time, the only case where we can answer is: Theorem 4.7

Let F : f0 1g + ! f 0 1g be o -line S-computable in polynomial time by a di erential system H = ( X F), where F is the set of the solutions to a Lipschitz ordinary equation _ x = g(x) on compact subset X R n .

{ Suppose that an encoding function is in P E d =poly: cf 14, 12]. { Suppose that the accepting and rejecting sets of H are c onvex polyhedra of R n .

{ Suppose that the solutions of _ x = g(x) are i n P d =poly [START_REF] Koiran | Computing over the reals with addition and order[END_REF]12].

Then F is in P=poly.

Let F : f0 1g + ! f 0 1g be on-line S-computable in polynomial time by Lipschitz ordinary di erential equations on a compact subset X R n . { Suppose that the accepting and rejecting sets are c onvex polyhedra o f R n .

{ Suppose that the solutions of the ODEs are i n P d =poly [START_REF] Koiran | Computing over the reals with addition and order[END_REF]12]. Then F is in P=poly.

Proof:

Let H = ( X F 0 ) be a di erential continuous system that o -line S-computes decision function F , s u c h t h a t F 0 is the set of the solutions of an ordinary Lipschitz di erential equation _ x = g(x). Let t 0 be the real of de nition 3.5 for the de nition of S-discretization. Let x 2 X. F or x 2 X, note f x the unique solution of _ x = g(x) such that f x (0) = x. Since F is o -line S-computable by H, w e get that F is computed by o -line system S = ( X f A R) where f : X ! X is de ned, for all x 2 X as f(x) = f x (t 0 ), and ,A,R are respectively an encoding function, the accepting and rejecting sets of continuous system H. It is known that for Lipschitz ODE the solutions depend in a Lipschitz way of initial conditions. Precisely, the following assertion is true: for all t 2 R + : jf x (t) ; f y (t)j j x ; yj exp kt

We get that F is recognized by o -line system S = ( X f A R) where f : X ! X is (exp kt0 -)Lipschitz. The result follows from lemma 2.1.

Similarly, it can be proved that if F is on-line S-computed by Lipschitz ordinary di erential equations, F is computed by an on-line system S = ( X f f 0 f 1 q 0 A R ) where f f 0 f 1 are Lipschitz functions. The result is immediate from lemma 2.1.

Note that requiring solutions of the ODE to be in P d =poly seems a very strong condition. Loc is a nite set of vertices called locations. Var is a nite set of real-valued variables. A valuation is a function v : V a r ! R. The set of valuations will be written V. A state is a pair (l,v) with l 2 Loc and v 2 V . The set of states will be written .

Hybrid systems

Lab is a nite set of synchronization labels that contains the stutter label . Edg is a nite part of Loc Lab P(V 2 ) Loc. L et e = ( l a l 0 ) 2 Edg: l is called the source location, l 0 is called the target location and is called the transition relation. The following condition is required: 8l 2 Loc (l Id l) 2 Edg, w h e r e Id= f(v v)jv 2 V g. The transition e is enabled in a state (l v) if for some valuation v 0 2 V , (v v 0 ) 2 . The state (l 0 v 0 ), then, is a transition successor of the state (l v). Act is a function which maps each l 2 Loc to a subset Act(l) of the functions from R + to V . The following condition is required: 8l 2 Loc 8f 2 Act(l) 8t 2 R + (f + t) 2 Act(l) where (f + t)(t 0 ) = f(t + t 0 ) 8t t 0 2 R + . Inv is a function which maps each l 2 Loc to a subset Inv(l) V . At a n y time instant, the state of a hybrid system is given by a control location and values for all variables. The states change in two w ays: by discrete and instantaneous transitions that change both the control location and the values of variables, and by time delays that change only the values of the variables according to the activities of the current location 1].

A run 1] of the hybrid system H is a nite or in nite sequence : 0 7 ;! t0 f0 1 7 ;! t1 f1 2 7 ;! t2 f2 : : :of states i = ( l i v i ) 2 , nonnegative r e a l s t i 2 R + , a n d activities f i 2 Act(l i ) s u c h that for all i 0, 1. f i (0) = v i 2. for all 0 t t i f i (t) 2 Inv(l i ) 3. the state i+1 is a transition successor of the state i We will call dimension of hybrid system H, and note dim(H), the cardinality of V a r . W e propose also the following de nitions: De nition 4 . 4

A hybrid system H is time-deterministic 1] if for every l 2 Loc and every v 2 V , t h e r e is at most one activity f 2 Act(l) with f(0) = v.

