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Abstract

The DNA model of computation� with test tubes of DNA molecules

encoding bit sequences� is based on three primitives� Extract�A�Bit�

Merge�Two�Tubes and Detect�Emptiness� Perfect operations can test

the satis�ability of any boolean formula in linear time� However� in re�

ality the Extract operation is faulty� We determine the minimum num�

ber of faulty Extract operations required to simulate a single highly

reliable Extract operation� and derive a method for converting any

algorithm based on error�free operations to an error�resilient one�

Keywords� Reliability� DNA Computations� Lower Bounds� Algorithms

R�esum�e

Le mod�ele de calcul bas�e sur les mol�ecules d�ADN codant des suites de

bits utilise trois primitives� Extraction d�un bit� Fusion de deux �eprou�

vettes� et D�etection d��eprouvette vide� Avec des op�erations �ables�

on peut tester la satis�abilit�e d�une formule bool�eenne quelconque en

temps lin�eaire� Mais en r�ealit�e� l�op�eration d�Extraction est peu �able�

Nous d�eterminons le nombre minimum d�Extractions non �ables et de

fusions permettant de simuler une Extraction tr�es �able� puis donnons

une r�eduction qui� d�un algorithme bas�e sur des primitives parfaite�

ment �ables� d�eduit un algorithme lorsque l�op�eration Extraction est

non �able�

Mots�cl�es� Fiabilit�e� Calculs avec l	ADN� Bornes Inf�erieures� Algorithmes



Error�Resilient DNA Computation

Richard M� Karp� Claire Kenyony Orli Waartsz

� Introduction

Lipton 
���� building upon the earlier work of Adleman 
��� has proposed a
model of computation using DNA molecules� In this model each operation is
performed on a test tube� i�e�� a set of DNA strands� each of which encodes a
sequence x � 
x�� x�� � � � � xn� of bits� The Extract operation on bit xi divides
a test tube into two test tubes� one containing the strands with xi � �� and
the other containing the strands with xi � �� The Merge operation forms
the union of two test tubes� and the Detect operation tests whether a test
tube is empty� Several additional operations have been considered� including
Duplicate� which makes two copies of a test tube� and Append� which appends
the same bit to each strand in a test tube�

Assuming the Extract� Merge� and Detect primitives are perfect� they
can be used to test the satis�ability of any boolean formula in a number
of operations proportional to its size� These primitives� together with the
Append operation� can be used to evaluate any boolean circuit in a number of
operations proportional to its size� In the short time since Adleman	s original
paper appeared there have been a multitude of further papers showing how
these and other operations may be used to solve various classes of decision and
optimization problems 
cf� 
�� �� �� �� �� �� �� ��� ����� Except for 
��� which we
discuss below� the correctness of all these solutions depends on all molecular
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biology experiments working perfectly without any errors� However� clearly�
as pointed out by Adleman 
��� the Extract operation is error�prone� During
each Extract� each strand involved has some chance of ending up in the wrong
test tube� The Merge primitive is simpler to implement� and can be assumed
to be error�free� As we argue below� the Detect primitive is not relevant for
our procedures� and hence we are not concerned with its reliability in this
paper�

The error in the Extract operation is crucial� it will most likely destroy
any computation that tries to ignore it� For example� a widely used encryp�
tion procedure is the Data Encryption Standard or DES 
���� 
�� presents a
molecular program for implementing a chosen plaintext attack on DES� Given
a ���bit plaintext� the program evaluates the DES circuit concurrently for all
possible ���bit keys� The program proceeds in ��� steps� of which about half
are error�prone Extract steps 
the number of steps can be reduced to ���
using an additional operation called Join� which may not be realizable ex�
perimentally�� Typically� the probability that a one bit will be misclassi�ed
as a zero in an Extract operation is approximately ���� and the probability
that a zero bit will be misclassi�ed as a one is approximately ����� Thus�
with very high probability� after the ��� steps� and at least four months of
computations 
��� the probability that a correct output will be obtained for
any given key will be minuscule�

Thus� it seems that any hope that DNA computation will ever be practical
depends on �nding e�cient general transformations to make DNA algorithms
error�resilient� as well as on studying the inherent limitations of e�ciency
of such transformations� Both the transformations and the lower bounds
should of course take into account the fact that each operation can operate
on a huge number of objects simultaneously� This property is one of the
main issues that distinguish DNA computers from conventional computers�
Not surprisingly� it also distinguishes the problem of making DNA computa�
tions error�resilient from the issue of computing with unreliable operations
on conventional computers� that has been the focus of much research 
cf�

�� �� ��� ��� ��� ��� �����

In this paper we provide a method for making computations error�resilient
without a big sacri�ce in their running time� Moreover� we derive lower
bounds on the cost of such methods�

