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December 1994

Abstract

We study the Firing Squad Synchronization Problem with non uni-
form delays in the case of a line of cells. The problem was solved in
the general case by T. Jiang in time A3. In the case of the line, we
improve his result, obtaining the A?. We observe that there does
not exist an optimal solution. We also note that the strategy, used
here, is the general strategy (Waksman’s one) and thus, even in this
case, we can break the line in its middle.

Keywords: Automata, synchronization, optimality

Résumé

Le probléeme de la synchronisation d’un graphe avec des délais de
transmission non uniformes a tété récemment résolu par T. Jiang en
temps A3, Nous I’étudions dans le cas de la synchronisation d’une
ligne d’automates finis. Nous obtenons dans ce cas une solution en
temps AZ. Cette solution utilise la startégie de Waksman en coupant
la ligne en ses milieux

Mots-clés: Automates, synchronisation, optimalité



Synchronization of a line of finite automata with
nonuniform delays*

Jacques Mazoyer

January 13, 1995

1 Introduction

The Firing Squad Synchronization Problem (in short FSSP) is a well known
problem arising in the field of cellular automata, first introduced in literature
by M. Minsky [7].

Let us recall the FSSP: is to construct a one dimensional cellular automaton
with a neighborhood of three cells such that: whatever the number n of cells is,
the cellular automaton evolves from the initial configuration in which all cells
are in a quiescent state (L) except the end left one (the general in state ) in
such a way that all cells enter a special state (the Fire F') simultaneously and
for the very first time.

Many authors have generalized this problem. In this paper, we consider
three generalizations:

Synchronization of graphs

Let T' be a connected, non oriented graph of bounded degree d with a
distinguished vertex G. To any node is attached a finite automaton. The
automaton, attached to node V', communicates with any automaton at-
tached to a node connected with V. FSSP is to construct a cellular au-
tomaton such that: whatever the number of vertices and of edges are,
the cellular automaton evolves from the initial configuration in which all
cells are in a quiescent state (L) except the automaton on G (the general)
which is in state G, in such a way that all cells enter a special state (the
fire F') simultaneously and for the very first time.

*This work was supported by the Programme de Recherches Coordonnées Mathématiques
et Informatique and the Esprit Basic Research Action : “ Algebraic and Syntactical Methods
In Computer Sciences”.
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Allée d’ Ttalie, 69364 Lyon Cedex 07, FRANCE. e-mail: mazoyer@lip.ens-lyon.fr

{Institut Universitaire de Formation des Maitres de Lyon, 5 rue Anselme, 69317 Lyon
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Synchronization of nonuniform lines

Let A be a one dimensional cellular automaton in which all cells make their
state transition synchronously (the delay between two state transitions is
said a unit of time), in which the delay between two adjacent cells is a
fixed number of units of time, depends on the numbering of the left cell
but keeps constant among the evolution of the cellular automaton. FSSP
is to construct a cellular automaton such that: whatever the numbers of
cells and of delays between two adjacent cells are, the cellular automaton
evolves from the initial configuration in which all cells are in a quiescent
state (say L) except the left end one (the general) which is in state G, in
such a way that all cells enter a special state (the Fire F') simultaneously
and for the very first time.

Synchronization of nonuniform graphs

The last generalization is obtained by mixing the two previous ones. It
is the synchronization of a graph in which delays between cells depend
on the edges between cells (this can be viewed as a synchronization of a
connected, non oriented graph of bounded degree d in which edges are
labeled by integers, indicating the delay of communication).

The first solutions to the FSSP (in time 3n) are due to M. Minsky and J. Mac
Carthy [7]. A minimal time solution needs 2n — 2 units of time: first minimal
time solutions are due to A.Waksman [10] and R. Balzer [1]. A minimal state
solution has at least 4 states [1] and there exists a solution with 6 states [5].

The first solution to the problem of synchronization of graphs is due to
P. Rosensthiel [8]. Synchronization of families of graphs was especially studied
by K. Kobayashi [4].

The problem of synchronization of nonuniform lines is due to V. Varkhavsky,
V.B. Marakhovsky and V.A. Peschansky [9], who obtained synchronization of
such lines when all delays are equal: in this case, the time of synchronization 1is
0O(2né) where § is the delay between two cells.

