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Abstract

The Table Maker�s Dilemma is the problem of always getting correctly rounded
results when computing the elementary functions� After a brief presentation
of this problem� we present new developments that have helped us to solve
this problem for the double�precision exponential function in a small domain�
These new results show that this problem can be solved� at least for the double�
precision format� for the most usual functions�

Keywords� Table Maker�s Dilemma� Elementary Functions� Correct
Rounding� Floating�Point Arithmetic�

R�sum�

Le dilemme du concepteur de tables est le probl�me de toujours fournir des
r	sultats arrondis correctement lors du calcul de fonctions 	l	mentaires� Apr�s
une br�ve pr	sentation du probl�me� nous pr	sentons de nouveaux r	sultats qui
permettent de r	soudre ce probl�me pour l�exponentielle en double pr	cision
dans un petit domaine� Ces r	sultats montrent que le probl�me peut 
tre r	solu�
au moins pour le format double pr	cision� pour la plupart des fonctions usuelles�

Mots�cl�s� Dilemme du constructeur de tables� fonctions 	l	mentaires�
arrondi correct� arithm	tique virgule �ottante�



� Introduction

The IEEE��
� standard for �oating�point arithmetic ��� ��� requires that the
results of the arithmetic operations should always be correctly rounded� That
is� once a rounding mode is chosen among the four possible ones� the system
must behave as if the result were �rst computed exactly� with in�nite precision�
then rounded� There is no similar requirement for the elementary functions�
The possible rounding modes are�

� round towards ��� r�x� is the largest machine number less than or equal
to x�

� round towards ��� ��x� is the smallest machine number greater than or
equal to x�

� round towards �� Z�x� is equal to r�x� if x � �� and to ��x� if x � ��

� round to the nearest� N �x� is the machine number which is the closest
to x �with a special convention if x is exactly between two consecutive
machine numbers��

Throughout this paper� �machine number� means a number that is exactly
representable in the �oating�point format being considered� The �rst � modes
are called �directed modes�� A very interesting discussion on the current status
of the IEEE��
� standard is given by Kahan �����

Our ultimate goal is to provide correctly rounded elementary functions at a
�reasonable� cost� Requiring correctly rounded results not only improves the ac�
curacy of computations� it is the best way to make numerical software portable�
Moreover� as noticed by Agarwal et al� ���� correct rounding facilitates the preser�
vation of useful mathematical properties such as monotonicity� symmetry�� and
some identities�

Throughout the paper� we want to implement a function f �f being sine�
cosine� exponential� natural logarithm or arctangent� in a radix�� �oating�point
number system� with n mantissa bits� We assume that from any real number
x and any integer m �with m � n�� we are able to compute an approximation
of f�x� with an error on its mantissa y less than or equal to ��m��� This can
be achieved with the presently known methods� using polynomial or rational
approximations or Cordic�like algorithms� provided that a very careful range
reduction is performed ���� ��� ��� �� ���� The intermediate computations can
be carried out using a larger �xed�point or �oating�point format�

Therefore the problem is to get an n�bit mantissa �oating�point correctly
rounded result from the mantissa y of an approximation of f�x�� with error
���m��� This is not possible if y has the form�

� in rounding to the nearest mode�

m bitsz �� �
��xxxxx � � �xxx� �z �

n bits

������� � � �������xxx � � �

�Only when the rounding mode itself is symmetric� i�e�� for rounding to the nearest and
rounding toward zero�
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or
m bitsz �� �

��xxxxx � � �xxx� �z �
n bits

������� � � �������xxx � � � �

� in rounding towards �� �� or �� modes�

m bitsz �� �
��xxxxx � � �xxx� �z �

n bits

������� � � �������xxx � � �

or
m bitsz �� �

��xxxxx � � �xxx� �z �
n bits

������� � � �������xxx � � � �

This problem is known as the Table Maker�s Dilemma �TMD� ����� For
example� assuming a �oating�point arithmetic with ��bit mantissa�

sin��������� � ��� ������ �������� � � ��

a problem may occur with rounding to the nearest if the sine function is not
computed accurately enough�

Although we deal with radix�� �oating�point systems� the same problem
obviously occurs with other radices�� For instance� in a radix �� �oating�point
number system� with � digit mantissas�

sin�	
��	� � ��� �

� ������� � � ��

therefore a problemmay occur with a directed rounding mode� Similar problems
with radix ��� directed rounding modes� and the cosine function are given in
Table ��

n x cos�x�

� ����� �������������� � � �
� ��
��
 ���
�	�	��������� � � �

 �����
� ���������������� � � �
	 �������� ��

����	���������	 � � �
� ��������� ���
	��������������� � � �

Table �� Worst cases for n�digit mantissa� radix���� �oating�point numbers
between � and �� directed rounding modes and the cosine function�

Our problem is to know if there is a maximum value for m� and to estimate
it� If this value is not too large� then computing correctly rounded results will
become possible�

It is worth noticing that even if the maximum value of m is quite large� it
is not necessary to always evaluate f�x� with large accuracy� The key point is

�Other radices are actually used� For example� most pocket computers use radix ���
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that if the intermediate approximation y is not accurate enough� we are in one
of the four cases listed above� so we can be aware of the problem� This leads to
a solution �rst suggested by Ziv ����� we �rst start to approximate f�x� with a
value of m slightly larger than n �say� n� ���� In most cases this will su�ce to
get a correctly rounded result� If this does not su�ce� we continue with a larger
value of m� and so on� We increase m until we have enough accuracy to be able
to correctly round f�x�� In a practical implementation of this strategy� the �rst
step may be hardwired� and the other ones are written in software� It is very
important that the �rst steps �say� the �rst two steps� be fast� The other ones
are unlikely to occur� so they may be slower without signi�cantly changing the
average computational delay�

In ����� Lindemann showed that the exponential of a nonzero �possibly com�
plex� algebraic number is not algebraic ���� From this we easily deduce that the
sine� cosine� exponential� or arctangent of a machine number di�erent from zero
cannot be a machine number �and cannot be exactly between two consecutive
machine numbers�� and the logarithm of a machine number di�erent from �
cannot be a machine number �and cannot be exactly between two consecutive
machine numbers�� Therefore� for any non�trivial machine number x �the cases
x � � and x � � are obviously handled�� there exists m such that the TMD
cannot occur� This is not always true for functions such as �x� log� x� or xy�
This is why we do not consider them in this paper�� Since there is a �nite
number of machine numbers x� there exists a value of m such that for any x the
TMD cannot occur� Schulte and Swartzlander ���� ��� proposed algorithms for
producing correctly rounded results for the functions ��x�

p
x� �x and log� x in

single�precision� Those functions are not discussed here� but Schulte and Swart�
zlander�s result helped us to start our study� To �nd the correct value of m�
they performed an exhaustive search for n � �
 and n � ��� For n � �
� they
found m � 
� for log� x and m � �� for �x� and for n � ��� they found m � ��
for log� x and m � �� for �x� We performed similar exhaustive searches for very
small values of n and a few di�erent exponents only� and always found m close
to twice n� For instance� the largest value of m for cosines of single�precision
numbers between � and � is obtained for 
 numbers� including

x � �������������������������� �
�� 	��� 	�	

�� 
��� 
��
�

whose cosine equals

��� ������������������������� �z �
��

� ������������������������� �z �
��

��������� � � �

For this number m � ��� One would like to extrapolate those �gures and �nd
m � �n�

In ����� two of us showed that if the bits of f�x� after the n�th position can
be viewed as if they were random sequences of zeroes and ones� with probability
�
� for � as well as for �� then for n�bit mantissa normalized �oating�point input
numbers� assuming that ne di�erent exponents are considered� m is close to

�However� these functions satisfy some properties that might probably be used� For in	
stance� if x is a machine number and if x is not an integer� then �x cannot be a rational
number�

�



�n � log��ne� with very high probability�� Similar probabilistic studies have
been done previously by Dunham ���� and by Gal and Bachelis �����

Of course� probabilistic arguments do not constitute a proof� they can only
give an estimate of the accuracy required during the intermediate computation
to get a correctly rounded result� There are a few results from number theory
that can be used to get an upper bound on the maximum value of m� Un�
fortunately� such bounds are very large� In practice� they appear to be much
larger than the actual maximum value of m� For instance� using a theorem due
to Nesterenko and Waldschmidt ����� we could show ���� that getting correctly
rounded results in double�precision could be done withm � � ��� ���� Although
computing functions with � ��� ��� digits is feasible �on current machines� this
would require less than half an hour using Brent�s algorithms �
� for the func�
tions and Zuras� algorithms ���� for multiplication�� this cannot be viewed as
a satisfactory solution� Moreover� after the probabilistic arguments� the actual
bound is likely to be around ���� Therefore� we decided to study how could an
exhaustive search of the worst cases be possible�

� Exhaustive tests

For a given elementary function f � a given �oating�point format �in practice�
IEEE��
� double precision�� a given rounding mode� and a given range �ideally�
the range of all machine numbers for which the function is mathematically
de�ned� but this may be di�cult in some cases�� we want to �nd �worst cases��
A �worst case� is a machine number x� belonging to the considered range� for
which the distance between f�x� and a machine number �for directed rounding
modes� or the distance between f�x� and the middle point of two consecutive
machine numbers �for rounding to the nearest� is minimal� Here� �distance�
means �mantissa distance�� that is� the distance between f�x� and y is

jf�x� � yj
�blog� jf�x�jc

�

To �nd such worst cases within reasonable time� we need to workout e�cient
�lters� A ��lter� is an algorithm that allows to eliminate most cases� that is�
that quickly eliminates any number x for which the distance between f�x� and a
machine number or the middle point of two consecutive machine numbers is far
from being minimal� If the �lter is adequately designed� a very small fraction
of the set of the considered machine numbers will not have been �ltered out� so
that we will be able to deal with these numbers later on� during a second step�
using more accurate yet much slower techniques�

We consider here two di�erent �lters� Both are based on very low degree
�consequently� valid on very small domains only� polynomial approximations of
the functions being considered�

�If all possible exponents are considered� this formula can be simpli
ed� with a p	bit
�oating	point number system� it becomes n�p� And yet� we prefer the formula �n�log

�
�ne�

because in practice� we seldom have to deal with all possible exponents� when an argument
is very small 
i�e�� its exponents are negative and have a rather large absolute value�� simple
Taylor expansions su�ce to 
nd a correctly rounded result� When an argument is very large�
the value of the functionmay be too large to be representable 
for instancewith the exponential
function�� or so close to a limit value that correctly rounding it becomes obvious 
for instance
with the arctangent function��
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The exhaustive search is restricted to a given interval� outside this interval
other methods can be chosen� Indeed� if x is small enough �less than ����

for double precision�� an order�� Taylor expansion can be used� and if x is
large enough� the exponential gives an over�ow� and the values of trigonometric
functions do not make much sense any longer for most applications �although
we prefer to always return correctly rounded results��

A similar work for the single�precision �oating�point numbers has already
been done by various authors ���� ���� Our methods have �rst been applied to
the exponential function with double�precision arguments in the interval ��� � ���
We are extending them to other intervals and other functions� Results con�
cerning other intervals cannot be deduced from the results in ��� � ��� thus these
intervals will have to be considered later�

Concerning the double�precision normalized �oating�point numbers �n �
�
�� there are ��� possible mantissas �the �rst bit is always ��� which is a large
number� Thus one of the most important concerns is that the test program
should be as fast as possible� even though it is no longer portable �we only used
SparcStations�� Indeed� one cycle per test corresponds to approximately two
years of computation on a ���MHz workstation� saving any cycle is important�

��� First �ltering strategy

����� Algorithm �general idea�

The TMD occurs for an argument x if the binary expansion of f�x� has a
sequence of consecutive ��s or ��s starting from a given position� where the
position and the length of the sequence depend on the �nal and the intermediate
precisions� The problem consists in checking for all x whether these bits are all
��s or all ��s� and in this case� �nding the maximal value of m for which the
TMD occurs�

As explained previously� to get fast tests� we apply a two�step strategy similar
to Ziv�s ����� The �rst step �that is� the �lter� must be very fast and eliminate
most arguments� the second one� that may be much slower� consists in testing
again the arguments that have failed at the �rst step� by approximating f�x�
with higher precision�

The �rst step consists in testing a given subsequence of the binary expansion
�bits of weight ���� to ���M���� of an approximation of each f�x� with error
��M � In our case� we have chosen M � �
 from the algorithm and the processor
characteristics� The test fails if and only if these bits are the same� and the
argument will have to be checked during the second step� In the opposite case�
one can easily show that the bits �� to M of the exact result cannot all be equal�
In the following� we assume f�x� � ex�

����� First step� overall presentation

To perform the �rst step� the exponential function is approximated by a polyno�
mial� The chosen polynomial must have a low degree for the following reasons�
on the one hand� to reduce the computation time� on the other hand� to limit
possible rounding errors� As a consequence� the approximation is valid on a
small interval only�

