R. C. Agarwal, J. C. Cooley, F. G. Gustavson, J. B. Shearer, G. Slishman et al., New scalar and vector elementary functions for the IBM system/370, IBM Journal of Research and Development, vol.30, issue.2, pp.1266-144, 1986.

, American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE standard for binary oating-point arithmetic. ANSI/IEEE Standard, pp.754-1985, 1985.

G. A. Baker, Essentials of Padd approximants, 1975.

V. Berthh, Three distance theorems and combinatorics on words, 1997.

R. P. B-r-e-n-t, Fast multiple precision evaluation of elementary functions, Journal of the ACM, vol.23, p.2422251, 1976.

M. Daumas and D. W. Matula, Rounding of oating-point i n tervals, Proceedings of SCAN-93, 1993.

M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller, Modular range reduction: A new algorithm for fast and accurate computation of the elementary functions, Journal of Universal Computer Science, vol.1, issue.3, p.1622175, 1995.

B. Delugish, A class of algorithms for automatic evaluation of functions and computations in a digital computer, 1970.

C. B. Dunham, Feasibility of perfectt function evaluation, SIGNUM Newsletter, vol.25, issue.4, p.25526, 1990.

S. Gal and B. Bachelis, An accurate elementary mathematical library for the IEEE oating point standard, ACM Transactions on Mathematical Software, vol.17, issue.1, p.26645, 1991.

D. Goldberg, What every computer scientist should know about oatingpoint arithmetic, ACM Computing Surveys, vol.23, issue.1, p.5547, 1991.
DOI : 10.1145/103162.103163

W. Kahan, Minimizing q*m-n, 1983.

W. Kahan, Lecture notes on the status of IEEE-754, 1996.

D. Knuth, The Art of Computer Programming, 1973.

V. Leffvre, An algorithm that computes a lower bound on the distance between a segment and z 2, 1997.

J. M. Muller and A. Tisserand, Towards exact rounding of the elementary functions, Scientiic Computing and Validated Numerics (Proceedings of SCAN'95), 1996.

J. M. Muller, Elementary Functions, Algorithms and Implementation, 1997.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

Y. V. Nesterenko and M. Waldschmidt, On the approximation of the values of exponential function and logarithm by algebraic numbers (in Russian), Mat. Zapiski, vol.2, p.23342, 1996.

M. Payne and R. Hanek, Radian reduction for trigonometric functions, SIGNUM Newsletter, vol.18, 1983.
DOI : 10.1145/1057600.1057602

E. E. , Exact rounding of certain elementary functions, Proceedings of the 11th IEEE Symposium on Computer Arithmetic, p.1388145, 1993.

M. J. Schulte and E. E. Swartzlander, Hardware designs for exactly rounded elementary functions, IEEE Transactions on Computers, vol.43, issue.8, p.9644973, 1994.
DOI : 10.1109/12.295858

R. A. Smith, A continued-fraction analysis of trigonometric argument r eduction, IEEE Transactions on Computers, vol.44, issue.11, p.134881351, 1995.

A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit, ACM Transactions on Mathematical Software, vol.17, issue.3, pp.4100-423, 1991.

D. Zuras, More on squaring and multiplying large integers, IEEE Transactions on Computers, vol.43, issue.8, p.8999908, 1994.