More recently, T. Jiang [2] [3] has obtained a solution to the problem of
synchronization of nonuniform graphs of bounded degree. The synchronization
time 1is in O(A3 + Tmar) Where Ty is the maximum delay of any single link
and A is the delayradius (let us call d(G, V) the minimal number of units of
time necessary for the general to send a message to vertex V, then A is the
maximum of d(G, V) for any vertex V of T' different of G).

Rosenstiehl’s method is to construct in a graph of bounded degree a path
which contains all vertices and then to synchronize this path. Jiang’s method is
direct and in his paper he indicates that the usual strategy is not directly useful
because a line cannot be easily broken in two equal parts.



In this paper, we present a solution to the problem of synchronization of
nonuniform lines in time O(A?) where A is the delayradius, that is the time
for messages sent by the general to reach the right end cell. This solution uses
Minsky’s strategy and Jiang’s features: the line is broken in two parts as close as
possible of half the delayradius. By Minsky’s strategy, we obtain two disjointed
sublines: the left and right ones. After some delay (the left and right ones) the
left part and the right one are synchronized independently in such a way that
both synchronizations occur at the same time.

Using Rosenstiehl’s method, this solution gives a solution to the problem of
synchronization of nonuniform graphs in a time different from Jiang’s one. The
time of synchronization does not depend on the delayradius A or 7,44, 1t 18 1n
O(®?) units of time where ® is the sum of all delays between cells. Thus, time
comparisons with Jiang’s solution are not easy.

We shall use the two new following main features of Jiang’s solution:

e acell k can set up a loop between itself and another cell (say cell h): any
information sent by cell k 1s reflected by cell A and when its reflection is
reflected by cell k; this information is changed and sent to cell 4, and so
on ... In such a loop, cell £ can make some computations on the delay
between cells k and h.

e in usual solutions, all cells enter Fire as soon as they know that there 1s
no reason not to do it. Now a cell computes how it does work in function
of the expected synchronization time.

2 Definitions

Definition 1 A finite communicating automaton A is a triplet (@, S,8) where:

o () is the set of states, which contains three special states G (the General),
L (the quiescent state) and I (the Fire);

o S is the set of signals, which contains two special signals Sy (the signal
Time) and sp (the quiescent signal);

5 Sx@ xS — QxS isthe state transition function.

Definition 2 1. A nonuniform line A is a couple (n, {712, ..., Th—1,n)) where
n is an integer (n > 2} and {71 2,...,Tho1,n) s @ series of n — 1 integers

(which may be 0).

2. The communicating delay between cell ¢ and cell i +1 s 7 541
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Figure 1: Notations used in section 2



3. The delay between cell v and cell v +1 tst; ;41 = 7541 + 1.

4. The delayradius of a nonuniform line A 1s
Ap= Z1gjgnti,i+1~

5. A non uniform line of automata is a couple (A, A) where A is a finite
communicating automaton and A a nonuniform line. Let us denote state
(resp. signal) of the " automaton at time t by (A, t); (resp. < A, t>>;),
we have: ({(A,1);, K At >) =

S A=ty >0, (At — 1)), K At —t 41 >i41)

Definition 3 A finite communicating automaton A is a solution to the problem
of the synchronization of nonuniform lines in time f(Ap) if for any nonuniform

line A:

o at time 0, cell 1 is in state G, emits signal Sy and all others cells (from
2 to n) are in state L emitting signal st

o at time f(Ayp), all cells enter state F' simultaneously and for the very first
time.

The previous definition of a finite automaton is the same as usual but we
distinguish letters of states from letters of sent messages (signals). We observe
that although it receives two signals, a finite communicating automaton sends
only one signal. In descriptions of finite communicating automata presented
below, we shall often define S as a product S; x ... x S,.

In a nonuniform line, we intuitively understand ¢ as the numbering of a
cell, and #; ;41 as the delay between cells numbered ¢ and 7 + 1 (the delay
between cells ¢ + 1 and ¢ is the same by hypothesis). In a nonuniform line of
automata, if the finite automaton A which is on cell j, in state ¢, receives signal
s; from its left neighbor (machine j — 1) and signal s, from its right neighbor
(machine j +1), it enters state ¢’ and sends signal s’ to its both neighbors (with
(¢',8") = 8(s1,4,sr).