A hybrid system H is discrete-deterministic if for every l 2 Loc, every v 2 V , every f 2 Act(l) and every t t 0 2 R + , w e h a v e (l v) 7 ;! t f (l 0 v 0 ) (l v) 7 ;! t 0 f (l 00 v 00 ) ) (l 0 v 0 ) = ( l 00 v 00 ) ^t = t 0

A hybrid system H is full-deterministic if H is simultaneously time--deterministic and discrete{deterministic.

We need also the formalism about linear hybrid systems in 1]: we just suppress the fact that in a linear term all the coe cients are integers. Actually, i f w e suppose, that the coe cients can only be integers or rationals, that means, for example, that a PCD system 4, 3] cannot be considered as a linear hybrid system. Assuming real coe cients seems more realistic.

De nition 4 . 5 A linear term over the set V a r of variables is a linear combination with real coe cients.

A linear formula over V a r is a boolean combination of inequalities between linear terms over V a r . De nition 4.6 (Linear hybrid systems 1] ) A hybrid system H is linear if H is time-deterministic, and its activities, invariants, and transition relations can be de ned by linear expressions over the set V a r of variables:

1. For all l 2 Loc, the activities Act(l) are de ned by a set of di erential equations of the form _ x = k x where k x is a real constant. The rate k x of the variable x at location l, is denoted b y Act(l x) = k x .

2. For all locations l 2 Loc, the invariant Inv(l) is de ned by a linear formula over V a r v 2 Inv(l) , v( ) 3. For all transitions e 2 Edg, t h e t r ansition relation is de ned by a guarded set of non-deterministic assignments.

) f x := x x ]jx 2 V a r g where the guard is a linear formula and for each variable x 2 V a r , b oth interval boundaries x and x are l i n e ar terms:

((v v 0 ) 2 ) , v( ) ^( 8x 2 V a r v ( x ) v 0 (x) v( x ))
If x = x , t h e u p dated value x of variable x after transition e, is denoted by (e x) = x . We will need also the following de nition 1]:

De nition 4.7 ( 1])

If Act(l x) = 0 for each location l 2 Loc, a n d (e x) 2 f 0 1g for each transition e 2 Edg, x is a proposition. If there is a nonzero integer k 2 Zsuch that Act(l,x)=k for each location l and (e x) 2 f 0 x g for each transition e, t h e n x is a skewed clock. A multirate timed system is a linear hybrid system all of whose variables are p r opositions and skewed clocks. An n-rate timed system is a multirate timed system whose skewed clocks proceed a t n di erent rates. See 1, 2] for the de nitions of the following special cases of linear hybrid systems: discrete systems, nite-state systems, timed automata, multi-rate timed systems, n-rate time systems, integrator systems. Examples of linear hybrid systems can also be found in 9, 11, 16, 2 1 , 2 0 ]

We f o c u s n o w on the computational power of linear hybrid systems. Thus, we study continuous systems that are not necessarily systems with continuous trajectories. Theorem 3.3 cannot be applied any more, and we obtain that now, dimension 2 is su cient to get universality and super-Turing capabilities: we construct some linear hybrid systems with the computational power of analog automata in dimension 2. Theorem 4.8 Linear hybrid systems in dimension 2 SI-simulate non--deterministic analog two stack automata.

Full-deterministic linear hybrid systems in dimension 2 SI-simulate deterministic analog two stack automata.

Proof: Let M be a deterministic analog two stack automaton. From theorem 2.5, we n o w that M is K-simulated by the iterations of a disconnected piecewise linear function f. W e use the notations of de nition 2.11. It is easy to construct a linear hybrid system H with two v ariables x 1 x 2 such that the sequence of the values of the two v ariables x 1 x 2 after each discrete transition corresponds to the sequence of the values of the iterations of function f: the location l 2 Loc = 1 : : : n ] 1 : : : n ] of H corresponds at any time to the pair (i j) s u c h t h a t ( x 1 x 2 ) 2 C i j . Since f is linear on every C i j , it is su cient to build the discrete transitions of H on location l = ( i j) 2 Loc, such that their correspond to function f on C i j .