We start with the problem that is at the core of all error�resilient DNA
computations� simulate a highly reliable Extract operation� Speci�cally�
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given a set of strands T � each containing the encoding of a single bit� separate
T into two sets� �T��T � so that each bit that is a one will end up in �T
with probability � �� ��� and each bit that is a zero will end up in �T with
probability� ����� We seek a sequence of operations that achieves this result
no matter how many bits are initially present� Under this requirement the
Detect operation is not useful� since no test tube will be empty if the number
of initial strands is su�ciently high� Thus our program will consist of a �xed
sequence of Extract and Merge operations� Refer to this problem as the
error�resilient bit evaluation problem� Let � be the probability that a single
Extract will misclassify a one bit as a zero� and let � be the probability that
a single Extract will misclassify a zero bit as a one� All errors are assumed
to be independent�

In any procedure for the error�resilient bit evaluation problem based on
Extracts and Merges� the number of Merges is bounded by the number of
Extracts� Thus we take the number of Extracts as our measure of complex�
ity� Our main result is that the inherent complexity of the error�resilient
bit evaluation problem is �
dlog ���

�

�
��
e � dlog ���

�

�
��
e�� The upper bound is

constructive� The lower bound is the principal technical achievement of the
paper� Its di�culty arises already in the case where �� � �� and � � �� Its
derivation is based on the analysis of a novel potential function�

One step up in granularity from bit evaluation is the problem of evalu�
ating a boolean function� In this problem one is given a set of strands� each
representing a sequence of n bits� Refer to the ith bit of strand x by xi� Given
a boolean function f
x�� x�� � � � � xn�� one wishes to create two test tubes� one
containing those strands x for which f
x� � �� and the other containing
those strands x for which f
x� � �� Error resiliency will require that each
strand will end up in the wrong tube with probability not greater than some
�� We refer to this problem as the weak error�resilient function evaluation
problem� We also de�ne a stronger and more desirable requirement in which
the probability of a strand ending up in the wrong tube may depend on the
type of the strand� Intuitively� if there are many wrong strands of a given
type� we would like each of them to have only a small probability of error�
since otherwise their number in the wrong tube will overwhelm the number
of correct strands that ended up there� We refer to this variant as the strong
error�resilient function evaluation problem or just the error�resilient function
evaluation problem�
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We show that our error�resilient bit evaluation can be used modularly and
e�ciently to transform any DNA algorithm for evaluating some function into
an error�resilient algorithm for evaluating the same function� The e�ciency
of the transformation does not depend on the number of strands but only on
their sizes� on the required level of con�dence� and on the errors in a single
Extract� In particular we show that� for any function that can be evaluated
using O
a
n�� perfect Extracts we can get an error�resilient algorithm that
uses only O
a
n� � dlog�

�
a�n�

e � dlog�
�

a�n�
e� Extracts� We then show that for

several n�variable functions� including Parity� Disjunction and Conjunction�
no algorithm can do better than �
n � dlog� �e � dlog� �e� Extracts� Our al�
gorithm is a strong error�resilient function evaluation algorithm� while the
lower bound applies even for weak error�resilient function evaluation� Notice
that for � � O
��n�� the upper and lower bounds for Parity� Conjunction and
Disjunction match� In practice one would usually want � � ��n� since the
number of wrong strands is usually much greater than n times the number
of correct strands� and hence if � �� O
��n�� the number of wrong strands in
the tube that is intended to contain the correct strands� will overwhelm the
number of correct strands there�

This is a preliminary version� with the proofs only sketched�

��� Other Related Work

The fact that the Extract operation is error�prone was �rst pointed out in

��� Adleman estimated that �� the probability for an Extract operation
to misclassify a � bit� is about �� and �� the probability for an Extract to
misclassify a � bit� is about �����

The papers 
�� and 
�� consider computations in which each strand is
either good or bad� A good strand encodes a solution to the problem� a bad
strand does not� The goal of the algorithms in this class is to eliminate the
bad strands� leaving only the good strands in the �nal tube� The authors
focus on the case in which a computation is a sequence of tests� such that
a strand is good if and only if it gives a positive result on each test� In the
simplest case� where each test consists of an Extract on a single bit� Adle�
man	s approach to making the computation error�resilient when � is much
larger than � is based on trying each Extract several times� and collecting in
a test tube all those strands that give a positive result in any of the trials�
For example� if � � ��� � � ���� and the number of trials is �� then the
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probability of misclassifying a good strand is ����� and the probability of
misclassifying a bad strand is less than �� ����� Adleman shows that� in a
particular numerical example� an algorithm modi�ed in this way has a good
chance of creating a �nal test tube that contains no bad strands and contains
a good strand unless all the strands in the initial test tube were bad�

In 
��� Boneh and Lipton noted that even faulty tests will eliminate the
bad strands at a faster rate than the good strands� They assume that� if the
initial numbers of both types of strands are large� the ratio of good strands to
bad strands will grow at a steady exponential rate in the course of the process�
so that the good strands will eventually dominate� They note� however� that
if the initial number of good strands is very small then the good strands may
die out� To prevent this they suggest using the Duplicate primitive to double
the total volume of remaining DNA whenever the volume drops below half of
its original amount� 
This is possible because the total volume of remaining
DNA decreases in the course of the algorithm�� Their method e�ectively
transforms the problem in which the initial volume of DNA is �nite� into a
problem in which it is arbitrarily large� and hence as they show� it yields a
reasonably high probability that the good strands will not die out� and will
occupy most of the volume of the �nal test tube�

Our error�resilient procedures are more powerful than the Adleman and
Boneh�Lipton procedures� Our procedures ensure that every strand� whether
good or bad� is classi�ed correctly with the required probability� Thus they
apply to tasks such as evaluating a boolean function or breaking DES� which
do not conform to the paradigm of discarding the bad strands and keeping
the good ones� and in addition� they can be incorporated into any algorithm
in a modular fashion� Further� the Boneh�Lipton procedure requires the
Duplicate primitive� whereas our procedures use only Extract and Merge� As
mentioned by Adleman� the Duplicate operation is a concern� its cost and
complexity is on a larger scale than Extract and Merge� it itself introduces
errors� and it may not even be feasible in case the DNAmedium is replaced by
inorganic material� as is being hoped 
��� Thus� as concluded by Adleman 
���
for the purposes of a practical molecular computer� it may be preferable to
avoid it or restrict its use as much as possible�
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� The Model

A tube is a set of DNA strands� each encoding a sequence of bits x �

x�� x�� � � � � xn�� Given a tube� one can perform the following operations�

�� Extract� Given a tube T � produce two tubes �T and �T where �T is
all of the strands of T which contain � in the tested bit and �T is all
of the strands of T which do not contain � in this bit�

�� Merge� Given two tubes T�� T�� produce �
T�� T�� where �
T�� T�� �
T� � T� �

�� Detect� Given a tube T � say �yes	 if T contains at least one strand and
say �no	 if it contains none�

After an Extract� a strand which should end up in �T ends up in �T
with probability �� and a strand that should end up in �T ends up in �T
with probability ��

In this abstract we assume that � � � � �� The case where �� � � � is
reduced to this case by reversing the roles of the tubes �T and �T � When
� � � � � the Extract operation treats one and zero bits alike� this case is
both uninteresting in practice and trivial to analyze�

� Error�Resilient Bit Evaluation

We are given an initial tube containing n strands� each of which consists of
a single binary bit� The strands containing � are called ��strands� and the
strands containing � are called ��strands� The goal is to separate the strands
into two test tubes� called the ��tube and the ��tube� such that�

�� each ��strand has probability at most �� of ending up in the ��tube�
and

�� each ��strand has probability at most �� of ending up in the ��tube�

Our procedure is required to satisfy this requirement regardless of the
value of n� Under this requirement the Detect operation is of no value�
since� when n is su�ciently large� there are many strands of both types and
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every tube produced in the course of the procedure will be nonempty with
high probability� Thus we may restrict attention to procedures consisting of
Extract and Merge operations only�

� Tight Bounds

In the full paper we show�

Theorem ��� The number of Extract operations required for achieving error�
resilient bit evaluation is �

�
dlog� ��e � dlog� ��e

�
�

Due to lack of space� in this abstract we will prove this theorem for
�� � �� � ��

��� Intuition

The ideas behind our analysis of the error�resilient bit evaluation problem
are clearest in the case where � � � and �� � �� � �� At any time during an
algorithm� each strand has a count� de�ned to be equal to i� j if the strand
has been involved in i � j Extracts� i of which classi�ed the strand as a �
and j of which classi�ed the strand as a �� Each strand	s count behaves like
a biased random walk on the count axis� The � strand is biased 
�� � � ��
and the � strand is biased 
�� �� ��� Each strand starts its walk at the zero
point� If the process starts with equally many ��strands and ��strands then�
at any step� a random strand with count i has probability �i

�����i��i
of being

a ��strand�
Roughly speaking� an algorithm can classify a strand as a � only when the

strand	s count is at least log� �� since then the strand	s probability of being a
� is at most �� and hence the probability that a ��strand will be misclassi�ed
is at most �� as required� Therefore� each ��strand needs to cross the right
barrier of log� � on the count axis before it can be classi�ed as a �� Similarly�
a strand has to cross a left barrier of � log� � on the count axis before being
classi�ed as a ��

Since the number of strands in a tube is arbitrary� each time we perform
an Extract on a tube� an arbitrary number of strands proceed in their random
walk� Thus� we have an arbitrary number of random walks being performed
in parallel�
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The goal of the analysis is to determine the number of Extracts necessary
and su�cient in order to have nearly all the strands cross their barriers�

The algorithm is pretty straightforward� We show that it is enough to
proceed in O
log� �� phases� in each of which one performs an Extract on
each tube present� and then merges tubes that contain strands with identical
counts� In this method we have exactly i tubes in the ith phase� and hence
we immediately get an O
log�� �� upper bound� Next� for � �� �� we replace
each Extract by what we call a Super Extract� A Super Extract is a series
of Extracts on the same bit� at the end of which each strand is in the wrong
tube with probability � �� Now we can proceed with the algorithm for
� � � � �� using the Super Extract as a primitive step� The algorithm for
the case �� �� �� requires further ideas� and we defer its presentation to the
full paper�

The lower bound requires a considerably deeper insight into the nature of
this process and the possible interaction among the arbitrarily many random
walks done in parallel� One di�culty is that one may merge tubes containing
strands that are at di�erent positions in their random walks� 
Indeed our
algorithm for the case � �� � does so when performing a Super Extract step��

For simplicity� assume � � �� First consider an algorithm that never
merges two tubes of unequal count� The key observation is that� at any
point of the computation� for each point l on the count axis� a certain fraction
return
l� of the good strands are expected to pass through l in the future�
Part of this fraction consists of good strands whose random walk is currently
at l or to its left� and the rest consists of the expected fraction of strands that
will return to l from the right� Each time we perform an Extract on a tube
with count l� at most a fraction return
l� of the good strands execute a step
of their random walk� and among these a fraction �

���
are expected to return

to l� Thus the step reduces return
l� by at most the factor �
��� � and it turns

out that� for all integer points s �� l on the count axis� return
s� remains
unchanged� Also� using the fact that nearly all the good strands must have
a count close to log� � when the computation terminates� we obtain an upper
bound 	
l� on the value of return
l� at the end of the computation�

Since return
l� is initially equal to �� is reduced by at most the factor
�

��� when an Extract is performed at l� is not reduced at any other step� and
must eventually be reduced below 	
l�� we �nd that the number of Extracts
on tubes of count l must be at least log �

���
	
l�� Summing over all l in the
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interval 
��� log�
���� we obtain the lower bound of �
log�� ���
The proof that the lower bound holds even for algorithms that merge

tubes of unequal counts is more di�cult� and is achieved through the analysis
of a novel potential function related to the function return
l��

��� The Lower Bound

����� De�nitions

With each test tube T � we associate a likelihood� de�ned as

PrfT 
st� j st is a �g

PrfT 
st� j st is a �g
�

where st is a strand drawn at random from the initial test tube and T 
st�
denotes the event that the strand st occurs in test tube T � De�ne the likeli�
hood of a strand to be the likelihood of the tube which it belongs to� Next
we de�ne the log�likelihood of a test tube as

log �
���

�
PrfT 
st� j st is a �g

PrfT 
st� j st is a �g

�
�

De�ne the log�likelihood of a strand to be the log�likelihood of the tube which
it belongs to�

Clearly� initially all strands have likelihood �� and hence log�likelihood ��
We �rst focus on the strands that are �	s� We refer to these strands as

good� At any time during the course of an algorithm� the log�likelihood of
the good strands have a certain distribution 
� More precisely� 

x� at time
t is the expected fraction of good strands with log�likelihood � x at time t�

De�ne

D � log ���
�

�

�
� and R � log ���

�

�

�
�

De�ne

return
l� �
Z l

��

d

x� �
Z
�

l�

�
�

� � �

�x�l

d

x� �

Finally de�ne the potential function associated to distribution 
 as�

�

� �
Z D

�
log ���

�

return
l�

�
dl �

�



����� Analysis

Initially� � is D � R� We will prove that an Extract decreases � by at most
�� that a Merge cannot decrease �� and that in the end � is approximately
DR��� This will imply that the number of Extracts required for achieving
error�resilient bit evaluation is approximately log ���

�

�
�
� log ���

�

�
�
��� and the

lower bound will follow�
In the sequel� by a fraction 	 of good strands in a tube� we mean that the

mass of good strands in this tube consitutes an 	 fraction of the total mass
of good strands�

Claim ��� Assume we do an Extract on a test tube T which contains an
expected fraction 	 of good strands and has likelihood c� Then

�� �a� �T contains expected fraction 
� � ��	 of good strands� and

�b� the likelihood of �T is �
��� � c�

�� �a� �T contains expected fraction �	 of good strands� and

�b� the likelihood of �T is ���
�
� c�

The proofs of the following two lemmas are given in the Appendix�

Lemma ��� An Extract decreases � by at most ��

Lemma ��� A Merge can not decrease ��

Lemma ��	 When the algorithm stops� � � DR
� �D � log ���

�
� � R

� �

Proof� By de�nition of the error�resilient bit evaluation problem� a strand
is correctly classi�ed with probability � � � �� Hence the fraction of good
strands that are classi�ed as good strands is some p � ���� and the fraction
of bad strands that may be classi�ed as good strands is some q � �� Thus�
the average of the likelihood at the end of the algorithm of the good strands
that are classi�ed as good strands is q

p
� �

��� �

Let 

x� be the fraction of good strands with log�likelihood � x when
the algorithm completes its Merges and Extracts� Let S
x� be the set of
all good strands that are eventually classi�ed as good strands and that have
log�likelihood � x when the algorithm completes its Extracts and Merges�

��



Let R be the set of all good strands that are eventually classi�ed as good
strands� De�ne �
x� as S
x��R� Then� the average likelihood at the end

of the algorithm of the good strands classi�ed as good is
R
�

��

�
�

���

�x
d�
x��

Thus� by the reasoning in the �rst paragraph we have�

Z
�

��

�
�

� � �

�x

d�
x� �
q

p
�

�

�� �
�

The last equation implies that there is some r such that�

Z
�

r�



�

�� �
�xd

x� � � � and

Z
�

r�
d

x� � � � � �


In fact� one may need to take into account just a fraction of the mass at r�

instead of the whole mass at r�� in order to satisfy the above two equations�
To avoid introducing additional notation� imagine shifting an in�nitesimal
distance to the left� all mass that is at r� but that shouldn	t be taken into
account in the above equations��

Claim ��
 return
�� � �� �

Proof� First note that by choice of r� for at most � fraction of the good
strands the eventual log�likelihood is � r� Thus� if r � �� then the claim
follows immediately from the fact reasoned above that

R
�

r�

�

���
�xd

x� � ��

Assume r � �� Let g be the fraction of the good strands whose eventual
log�likelihood is in 
�� r�� and let h be the fraction of good strands whose
eventual log�likelihood is in 
�� ��� Then� clearly

Z r

��

�
�

�� �

�x

d

x� � g �
�

�

�� �

��

� g �

Thus�

return
�� �
Z �

��

d

x��
Z r

��

�
�

� � �

�x

d

x��
Z
�

r�

�
�

� � �

�x

� h�g�� � �� �

The last inequality follows again from the fact that by the choice of r� at
most fraction � of the good strands have �nal log�likelihood � r� and hence
h� g � ��
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But the function return cannot increase very quickly� In fact� inspection
of its de�nition shows that for all l� return
l� � 
���

�
�l � return
��� Since

return
�� � ��� it follows that for all l� return
l� � 
���
�
�l � ���

Thus we get an upper bound on ��

�

� �
Z D

�
log ���

�

�
��

�
�� �

�

�l
�
A dl � D � log ���

�
� �

DR

�
�

R

�
�


The algebraic manipulations are omitted from this extended abstract��

Lemmas ���� ���� and ���� together with the fact that initially � � DR�
immediately imply�

Corollary ��� The number of Extract operations required for achieving error�
resilient bit evaluation is at least

�

�
log ���

�

�

�
� log ���

�

�

�
�

log ���

�
�

�
log ���

�

�

�
�

�

�
log ���

�

�

�
�

As elaborated in the full paper� the lower bound part of Theorem ��� for
the case �� � �� � �� follows from Corollary ����

��� The Upper Bound� An Algorithm

Our description of the algorithm proceeds in two steps�

Algorithm for � � �� At any time in the course of the algorithm� each
strand has a count� de�ned to be equal to i� j if the strand was involved in
i� j Extracts� i of which classi�ed the strand as a � and j of which classi�ed
the strand as a �� The algorithm proceeds in phases� Let D � dlog��� ���e�

Initially� Only one tube� of count ��
Repeat the following �D times�

� Perform an Extract on each test tube present at the beginning of the
phase�

� Merge the tubes whose strands have the same count�

��



Output� all tubes with positive count are classi�ed as �� and all the others
as ��

Correctness of the Algorithm The analysis is straightforward� Each
strand behaves like a random walk biased either 
�� � � �� or 
� � �� ��� By
symmetry� assume the strand is a � and so is biased upwards� After �D
phases� it has been involved in �D Extracts� and the probability that its
count is non positive is O
�D� � O
�� 
follows immediately from Cherno�
inequality��
Efficiency of the Algorithm In the beginning of the ith phase� i
tubes are present� In each phase of the �D phases� the algorithm performs a
single Extract on each tube present� Thus� altogether the algorithm performs
�D
�D � ���� � �dlog� �e
�dlog�
��e� ���� Extracts�

Refer to the above algorithm as Algorithm A�
To modify the algorithm for the case that � �� �� replace each Extract of

the above algorithm by a Super Extract in which the probabilities for misclas�
sifying a zero and a one are approximately equal� The fact that using several
Extracts one can make mis�classi�cations in both directions approximately
equal was observed also in 
���

By symmetry� assume � � ��

Super Extracts To perform a Super Extract on test tube T � one proceeds
in dlog� �e steps�

Initially there is one tube called T �
Repeat the following dlog� �e times�

� Perform an Extract on each tube present at the beginning of the phase�

� Merge all tubes that contain strands that were classi�ed as one in at
least one of the phases� 
As a result we are left with two tubes��

Output� The tube containing strands that were classi�ed as one in at least
one of the phases is classi�ed as one� the other tube is classi�ed as zero�

At the end of the Super Extract on tube T we have two tubes� �ST��ST
so that �ST contains all strands that were classi�ed as one by at least one of
the dlog� �e Extracts performed on them� and �ST contains all strands that
were classi�ed as zero by each of the dlog� �e Extracts performed on them�

��



Let ��� �� be the probabilities that a one and a zero bit will be misclassi�ed
by the Super Extract� respectively� Clearly� �� � �dlog� �e � and �� � � �

Final Algorithm Replace each Extract in algorithmA by a Super Extract�
and rede�ne D � dlog�� �e�
Correctness Note that �� � ��� Thus the correctness of the �nal algo�
rithm follows the same reasoning as in Algorithm A�
Efficiency As argued in Algorithm A� there are �D
�D � ���� Super
Extracts� Each Super Extract consists of exactly �dlog� �e � � Extracts�
Thus� the total number of Extracts is�

�D
�D � �� � 
�dlog� �e � �� � �dlog�� �e
�dlog�� �e� �� � 
�dlog� �e � �� �

After some algebraic manipulations� and also using the fact that ��� � ��
we get the upper bound part of Theorem ��� for �� � ���

� Error�Resilient Function Evaluation

We are given an initial tube containing a number of strands� each of which
encodes a sequence of bits x � 
x�� x�� � � � � xn�� Let f
x�� x�� � � � � xn� be a
boolean function of n variables�

The function evaluation problem comes in two variants�

��� The Weak Variant

In this variant the goal is to divide the strands into two output tubes� T� and
T�� such that�

�� each strand x for which f
x� � � has probability at most � of ending
up in T�� and

�� each strand x for which f
x� � � has probability of at most � of ending
up in T��

��



��� The Strong Variant

The second variant of the problem is called the strong variant� Let d
x� be
equal to the minimum number of bits of x which must be �ipped to change
the value of f
x�� The goal is to divide the strands into two output tubes�
T� and T�� such that

�� each strand x for which f
x� � � has probability at most �d�x� of ending
up in T�� and

�� each strand x for which f
x� � � has probability of at most �d�x� of
ending up in T��

The motivation for the strong variant is as follows� Often the goal in
experiments is to simply output two tubes T� and T� such that a random
strand from T� satis�es f with probability at least � � ��� If the initial
distribution is uniform� i�e� each bit is � with probability ���� then this
experimental goal is obtained by using the model above with � � ���
n
� �
�����

� Bounds for Error�Resilient Function Eval�

uation

In this section we show how our analysis for error�resilient bit evaluation can
be extended for error�resilient function evaluation� Our lower bounds apply
even for the weak variant of the problem� and our algorithms apply even for
for the strong variant�

��� The Upper Bound� Error�Resilient Function Eval�

uation

This section provides a simple transformation from the idealized error�free
model� in which the Extract operation is perfect� to the more realistic noisy
model� in which Extracts may provide wrong results� The transformation is
e�cient� In other words� we show how algorithms can be made error�resilient
without a big price in their e�ciency�
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Formally� refer to an idealized setting in which Extract always produces
the correct result as the error�free model� That is� in the error�free model�
performing an Extract on the ith bit of strands in test tube T results in two
test tubes� �T��T � such that �T consists of all strands x in which xi is ��
and �T consists of all other strands� An algorithm for f in the error�free
model is an algorithm that� in the absence of errors in the Extract operation�
outputs two test tubes T�� T�� such that T� contains all strands x for which
f
x� � �� and T� contains all strands x for which f
x� � ��

Let A be an algorithm for f in the error�free model� Call an Extract
from tube T on bit xi redundant if it is implied by the results of previous
Extracts either that every strand in T has xi � � or that every strand in T
has xi � �� Assume that A performs no redundant Extracts� 
otherwise it
can be modi�ed by eliminating the redundant Extracts�� If A performs a
n�
Extracts� then we can construct an algorithm for strong error�resilient evalu�
ation of function f that performs O
a
n� � dlog���

a�n�
�
edlog���

a�n�
�
e� Extracts�

as follows�
Error�Resilient Algorithm for f � Whenever A does �Extract xi	�

do instead our error�resilient bit evaluation algorithm for computing xi with
error probability ��a
n� �See Section 
����

Refer to the resulting algorithm as algorithm B�

Theorem 
�� There is a transformation that transforms any algorithm for
function evaluation into an error�resilient algorithm such that if the original
algorithm performs a
n� Extracts� then the error�resilient algorithm performs

O
a
n�dlog �

�

a�n�
�
edlog �

�

a�n�
�
e� Extracts�

The proof consists of showing that Algorithm B is the required error�
resilient algorithm�

Observe that Conjunction� Disjunction and Parity all have O
n� algo�
rithms in the error�free model� Thus�

Corollary 
�� The above transformation yields error�resilient algorithms
for computing Conjunction� Disjunction and Parity� that performO
n�dlog �

�

n
�
e�

dlog �

�

n
�
e� Extracts�

��



��� Lower Bounds for Error�Resilient Function Evalu�

ation

Corollary ��� showed error�resilient algorithms for computing Conjunction�
Disjunction and Parity� that perform O
n � dlog �

�

n
�
e � dlog �

�

n
�
e� Extracts� In

this section we show a lower bound�
De�ne the all zeroes strand problem as follows� Given a set of strands�

output two tubes T�� T�� such that each strand that consists solely of zeroes
will end up in T� with probability � � � �� and each strand that is not all
zeroes� will end up in T� with probability � �� ��

The proof of the following lemma is given in the Appendix�

Lemma 
�� The number of Extract operations required by a weak error�
resilient algorithm for the all zeroes strand problem with error probability �
is �
n � dlog ���

�

�
�
e � dlog ���

�

�
�
e� �

It is immediate that the lower bound also applies to strong error�resilient
algorithms for the same problems�

Similarly we get�

Corollary 
�� The number of Extract operations required by weak error�
resilient algorithms for Conjunction� Disjunction and Parity with error prob�
ability � is �
n � dlog ���

�

�
�
e � dlog ���

�

�
�
e� �

Observe that for � � O
��n� the bounds in Corollaries ��� and ��� are
matching� In practice� � will usually be at most ��n since otherwise the
number of bad strands in the resulting tube T�� i�e� the tube that is supposed
to contain mostly strands that satisfy f � will overwhelm the number of good
strands there� since the initial number of bad strands is much higher than
the number of good strands�
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A Appendix

Recall that by a fraction 	 of good strands in a tube� we mean that the mass
of good strands in this tube consitutes an 	 fraction of the total mass of good
strands�

Proof of Lemma ���

Proof� Assume we do an Extract on a test tube T which contains expected
fraction 	 of good strands and its likelihood is c� De�ne logc � log �

���
c�

We will �rst compute the change in return
l�� Observe that the Extract
changes the likelihoods only of strands in T � and hence the only change
in 
 is the one caused by the change of likelihoods of the strands in T �
Denote return
l� just before and just after the Extract by return
l�before
and return
l�after respectively�

Case I� l � logc � �� The contribution of the strands in T to
return
l�before is contained in the term

R l
��

d

x� of the expression that
computes return
l�before� Thus this contribution is 	� Claim ��� implies
that each of �T and �T has likelihood at least �

��� � c� 
Note that �
��� �

���
�

due to the assumption that � � � � ��� Hence each of �T and �T has

��



log�likelihood at most l� Thus� the sum of the contributions of the strands
in �T and �T to return
l�after is contained in

R l
��

d

x�� and is again 	�
Hence return
l�after� return
l�before � 	� 	 � ��

Case II� l � logc � log �

���

�
���

� Note that log �

���

�
���

is nonnegative

since �
���

and �
���

are both smaller than � because of the assumption that
�� � � ��

The contribution of the strands in T to return
l�before is contained in the
term

R
�

l� 
��
�����x�ld

x� of the expression that computes return
l�before�
Thus� this contribution is 	�
 �

����
logc�l� By Claim ���� �T contains a fraction


� � ��	 of good strands and its likelihood is �
���

� c� Observe that the
contribution of the strands in �T to return
l�after is contained in the termR
�

l� 
��
� � ���x�ld

x�� Thus the contribution of �T to return
l�after is
	
�� �� � 
 �

���
�logc���l� By Claim ���� �T contains a mass �	 of good strands

and its likelihood is ���
�
� c� Observe that also the contribution of the strands

in �T to return
l�after is contained in the term
R
�

l� 
��
� � ���x�ld

x��

Thus the contribution of �T to return
l�after is 	� � 
 �
���

�
logc�log �

���
� �
���

��l
�

	� � 
 �
����

logc�l � ���
�
� Hence�

return
l�after� return
l�before �

� 	
�

�

�� �

�logc�l

�
�

� � ��

�

�� �
� �

�� �

�
� �

�
� � �

Case III� logc � log �
���

�
��� � l � logc� Denote by g the contribution

to return
l�before of all good strands other than those in T � Note that g
is also the sum of the contributions to return
l�after of all strands that are
neither in �T nor in �T �

The contribution of the strands in T to return
l�before is� 	 � 
 �
��� �

logc�l�

The contribution of the strands in �T to return
l�after is 
����	�
 �
����

logc���l�
The contribution of the strands in �T to return
l�after is� �	� Thus�

return
l�after

return
l�before
�

g � 	
� � ��
 �
����

logc���l � 	�

g � 	
 �
��� �

logc�l

��



�
	
� � ��
 �

���
�logc���l � 	�

	
 �
��� �

logc�l

� �

 �
���

�logc�l � �
�


 �
���

�logc�l

� � � � �

The last inequality follows since ��
� � �� � � 
because � � � � ��� and by
this case assumption logc � l � ��

Case IV� logc � l � logc � �� Denote by g the contribution to
return
l�before of all strands other than those in T � Clearly� the sum of the
contributions to return
l�after of the strands that are neither in �T nor in
�T is also g�

The contribution of the strands in T to return
l�before is 	� The contri�
bution of the strands in �T to return
l�after is 
� � ��	 � 
 �

����
logc���l� The

contribution of the strands in �T to return
l�after is� �	� Thus�

return
l�after

return
l�before
�

g � 	
� � ��
 �
���

�logc���l � 	�

g � 	

�
	
� � ��
 �

����
logc���l � 	�

	

� �

��
�

�� �

�logc�l

�
�

�

�

� � � � �

The last inequality follows since ��
� � �� � � and by this case assumption
logc� l � ��

Thus� the change in � is contributed by the return
l�s in Cases III and
IV� Denote by �before and �after the value of � just before and just after
the Extract respectively� Then�

�after ��before �

�
�
� � log ���

�

�� �

�

�
� log ���

�

� � ��

� log ���

�

� � �� � log ���

�

� � ��

� �� �

The last inequality follows because� since ��� � �� we have� ��� � �
��� �

�
��� �

��



Proof of Lemma ���

Proof� Without loss of generality assume that a Merge only acts on two
tubes of equal mass of good strands 
otherwise we can do a sequence of
Merge operations�� Thus� the Merge takes a mass that contains a fraction 	
of good strands at log�likelihood x and a mass that contains a fraction 	 of
good strands at log�likelihood y � x and Merges them into a mass containing
a fraction �	 of good strands at log�likelihood z� where

�
�

� � �

�z

�
�

�

�
�

� � �

�x

�
�

�

�
�

�� �

�y

�

Let us study how return
l� changes� Denote by return
l�before and
return
l�after the value of return
l� just before and just after the Merge
respectively�

If l � y� return
l�after � return
l�before�
If l � x� then

return
l�after�return
l�before � �	

�

� � �
�z�l�	


�

� � �
�x�l�	


�

�� �
�y�l � ��

If x � l � z� then

return
l�after

return
l�before
�

�	
 �
���

�z�l

	 � 	
 �
����

y�l
�


 �
���

�x�l � 
 �
���

�y�l

� � 
 �
����

y�l
� �

since x� l � � and ��
�� �� � ��
If z � l � y� then

return
l�after

return
l�before
�

�	

	� 	
 �
���

�y�l
�

�

� � 
 �
���

�y�l
� �

since y � l � � and ��
� � �� � ��
So for all l� a Merge does not decrease return
l�� and so � does not

decrease�

Proof of Lemma 
��

Proof� Consider the following weaker problem� We are given n copies of
n�� types of strands� such that for � � i � n� a strand of the ith type has a

��



� only in the ith bit� and a strand of the n��st type is the all zeroes strand�
The strands are given in n tubes� An oracle tells us that for � � i � n� the
ith tube� Gi� contains all strands of type i and one strand of type n � � i�e�
the all zeroes strand� The goal is again to output two test tube� T�� T� such
that the all zeroes strand end up in T� with probability at least � � �� and
all other strands end up in T� with probability at least � � ��

Clearly the above problem is not harder than the problem of detecting
the all zeroes strand� since we can start the algorithm by merging all tests
tubes� with no additional cost� Thus� it is enough to prove the lower bound
for the weaker problem�

Focus on the weaker problem� First we claim�

Claim A�� Merging strands that originate in di�erent tubes Gi� Gj will not
reduce the number of necessary Extracts�

Proof� Consider the �rst Merge of strands that originated from di�erent
initial tubes� say tubes Gi� � � � � � Gik � Call the resulting tube G� Let E be
the �rst Extract done on tube G after the Merge� If this Extract is done on
bit j �	 fi�� � � � � ikg� then cancel this Extract since we know what its result
should be 
i�e� zero�� Otherwise� we can postpone the Merge� and perform
the Extract only on the strands that originated fromGj and that participated
in the Merge�

Claim A�� implies that we should perform separate Extracts on each of
the original tubes� and separate the strands given in the ith test tubes into
two tubes� �Gi��Gi� such that �Gi contains all strands of Gi where the ith
bit is �� and �Gi contains all other strands of Gi� Each strand in Gi should
end up in the correct �Gi��Gi with probability at least �� �� The desired
tubes T� will be obtained by simply merging in the end the �Gi� i � �� � � � � n
and T� will be obtained by merging the �Gi� i � �� � � � � n�

However� Theorem ��� implies that� for each Gi� the number of Extracts
required for separating it to �Gi��Gi is �
dlog ���

�

�
�
e�dlog ���

�

�
�
e� � The claim

follows from the fact that we have n initial tubes� G�� � � � � Gn�
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