The delay ¢; ;41 is the number of units of time needed by a signal sent by
cell ¢ to reach cell ¢+ 1. The delayradius is the number of units of time in which
a signal sent by cell 1 is reflected by cell n. We observe that a signal sent by
cell ¢, reflected by cell ¢ + 1, is reflected by cell ¢ in 2¢; ;41 units of time. The
figure 1 illustrates these remarks.

In the usual case of the Firing Squad, we have 7,41 = 0, but ¢;;4, =1
(Vie{l,...,n—1}).



3 Breaking a nonuniform line in about its “mid-
dle”

Let A be a nonuniform line of n cells. For any & we define 65 , and 65 ; (as right

and left) by:

i=n—1

O r = Z tiit1

i=k+1
i=k—1

Or1 = Z tiit1
i=1

Obviously, the equality 6z ; + % 141 + 0r,» = A holds.

Proposition 1 There exists an automaton K such that on a nonuniform line
A of n such automata K a special state BK (as "break”) appears only on a
cell, say cell k, at time A + 63 » + 15 p41 10 the evolution of the initial line. In
addition, we have:

A A
br,1 < L;J < f;] < O r +tr kg1 (1)
10k, — Ok 1] < tr kg1 (2)
Opr <t kg1 + O (3)

Proof

The figure 2 illustrates this proof.

First, a signal S7,4; 1s sent by cell 1 through the line at time 0 and at maximal
speed. Tt is reflected by cell n (the end right cell) at time A + Zii“ tici;—1
which is time A + 63 » + 5 141 — 1.

Second, another signal Ssiy, 1s sent by cell 1 at time 1. But this signal
goes through the line at speed % In fact between cells A and h + 1, this signal
Ssiow starts from cell A, i1s reflected by cell i + 1 as signal Sgjq1 and is once
more reflected by cell h as signal Sgipy2. Signals Ssiew1 and Ssieye are ignored
by cells A — 1 and h + 2 (and, thus, suppressed). Finally, this signal Sgiow2 is
another time reflected by cell A 4+ 1 as signal Sgis, and, when cell i receives
this third reflection, 1t suppresses it. This exchange of signals necessitates six
states. Thus, starting from cell h at time ¢, signal Sg,, starts again from cell
h 41 at time ¢ 4 3t p41. By this way, the signal Ssio, reaches cell ¢ at time
36;;— 1.

A cell k enters the special state BK if 1t receives Sgio and the reflection
of Stnse simultaneously or before the reception of Sgiow2 by cell &+ 1 (cell &
receiving the second signal Sgiey knows that it will never receives Srp;). When
a cell enters state BK, it suppresses signal Sr,;¢, sends to its right neighbor a
new signal Ssuppress and suppresses the reflection of Ssiey . Its right neighbor
receiving Ssuppress enters state L and emits St.
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Thus, a cell k& enters state BK at time A + 6, + 5 z+1; and we have
3651 < A48k + 15 k41 (by the previous condition) and 365111 > A+ 8; » (cell
k + 1 does not enter state BK). This gives:
36k S A+ 0 +1p k1 and 3 (6p 1 + i k41) > A+ O s
360 < 26k p + Ok + 2t g1 and 3 (61 + tr gg1) > 20k + Lk k1 + Ok
Or1 < 0k + 1k pg1 and Op 1 > Opr — th k415
thus, |6k,r — 6k,l| S tk,k+1~
But, by 6k,r + tk,k+1 + 6k,l = A and 6k,l < 6k,rl +tk,k+1, we have:

2001 <A <28+ g pt1); it is to say;

A A
bk < L;J < f;] < Opr + k41
We observe on the figure 2 that, in general, we do not have 63 ; < é; . But
the inequality 3 holds. If 65, < 63, it is obvious; else the equality 2 ensures us
that 0 < 6p, — g1 <t pt1- 0



Remark 1

The figure 3 describes the previous cut. We observe that if the line is cut on

cell k:

-1- The delay between the arrival of Ssiow on cell & (which is 365 ;) and
the arrival of the reflection of Srns¢ (which is A + & + th py1 =
8p,1 + 208 » + 2t ky1) 18 2tp g1 + 205 » — 265 1.