It is an easy exercise to generalize the whole construction to non deterministic two s t a c k automata using non-deterministic transitions. Furthermore, we g i v e an extension of the results in 1] about the undecidability of the reachability problem for 2-rate timed systems: we p r o ve that it is also possible to get super-Turing capabilities with 2-rate timed systems. Theorem 4.9 2-rate timed systems SI-simulate non{deterministic analog t w o stack automata.

Proof: W e use accurate clocks of rate 1, and skewed clocks of rate 4. Using methods similar to proof of theorem 3.2 in 1], we are able to realize the piecewise linear functions f, g i v en by theorem 2.5. Theorem 3.2 in 1] g i v es a mean to realize multiplication and division by 4 . T o realize addition of to the real number representing the content of a stack, just reset the corresponding clock w h e n i t r e a c hes 1 ; , instead of reseting the clock w h e n i t r e a c hes 1. Using theorem 3.2 (generalized to non-deterministic systems) and from the fact that the simulations given by 4.8 are done via transition independent functions, we get: Every function F : f0 1g + ! f 0 1g is o -line and on-line SI-computable in exponential time by deterministic linear hybrid systems in dimension 2. The most interesting fact is that, for linear hybrid systems, we are able to give an upper bound to their computational power: Theorem 4.11 Let F : f0 1g + ! f 0 1g be a function o -line S-computable (resp: I-computable,SI-computable) in polynomial time by a linear (respectively: deterministic) hybrid system { such that an encoding function is computable by a linear machine: there exists a linear machine 13] M, such that, given w 2 f 0 1g + , M is able to give the value of (w) in polynomial time.

{ such that the accepting (rejecting set) is given by a particular location:

that is de ned b y A H = f(l v)jv 2 V g (R H = f(l 0 v )jv 2 V g) w h e r e l l 0 2 Loc. Then F 2 NP= p o l y(resp: F 2 P=poly). Let F : f0 1g + ! f 0 1g be a d e cision function on-line S-computable (resp: I-computable, SI-computable) in polynomial time by linear (respectively: deterministic) hybrid systems 35 { such that the accepting (rejecting set) is given by a particular location Then F 2 NP= p o l y(resp: F 2 P=poly). Proof: The hypotheses are chosen such that linear machines 13] are able to simulate the computations of the hybrid systems. The result follows from a result in 13] that proves that every language recognized in polynomial time by a deterministic (resp: non-deterministic) linear machine with discrete inputs is in P=poly (resp: NP=poly).

Hence, we c haracterize the computational power of deterministic (respectively: non-deterministic) linear hybrid systems as exactly the computational power of analog automata: P=poly(resp: NP=poly) in polynomial time, and unbounded in exponential time.

Discussion

This paper shows that many continuous systems and hybrid systems do have super-Turing capabilities. This super-Turing power comes from the continuous systems capabilities to be \analog" machines: their trajectories are not purely discrete. A c o n tinuous system computation may m a k e an arbitrary in nite precision real number \appear", which can be used later as an advice. This was the main property used in this paper to prove the super-Turing capabilities of continuous systems.

These results have direct consequences for the decidability issues: since analog two s t a c k automata simulate Turing machines, we get, for example, that the reachability problem is undecidable in dimension 3 for mirror systems, PCD systems, di erential systems and in dimension 2 for linear hybrid systems.

But this paper also shows that there is \more" than undecidability: continuous systems are able to simulate some machines that cannot be simulated by T uring machines: hence there exist some continuous systems H, s u c h t h a t n o T uring machine M exists, such that, given n 2 N, M is able to give the state of H, a t t i m e n. T h us, there exist systems that cannot be numerically simulated by the usual discrete models of computation (except if we add the restriction that n is not an arbitrary int e g e r , b u t i s a n i n teger smaller than a given n 0 2 N) . These systems can only be simulated by computational machines that are allowed to compute over the real numbers in unbounded-precision in constant time. For example, by t h e Blum Shub and Smale machine 7].