- i - The delay between the arrival of Srpi; (which is A4 8 » + 15 g1 =
8.1+ 26k » + 2ty k41) and the arrival of the signal Ssj (emitted by
cell k+1) on cell k (which is 365 1+ 45 k41) 18 2tp g1+ 265 1 — 268 1.

Thus, if we sightly modify the previous algorithm: cell & + 1 always emits
the equivalent of Sgisy to cells k& and k+2, at the break, cell k always knows the
values of 2ty p41 + 2051 — 201, » and of 25, 41 + 263 » — 2011 as delays between
arrivals of signals.

In the following, we shall need the values of 2¢; 111 4+ 267 — 261, and of
2ty k41 + 205 r — 263 1. Thus, we add the two previous exchange of signals these
new signals: when a cell receives signal Sgi,, of its left neighbor, it sets up a
loop between itself and its right neighbor (it sends signals, denoted by ¥ which
are reflected by itself and its right neighbor); and it always sends signals X, ;
up to the possible reflection of Sgipy 01 Sppge. If this cell receives signal Sgioy
of its right neighbor, it releases this loop (suppressing all signals X, ;); else, at
the reception of the reflection of Sy,s¢, it sends signals 3, ; up to the reception
of the equivalent of Sgs, emitted by its right neighbor and maintains the loop.
In other words, the loop is maintained if and only if the break occurs.

4 Synchronization of a two cells line

The synchronization of two finite automata was studied previously in [6]. Here,
in order to obtain a synchronization of a (whole) line in quadratic time, we
present a simple solution for two cells in quadratic time. In this section, cells of
the line are cell 1 and cell 2 and ¢ 5 is denoted by A — 1.

The link between the two cells is two ways: we distinguish these ways. Cell
1 (cell 2) sends a signal to cell 2 (cell 1) using way 1 (way 2). By this way,
we define a loop between our two cells. Thus, we can understand the time
evolution of exchange of signals as occurring on a cylinder; but for convenience
we represent this evolution on a “ribbon”. When cell 1 enters state G, it emits
a signal St (time signal) to cell 2 on way 1; cell 2 receives this signal after A—1
units of time and sends it to cell 1 after A units of time; cell 1 receives it after
2A — 1 units of time and sends it again after 2A units of time; and so on ...
This signal S7 can be viewed as a clock which marks every 2A units of time.
In the following, we shall always assume that signal Sp always come back and
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forth between the two cells. This allows us to speak of the p* period of cell 1
between time 2(p — 1)A (included) and the time 2pA (excluded).

Proposition 2 There exists an automaton K which synchronizes all nonuni-
form line A of two automata in time A(2A 4 1).

Proof
The figure 4 illustrates this proof.

1. After the first emission of St, called signal ”Clock”, cell 1 emits a new
signal ” Remain” one unit of time out of two until it receives the reflection
of the C'lock signal. This needs only two states: Init — Fven and Init —
Odd. By this way, A — 1 signals Remain are emitted by cell 1 and then
reflected by cell 2.

2. Then during the j** period (with 1 < j < A), cell 1 emits j — 1 successive
signals ” New” and reflects only A — 1 — j signals Remain (see point 3)
above). Then, after the end of the A period (at time 2A?), cell 1 sends to
cell 2 a special signal ” Synchro” and enters a new state ”Wait Nothing”.
When cell 2 receives Synchro (at time 2A% + A) it enters the Fire; and,
when cell 1 in state Wait Nothing does not receive a reflected signal New,
it enters the Fire (at time 2A2 4+ A).

3. Let us describe emission of New and suppression of signals Remain. When
cell 1 receives reflection of Clock, it enters the state Create — Init. If in
Create — Init it receives the reflection of New, cell 1 enters state Create
and emits signal New. As long as in Create cell 1 receives a reflected
New signal, it remains in Create and emits New. If in Create or in
Create — init cell 1 does not receive a reflected signal New, it enters the
state C'reate— E'nd and emits a signal New (thus, one more than in the last
period). In Create — End cell 1 enters the state C'reate — Wait and emits
the quiescent signal sp.. Cell 1 remains in C'reate — Wail emitting sy until
it receives a reflected signal Remain. When in signal Create — Wait cell 1
receives a reflected signal Remain, it enters state Wait and emits sg (and
thus suppresses the signal Remain). Cell 1 remains two units of time in
Wait and when it receives a reflected Remain, it enters state Re flection
and emits Remain. Finally, in Reflection, cell 1 only reflects reflections
of Remain and remains in Re flection until the following period.

We observe that, during a period, cell 1 is in state Reflection when it
receives reflection of Clock if and only if it has emitted a Remain signal.
If not (case of the A period) cell 1 receives reflection of Clock in state
Wait and emits Synchro in order to achieve the process indicated in point

9).

This achieves the description of K. 0O

11



Corollary 1 For any natural o, there exists an automaton K which synchro-
nizes every nonuniform line A of two automata in time 0(A) = A(2A+2a+1).

Proof
Obviously, the two cells wait « periods until they enter the Fire. 0

5 Moving and compressing data on loops

Let A be a nonuniform line of n automata C and two cells A and k, we define

6h,k by:
if h < k then
i=k—1
Ok = Z tiit1
i=h
else

Onk = Ok n
The two following lemmas gives useful technic.

Lemma 1 There exists an automaton which for any nonuniform line A of n
such automata:

1. waits 28, ; on Loop(h, k);

2. waits 6,%7,6 on Loop(h, k);

3. waits 48y, 16, m on Loop(h, k) and Loop(h, m);

4. waits 46p xn,m + 6p 1 on Loop(h, k) and Loop(h, m).
Proof

1. At time ¢, cell h emits a signal to cell k; this signal is reflected by cell &
and thus, reaches cell hat time ¢ + 20y, 1.

2. A signal S, goes back and forth between the cells A and k& and thus it
defines periods of 26y, j units of time. During a period, after reflecting (or
emitting) a signal Sy, cell h puts in the loop (Loop(h, k)) four signals o.ount
and one signal o,.,. These signals are always reflected up to the end of
the 6,€hk_1 period (which is easily known by some trick as in section 4).
Two cases occur (see the figure 5):

e if it remains only four units of time between emission by cell A of a
signal 0coun: and emission by cell A of S,, then 65 1 is even and the
next coming back signal S, is understood as Souspus, indicating the
end of its wait;

12
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o if not, cell h knows that 65 is odd. In this case, it has emitted

onr — 1. Thus, the last emitted signal ¢,., reaches it at time ¢ +
265 5(8n ks — 1) + 6pp — 1 (which is t + 67, — 1). Thus, cell h waits
one unit of time and considers that it has received signal Sourpur at
time ¢ + 6%7]6.

3. We suppose that 6, < 0nm. As previously, cell h sets up periods of

length 263 ,,, between itself and cell m. During the first period it sends a
signal S to cell k and as long as the reflected signal S has not reached it,
cell k sends signal Sy to cell m. In Loop(h,m), cell h counts periods of
length 26 ,, suppressing one signal Sy by period as long as possible (see
the figure 6).

As previously cell h waits 465 1,65, units of time. At the beginning of a
period on the loop Loop(h, m), cell k adds a signal Sz one period out of
two and the last received signal Sy is Soutpur (see the figure 7). 0

Lemma 2 There exists an automaton such that, whatevert and o <1j p41 are,
receiving 2« consecutive signals from one of its neighbors between time t and
time t + 1y, p41, cell k emits ezactly 2o successive signals from time t + 2t3 il

Proof

-a -

At time ¢, cell k emits a signal Sp; this signal is reflected by cell
k 4+ 1 and cell k. This induces a loop between cells k& and k& + 1 of
period 2t; p41. If cell £ marks all signals sent by cell £+ 1 by odd
and even, it makes a loop of period 4¢; 41. Now, we are sure that
the 2« signals received by cell k are received during this new loop.

The first point is now: ”How to move 2« signals, appearing on a
loop, during | 5| periods 7”. It is sufficient:
e to create 4 new signals as soon as possible on the first period,
e to suppress, if possible, 4 signals of the a’s signals,

e and, at the end of the L%Jth period to adjust the good number

(its remainder  (mod 4)).
The figure 8 illustrates such a process.