Thus, this paper outlines the limitations of the common quick belief that all physical systems and all computational models can be simulated by T uring machines. Actually, only the discrete models can be simulated. That must be kept in mind whenever an explicit or implicit reference to Church thesis is made. Actually, one very interesting question would be to nd the equivalent of the Church thesis for the continuous models: in 23], Siegelman and Sontag proved that analog recurrent networks are very robust: allowing high order networks, polynomial activations, arbitrary Lipschitz transition functions does not give m uch p o wer that the model of analog neural recurrent networks. Thus they proposed the SiSo thesis 22, 23]: every reasonable continuous computational model does not have m o r e p o wer than recurrent analog neural networks. Stated in terms of analog automata: the computational power of analog automata is an upper bound to the computational power of any reasonable computational model. This paper shows that many continuous systems are at least as powerful as analog automata. But the full question is still open.

One aim of this paper was also to show that the machines computing over the reals in unbounded precision are physically plausible. We h a ve p r o ved in this paper
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 1 Figure 1: Mirror system simulating an analog automaton (Partially represented:
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 2 Figure 2: Homothetic parabolic mirrors realizing a dilation.

Corollary 4. 1

 1 Every function F : f0 1g + ! f 0 1g in P=polyis o -line and on-line I-computable in polynomial time by planar parabolic mirror systems. Every function F : f0 1g + ! f 0 1g is o -line and on-line I-computable in exponential time by planar parabolic mirror systems.
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 3 Figure 3: A PCD system in dimension 2.

Theorem 4. 2 PCD

 2 systems in dimension 3 SI-simulate deterministic reversible analog two stack automata. PCD systems in dimension 3 I-simulate deterministic analog two stack automata.
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 4 Figure 4: Dilation realized by a PCD system: dilation unit.
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 5 Figure 5: Right angle unit.
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 6 Figure 6: Linear unit.

Figure 7 :

 7 Figure 7: A PCD system in dimension 3 simulating an analog two s t a c k automaton.
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 8 Figure 8: Linear unit.

Figure 9 :

 9 Figure 9: Right angle unit

Figure 10 :

 10 Figure 10: Dilation unit

Theorem 4. 5

 5 Ordinary di erential equations de ned b y _ x = g(x), with gLipschitz smooth C 1 on 0 1] 3 , SI-simulate deterministic reversible analog two stack automata.Ordinary di erential equations de ned b y _ x = g(x), w i t h g Lipschitz smooth C 1 on 0 1] 3 , I-simulate deterministic analog two stack automata. Proof: In the proof of theorem 4.4, we used linear interpolations. But we c o u l d also use C 1 interpolations, using the usual mathematical methods. Then, we get: Corollary 4.4 Every function F : f0 1g + ! f 0 1g in P=polyis o -line and on-line SI-computable in polynomial time by ordinary di erential equations continuous Lipschitz piecewise linear on 0 1] 3 . Every function F : f0 1g + ! f 0 1g is o -line and on-line SI-computable in exponential time by ordinary di erential equations continuous Lipschitz piecewise linear on 0 1] 3 .

Corollary 4 . 5

 45 Let F : f0 1g + ! f 0 1g F is o -line SI-computable in constant time by continuous ordinary di erential equations in dimension 3. F is on-line SI-computable in linear time by continuous ordinary di erential equations in dimension 3.

  Alur and al. propose in 1] the following de nition: De nition 4.3 (Hybrid System 1]) A hybrid system is made of 6-components: H = ( Loc V ar Lab Edg Act Inv) where:

Theorem 4. 10

 10 Every function F : f0 1g + ! f 0 1g in NP= p o l y(respectively: P=poly) is o -line and on-line SI-computable in polynomial time by (resp: deterministic) linear hybrid systems in dimension 2.

Hence, de nition 3.1 is more general that the ow formalization of continuous systems, since non-deterministic continuous systems can also be de ned. We p r opose some de nitions in order to compare the models for continuous systems: De nition 3.2 (Di erential system) A c ontinuous system H = ( X F) is differential if F is de ned as the set of the solutions of a given ordinary di erential equation.

We c a l l system with continuous trajectories a c o n tinuous system such that all the trajectories are continuous functions.