The second point is now: ” How to move and divide by 2 2« signals,
appearing on a loop, during | 5| periods ?”. The process is the same
than previously, adding 2 new signals and not 4. 0

16
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Figure 8: Proof of the lemma 2
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6 Synchronization of a line

6.1

We choose to synchronize the whole line in a fixed time, say 6(A), we shall define
later. When a cell, say cell k, enters state BK (of the proposition 1) at time
A+ 8y + tg pt1, 1t waits X, (X;) units of time and emits a signal Sy (S7)
in order to initialize the synchronization of the right (left) half line. But the
synchronization of the right part will be achieved by cell & 4+ 1. Thus after time
A+ by r+te g1+ e +tg 541 (when cell k+ 1 receives the signal Sr emitted by
cell k, cell k+ 1 acts on its right hand as the first cell of a new line (consisting
of cells numbered from k 4+ 1 up to n): it is to say that it sends simultaneously
Srtnit (of the proposition 1) in order to break the right half line and the signal
Clock (of the proposition 2) in order to synchronize the half right line in time
8(tg k+1) if this half line has only two cells (clearly the reflected Clock indicates
to cell k what case occurs). Second after time A + & » + tg p41+ Zi, cell k acts
on its left hand cells numbered from k& down to 1) as a general but interchanging
the right and the left.

By this way, if our choice of X, and ¥ is such that synchronizations of the
two half lines occur simultaneously at the expected time #(A), the whole line
will be synchronized.

In order to achieve description of our automaton, we shall:

-1 - define 6(A),
- 11 - compute X%, and ¥,

- iii - set up delays in such a way that setting up X, (X;) does not use the
right half line, cells from 1 up to k — 1 (the left half line, cells from
k+1up to n) after time A+8; » +tg 41 +21 (A+0k »+ 2t g1 +20).

The point iii) is very important: if it is not realized, breaking the right part
then the left part of the right part and so on can introduce an arbitrarily great
number of signals which cannot be set up by finite automata.

6.2

We choose for (A) the value previously obtained in the particular case of a line
with only two cells and we fix the value of o later: A (2A + (2« 4+ 1)).

Synchronization of the right (left) half line is obtained in 26%77« + (204 1)8; »
units of time (267 ;+(2a+1)é), »). Thus, these two synchronizations are achieved
simultaneously at time A (2A + (2« + 1)) if and only if:
A+ 6+ 2t 1 + 3y + 26,377« + (20 + 1)ég » = 2A% + (20 + 1) A;
and A+ 6 + 2 g1 + S0+ 262 4+ 200+ 1)6 1 = 2A% + (20 + 1A,
We obtain 7

Y = 207 + 20 = 2y pgr — 267, — (200 + 2) 6
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and
N = 2A% 4+ 20A — b jg1 — 268 1 — bpp — (2004 1)Sp

But we have é; ,+t5 r41+65,; = A (by the notation introduced at the beginning
of the section 3), thus:
Y= 25;37, + 405, 165 » + 215%7“_1 + 4ty k41 (O + Or0)+
(20[ — Q)tk B4l — 261, T 206y, i and
¥ = 267 40k 10k, + 27 1 T A k41 (0k e + Ok 1)+
(20[ — 1)tk E+1 — (20[ — 1)6k r (Sk g

In order to set up easily the delays ¥ and ¥;, we choose the value of « in
the corollary 1 such that (2cc — 2)ty, py1 — 26, + 2c0bp; and (200 — 1)ty gy —
(200 —1)é » — b); 1 are positive. By the proposition 1, point 1), o = 2 is sufficient.
We have:
Qg py1 — 265, + 4651 = 2651 4+ 2(tk 41 — Ok, + 0x1) > 0 and
3th 41+ 30k, — pp = 2651+ 2tg 1 + 2(tk k41 — Ok r + Op1) > 0.
By our choice, we obtain:
¥, = 267 Gt 45k 10k + 267 1 T A k41 (0r e + Ok 1)+
2051 + Q(tk B+l — 5k o l) and
= 25;“ + 45k,l5k,r + th,k+1 + 4ty k41 (O + Or0)+
2000+ 2t g1 + k1 + Okr — S 1)
Thus, we have:
X = 2050+ 215%7“_1 + 25;3, + 465 10 » + th f4+1)
+2(tk k41 — Opr + O 1) + 4tp p+165,» and
=20+ 215%7“_1 + 25?7« + 46 (bp 1 + th f4+1)
+(tk k1 + Ok — Ok1) + Hp fr 1081
Finally, we write X, and X; as:
X = 2050+ 25;37, + 465,16k +te pt1)
+4t5 k4108, + 215%7“_1 + 2(tk k41 — Op,r + Or,1) and
X1 =205+ tk b1 + 25?7« +tp 1 + 465 (651 + th p41)
+4t5 p4108,0 + 2t%,k+1 + (kg1 + Ok r — S5 1)
thus, our choice of §(A) is A(2A 4 5).

The figure 9 illustrates the following construction of ¥, and ;.

6.3

In this section, we explain how delay ¥; can be set up.

-1- First, cell k waits 26 ; units on time on the Loop(k, 1) from time ¢
up to time ¢ 4 265 ; (see lemma 1, point 1)).

- 11 - Then, cell k sends a signal to cell £+ 1. This signal reaches cell £+ 1
at time ¢ + 26k,l + tk,k+1~

- iii - Then (see lemma 1, point 3)), cell k 4+ 1 waits 465 »(8x,1 + t k41)
units of time on the Loop(k + 1,1) and Loop(k + 1,n) from time
t 4 2651+ te py1 up to time ¢ + 26 1 + g g1 + 405 (8 1 + T k41)-
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- iv - Then (see lemma 1, point 2)), cell k+ 1 waits 467 . units of time on
the Loop(k + 1, n) from time ¢ + 285 ; + ¢4 p+1 up to time ¢ + 265 1 +
te k1 + 465 2 (8 1 + T pg1)-

- v - Cell k4 1 sends a signal to cell k. This signal reaches cell k at time
t+ 28814 267, + th k1 + A6k 2 (k0 + th k1) + Lk k1

- vi- Then (see lemma 1, point 3)), cell k + 1 waits 4¢3 y4165; units of
time on the Loop(k, k + 1) and Loop(k, 1) from time
14261+ 25?7« +tp 1+ 465 (6k0 4 th k1) + th b1
up to time
t4 261+ 25?7« +tp 1+ 465 Bk 1+ th kt1) + te b1 + r k41081

- vii - Then (see lemma 1, point 2)), cell £+ 1 waits 2t%7k+1 units of time
on the Loop(k, k + 1) from time
14261+ 25?7« +tp 1+ 465 (6p 1+ te 1) + Eh k41 + Ak pr165
up to time
t+ 2650+ 267+t kg1 + 40k (60 + th k1) +k ka1 + Mk 16k +

2
25 pgr-

- viii - During these 2t%,k+1 units of time on the Loop(k, k+1), by lemma
2, cell k sets up the delay t5 41 — 65 1+ 65 » (observe that 2(tg 41—
8,1 + 6 ) 1s known by the remark 1). By this way, it can send a
signal at time
o+ 288 14 267, th g1 + 408 (81 + tr k1) F k1 + 4E k41080 +
215%7,“_1 + (tk k1 — Okt + Ok ).
This time 1s ¢ + ;.

- ix - We observe that cells £ + 1 to n are released at time ¢ 4 2657 +
262+t g1 + 46k (85 1 + T 541) (at the end of point - iv -).

- x - In order to show that the condition iii) of 6.2 is realized, we verify
that:
2051 + 25;?7,« + b k1 + 405 (O 1 F e k1) < Xy + 1k g41 (recall that
tis A4 6, + 6). It is to say:
2051 + 25?7« +th par + 465 (bp e pg1) < 208 + 25,3,—1—
461 1(Ok 4 k1) + Mk k160 + 208 oy 4 20k k41 — Ok + 0k 1) +
t%,k+1. This can be written:
267 , < 267 ;4 Mg 418k + 287 g+ 20tk k41 — Sk r + 85 1) and
25%, <2080+t p41)? + 20tk k41 — Ok r + 65 0)-
But, we have tg p41 4 6z > 6r » by the proposition 1, point 3), and
thus, the previous equality holds.
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6.4

In this section, we do not explain how the delay X, can be set up on cell & + 1
but how the delay X, 41 z+1 can be set up on cell k.