De nition 3.3 (System with continuous trajectories) A c ontinuous system H = ( X F), i f X is a topological space, is a system with continuous trajectories if, for all f 2 F, f : R! X is a continuous function.

Discretizations

In order to compare continuous systems to discrete systems, we will need to discretize them. For that, we de ne the notion of state abstraction:

De nition 3 . 4

Let H = ( X F) be a c ontinuous system. Let ' be a n o n t o partial function from X to a set Q. F unction ' is called a state abstraction for H to Q . I n a p oint x, where ' is not de ned, we will note '(x) = ?. Let H be a c ontinuous system and ' a state abstraction. Let f 2 F be a trajectory such that f(0) = x. W e c all '-signature 4], or abstraction of f, the sequence (q 1 q 2 : : : q n : : : ) of the values of '(f(t)), w h e n t describes R + . Formally, there exist two sequences (l i ) i2N , (u i ) i2N with, for all i 2 N , { l i = infft > u i;1 j'(f(t)) 6 = ?g (u 0 = 0 ) { u i = i n f ft > l i j'(f(t)) = ?g { q i = '(f(t)) for some and every t 2 (l i u i ).

Let H be a c ontinuous system and ' a state abstraction. There i s a trajectory from x to x 0 cutting ' ;1 (Q), if there exist f 2 F 0 t 1 < t 2 t 3 2 R such that f(0) = x f(t 3 ) = x 0 , with '(x) 6 = ? ' (x 0 ) 6 = ?, a n d 8t 2 (0 t 1 ) ' (f(t)) = '(x), 8t 2 (t 1 t 2 ) ' (f(t)) = ?, 8t 2 (t 2 t 3 ) ' (f(t)) = '(x 0 ), '(f(t 1 )) 2 f ? ' (x)g and '(f(t 2 )) 2 f ? ' (x 0 )g.

We de ne the following notions of discretizations: by section the system is discretized by observing, through a state abstraction every t time-units, for a given t 2 R, the state of the system. by i n terval the system is discretized by observing only the sequence of the states of the system through a state abstraction, independently of the time of the system. It is required that the abstractions of all trajectories starting from points with same abstraction must be identical. by abstraction the system is discretized by observing only the sequence of the states of the system through a state abstraction, independently of the time of the system. It is not required that the abstractions of all trajectories starting from points with same abstraction must be identical. The de nitions are derived from 8, 4, 3]. Formally: De nition 3 . 5 Let H = ( X F) be a c ontinuous system.

Then we say that S simulates C via transition independent functions. We can then state: Theorem 3.2

Let C be a class of continuous systems that I-simulates (respectively: SI-simulates) the reversible deterministic analog two stack automata. Then:

{ Every function F : f0 Let M = ( Q ) be a reversible analog two stack automaton that recognizes F . There exists a system H 2 C such t h a t M is the I-discretization (resp: SI-discretization) of H via '. Automaton M can be considered as an o -line system. Let M = ( Q ) b e a r e v ersible analog two stack automaton, with stack a lphabet . that recognizes F r , where F r (a 1 a 2 : : : a n ) = F(a n : : : a 2 a 1 ) for all words a 1 a 2 : : : a n 2 . L e t M 0 = ( Q 0 ) and M 1 = ( Q 1 ) built such that 0 (respectively: 1 ) o n e v ery step systematically pushes 0 (resp: 1) on the rst stack and leaves the second stack u n c hanged. By de nition, since C simulates the analog automata via transition independent functions, we get that there exist continuous systems H = ( X F) H 0 = ( X F 0 ) H 1 = ( X F 1 ) s u c h t h a t M M 0 M 1 are their respective I-discretizations (resp: SI-discretizations) via a same function '. F is computed by on-line system S = ( Q 0 1 a 0 A R ) where q 0 is the initial state of M, A R are the accepting and rejecting sets of M.

In section 4, we will prove that many classes of continuous systems (the class of mirror systems, piecewise constant derivative systems, di erential systems and linear hybrid systems) I-simulate or SI-simulate reversible analog two stack automata via transition independent functions. With previous theorem, we will be able to conclude for each of them that they can o -line and on-line compute every function of P=poly.