-1- First, cell k waits 26;, ; units of time on the Loop(k, 1) (see lemma 1,
point 1)).

- ii - Then (see lemma 1, point 2)), cell k& waits 26%71 units of time on the
Loop(k, 1) from time ¢ + 26, ; up to time ¢ + 265, ; + 267 ;.

- iii - Then (see lemma 1, point 3)), cell k waits 465 1(65 » + tg p+1) units
of time on the Loop(k, 1) and Loop(k,n) from time ¢ + 26 ; + 267 ,
up to time ¢t + 26k,l + 26%71 + 46k,l(6k,r + tk,k+1)~

- 1v - Then, cell £ sends a signal to cell k+1. This signal reaches cell k41
at time ¢ + 26, 1 + 25%7, + 46510k » + 1) + okt

- v - Then (see lemma 1, point 3)), cell k + 1 waits 4¢3 p4165, units of
time on the Loop(k, k + 1) and Loop(k + 1, n) from time
t+ 28k 1 4 267 + 465 18k r + th k1) + Lk k1
up to time
14261+ 25;3, + 465 18k » + te p+1) + o k41 + Ak k4108 5

- vi- Then (see lemma 1, point 2)), cell k£ + 1 waits 2t%7k+1 units of time
on the Loop(k + 1, k) from time
t+ 28k 14 267 + 465 1(8k r + th k1) + Lk k1 + Ak ky18k
up to time
4261+ 25;3, + 485 18k r +tr k1) + o k1 + Ak 410 + 215%7“_1.

- vii - During these 2t%7k+1 units of time on the Loop(k, k + 1), by the
lemma 2, cell k+ 1 sets up the delay of 2(tg 41 — &k » + 61 1) (known
by the remark 1). By this way, it can send a signal at time
t+ 268k 14267 1+ 48k, 1(6k r 1k k4 1) F kg1 + 4k k16 207 4+
Q(tk,k+1 — 6k,r + 6k,l>~ This time 1s ¢ + X, + tk,k+1~

- viil - We observe that cells 1 to k are released at time ¢ + 265 ; + 26,%  +
465 1(8k » + tr k41) (at the end of the point - iii -).

- ix - In order to show that the condition iii) of 6.2 is realized, we verify
that:
26k71+26g 1—1—46;67;(6;677« +tk,k+1) < ¥y (recall that ¢ 1s A—i—ékyr—i—ékyl).
It is to saﬁl:
2610 4 267 1 + 465 1 (85 r + i p41) <
2650 + kg1 + 48 (8k 1 + th k1) + 267, + tepgr + Ak k18 +
2t%7k+1 + (tg k+1 + Ok » — 6,1). This can be written:
5571 < 2 g1+ 40k p e b1 + 25?7« + 2tp 5412 4+ (Ee p+1 + Ok r — Or 1)
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5571 < 2(tg k41 + 0k )2 4 3th k1 + Ok r — 65 0)-
But, we have tg p41 4 6z > 6r » by the proposition 1, point 3), and
thus, the previous equality holds.

6.5

The previous construction allows us to state the following theorem:

Theorem 1 There exists an automaton which synchronizes every nonuniform

line A in time A(2A+5).

7 Conclusion

In conclusion, it 1s possible to synchronize a nonuniform line using usual Min-
sky’s strategy for the Firing Squad. The line is not broken on exactly its mid-
dle, but relations between delays insure us to achieve the synchronization in a
quadratic time.

Clearly, if we define optimality in the sense of K. Kobayashi [4], there does
not exists an optimal time solution (this is not the case even if the line has
only two cells [6]). In [6], it has been proved that synchronization of two cells
has not a linear solution; thus synchronization of a nonuniform line has not a
linear solution. We do not know if there exist a synchronization of a nonuniform
line in time O(Alog(A)). As think by T. Jiang [3], in some cases (a line) it is
possible to synchronize a nonuniform network in a quadratic time.

This gives us a new strategy to synchronize any nonuniform graph of au-
tomata (using Rosenstiehl’s method [8]), but, in this case, the synchronization
time does not depend on the delayradius and 1s quadratic in the time needed to
go through any cell (this time is given by the local orientation involved in the
Rosenstiehl’s algorithm).
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