Necessity of dimension 3

We prove in this subsection that dimension 2 is not su cient t o s i m ulate Turing machines. We will show in the next sections that, in dimension 3, continuous systems have super-Turing capabilities. We need the following de nition: De nition 3.10 (Abstraction relative t o ) Let A = ( Q ) be a t r ansition system without input. Let be a function from Q to a set Q 0 . The abstraction of A relative t o is the transition system A 0 = ( Q 0 0 ) such that (q q 0 ) 2 0 if and only if there e x i s t q 1 q 2 : : : q n 2 Q, such that, for all i 2 f 1 2 : : : n ; 1g, (q i q i+1 ) 2 , and there exists n 0 , 1 n 0 < n , such that, for all 1 i n 0 , (q i ) = q, and for all n 0 < i n, (q i ) = q 0 . Note that, the abstraction A 0 of A relative t o is de ned such that A 0 is an abstraction of A via . W e de ne now the notion of regular state abstraction: De nition 3.11 (Regular state abstraction) Let ' : X ! Q be a state abstraction (i.e: a function), with X R d . L et : Q ! Q 0 be a state abstraction. ' is regular relatively to if there exist jQ 0 j convex-subsets V 1 V 2 : : : V jQ 0 j R d , such that V q \ V q 0 = for all q 6 = q 0 2 Q, and such that ' ;1 ( ;1 (q 0 )) V q 0 for all q 0 2 Q 0 .

Using arguments similar to 4], we state: Theorem 3.3 Let H = ( X F) be a deterministic system with continuous trajectories in dimension 2 (i.e: X R 2 ). Let A = ( Q ) be a t r ansition system without input. Assume that H I-simulates (respectively: SI-simulates, '-realizes) A via '. Let be a function from Q to Q 0 . L et A 0 = ( Q 0 0 ) be the abstraction of A relative to . Assume that ' is regular relatively to . Then graph G 0 = ( Q 0 0 ) is necessarily a planar graph.

Proof: F rom the transitivity relations in theorems 2.2 and 3.1, we get that A 0 = ( Q 0 0 ) is realized by H via ' 0 = '. It can be checked that ' 0 is such that, for all q 0 2 Q 0 , ' 0 ;1 (q 0 ) is included into a convex set V 0 q . Proof of claim 6 of 4] c a n be easily generalized to this case, and we get that A 0 cannot be realized by H if G 0 is not a planar graph. The result follows.

In what follows, we will deal only with the simulation of discrete or analog two stack automata M = ( Q q 0 F ). M can always be considered as a transition system without input M = ( Q 0 = Q ! ! `). We de ne a particular state abstraction M : Q 0 ! Q de ned by, for all 1 2 2 ! , q 2 Q, M (q 1 2 ) = q.

We can now de ne the notion of state regular simulation:

De nition 3.12 (State regular simulation) Let H = ( X F) be a c ontinuous system. We say that H state regularly simulates (whatever the notion of simulation used) a discrete or analog two stack automaton M if H simulates M via a function ' which is regular relatively to M .

All the simulations that we will use in this paper will be state regular simulations. We get the following corollary from theorem 3.3 Corollary 3.1 Analog or discrete two stacks automata can not be s t a t e r egularly I-simulated ( r espectively: SI-simulated, '-realized) by deterministic systems with continuous trajectories in dimension 2. that it is theoretically possible to construct with a nite number of planar and parabolic mirrors a machine that is more powerful than all the Turing machines. So we prove that analog recurrent n e t works 23] and all the machines that compute in unbounded precision have some reality.

We w ould like to outline that hybrid systems are \natural" analog computational models. We p r o ved in this paper that they have at least the power of analog two s t a c k automata. It can be checked that hybrid systems considered as computational models can do operations that the usual analog computational models (the BSS machine 7] and its restrictions for example) cannot do: for example, a polynomial hybrid system is able to compute semi-algebraic functions in constant t i m e in unbounded-precision: take polynomial activations and polynomial conditions of transition. If we p u t a way the condition that the variables must be in nite number, the BSS machine can be seen itself as a particular hybrid system. Henceforth hybrid systems may h a ve e v en more power than all the other machines, in particular more power than BSS machines.
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