Let us consider an interval ���r���� �r����� where r is a positive integer �it
will be about �
�� in which we know a polynomial approximation� We can use






the formula
et�x � et�ex

where x is in this interval and t has the form �������r���� to test every argument
in the range ��� to ��

The main idea consists in computing a polynomial approximation of the
exponential in the intervals �t� �r���� t� �r����� then evaluating the obtained
polynomial at consecutive values by the �nite di�erence method ����� brie�y
recalled in Section ������ This method is attractive� for it only requires additions
�two for each argument in the case of a polynomial of degree two� which was
chosen� and the computations can be performed modulo ���� �the �rst tested
bit having weight ������ Thus the algorithm consists of two parts�

� the computation of the et�s with error ��s� where t will have the form
���� ���r��� �and will be between ��� and ���

� the computation of the et�x�s with error ��M � where x is in ���r���� �r�����
knowing et with error ��s�

For our tests� we chose r � �
� M � �
 and s � ��� These parameters have
been determined from an error analysis �giving relations between r� M and s�
and hardware parameters �register width and disk size��

����� Computing the et	s

We seek to compute u� � ey��z with error ��s� where y � �����r���� z � �r���

and � is an integer such that � � � � ����r�
The following method allows to compute a new term with only one multi�

plication �using the formula ea�b � ea�eb�� with a balanced computation tree to
avoid losing too much precision� and without needing to store too many values
u�� the disk storage being limited�

We write � in base �� � � ����r��	�r � � � ��� We have

ey��z � ey �e��� �e��� � � � e
����r

���r

where ei � �ez��
i

� to simplify� ey and the ei�s are precomputed�
The problem now consists in computing for all I � f�� �� � � �� hg containing

h�
PI �

Y
i�I

ei

where the ei�s are the above precomputed values �eh � ey�� For that� we
partition f�� �� � � � � hg into two subsets that have the same size �or almost� to
balance� and we apply this method recursively on each subset �we stop the
recursion when the set has only one element�� then we calculate all the products
xy� where x is in the �rst subset and y is in the second subset� The last products
xy are computed later� just before testing the corresponding interval�

These computations can be performed sequentially on one machine� they
only need several minutes�
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x P �x�
�P �x�

� P �x� ��
�P �x�

��P �x�
� �P �x� ��
��P �x�

��P �x�
� ��P �x� ��
���P �x�

� � � � 

� � � �� 

� � �� �
 


 �� 
� �� 

� �� �� �� 

� ��� �� 
� 


 ��� ��� �� 

	 ��� ��� �
 

� ��� ��� �� 

� 
�� ��� ��
�� ��� 
��
�� ����

Table �� Illustration of the �nite di�erence method� with P �x� � x� � x� � ��
x� � � and h � �� Once � consecutive values of P are evaluated� we compute �
values of �P � � values of ��P and one value of ��P using subtractions� After
this� evaluating a new value P �xi� requires � additions only�

����
 Computing and testing the et�x	s

The exponential ex is approximated by ��x��
�x

� on the interval ���r���� �r�����
The computation of the et�x�s using that polynomial approximation is per�
formed using the �nite di�erence method ����� This method allows to calculate
consecutive values of a polynomial of degree d with only d additions for each
value� It is probably known by most readers� so we just brie�y recall it� to make
the paper self�contained� Assume we wish to evaluate a degree�d polynomial P
at regularly�spaced values x�� x� � x� �h� x� � x� ��h� � � � � xi � x� � ih� � � � �
De�ne the values�

� �P �xi� � P �xi���� P �xi��

� ��P �xi� � �P �xi��� ��P �xi��

� ��P �xi� � ��P �xi������P �xi��

� � � �

� �dP �xi� � �d��P �xi�����d��P �xi��

It is quite easy to show that for any i� �dP �xi� is a constant that only depends
on P � This is illustrated in Table� � in the case P �x� � x�� x� � �� x� � � and
h � �� This shows that once the �rst d� � values of P � then the �rst d values
of �P � then the �rst d� � values of ��P � � � � then the �constant� value of �dP
are computed� it su�ces to perform d additions to get a new value of P �

In our problem �with h � � and x� � ��� the polynomial is not given by
its coe�cients nor by its �rst values P ���� P ���� � � � � P �d�� but by the elements
P ���� �P ���� ��P ���� � � � � These values are more suited to our computations�

�



They are the coe�cients of the polynomial in the base�
�� X�

X�X � ��

�
�
X�X � ���X � ��


�
� � � �

�
�

The test of the bits cannot be performed with only one instruction on a
Sparc processor without modi�cations� This test consists in testing whether
a number is in a given interval centered on � modulo ����� With the �nite
di�erence method� we can translate the interval so that its lower bound is ��
and we can use an unsigned comparison to test whether the number is in the
interval� thus we �nally need only one instruction�

Thus the �rst step takes 
 cycles per argument on average �two ���bit addi�
tions and one ���bit comparison�� the time required by the other computations
� branch instructions � being negligible�

����� Parallelizing on a computer network

The total amount of CPU time required for our computations is several years�
We wanted to quickly get the results of the tests �within a few months�� There�
fore we had to parallelize the computations� We used the network of ��� work�
stations of our department� These workstations often have a small load� We
sought to use each machine at its maximum without disturbing its user� in
particular� the process uses very little memory and there are very few commu�
nications �e�g� �le system accesses��

����� Second step

The second step consists in a more precise test for the arguments that failed
during the �rst step� The exponential is computed with a higher precision�
chosen so that the probability that the test fails for an argument is very low�

We chose a variation of De Lugish�s algorithm ��� for computing the expo�
nential �since it contains no multiplication�� The computations were performed
on ����bit integers �four ���bit integers�� The algorithm was implemented in
assembly language �which is� for the present purpose� simpler than in C lan�
guage��

����
 Improvements

The algorithm given above ��rst �ltering strategy� has been used during the
summer of ����� We present the results in Section �� Since ����� we have de�
veloped another �ltering strategy� presented in Section ������ Before examining
that strategy� let us notice some remarks that may help to accelerate the tests�

First� we can test both a function and its inverse at the same time� As we
would need to test twice as many numbers as before� it seems that we would save
nothing� but this is no longer true in combination with the following methods�

Since testing a function and testing its inverse are equivalent �the exponential
of a machine number a is close to a machine number b if and only if the logarithm
of b is close to the machine number a�� we can choose the function that is
the fastest to test� i�e� the function for which the number of points to test is
the smallest in the given domain� of course� this choice may depend on the
considered domain�

�



We can approximate a degree�� polynomial by several degree�� polynomials
in subintervals �which is not equivalent to directly approximating the function
by degree�� polynomials�� By doing this� the tests would require � cycles per
argument in average instead of 
 cycles� But we may do better� now we have
a function that may be simple enough �a translation of a linear function� to
�nd an attractive algorithm based on advanced mathematical properties� This
is done in the next section�

��� Second �ltering strategy� towards faster tests

����� Faster tests

As previously� we wish to know how close can f�x� be to a machine number �or
the middle point of two consecutive machine numbers�� where x is a machine
number� Our second approach is based on the 
�distance theorem ���� Let us
start from a circle and an angle �� We build a sequence of points x�� x��� � � on
the circle �see Fig� �� as follows�

� x� is chosen anywhere on the circle �

� xi�� is obtained by rotating xi of angle ��

The 
�distance theorem says that� at any time during this process �that is�
for any given n� when the points x�� x�� x��� � � � xn are built�� the distance
between two points that are neighbors on the circle can take at most � possible
values� This is illustrated on Fig� �� Moreover� there are in�nitely many values
of n �number of points� for which the distance between two points that are
neighbors on the circle can take two values�

α

x0

x1

x2

x3

Figure �� The 
�distance theorem� Construction of the �rst points�

To use this result� we will do the following�

� the initial domain is cut into subdomains small enough to make sure that�
within an acceptable error� function f can be approximated by a linear
approximation on each sub�domain� We also assume that all numbers in
a sub�domain I� as well as in exp�I�� have the same exponent�
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x9

x10

Figure �� The 
�distance theorem� Construction of more points� There are at
most 
 possible distances between consecutive points�

� now� let us focus on a given sub�domain� We scale the problem �input
�oating�point numbers� linear approximation� so that �oating�point num�
bers now correspond to integers� Therefore our problem becomes the fol�
lowing� given a rectangular grid �whose points have integral coordinates
belonging to a given range�� a straight line� and a �small� real number ��
are there points of the grid that are within a distance � from the line �

� we slightly modify the problem again� we translate the line down by a
distance �� Our initial problem is equivalent to� are there points of the
grid that are above the �translated� line� and at a distance less than ��
from it �

After these modi�cations� assuming that the translated straight line is of
equation y � ax� b� our problem becomes� is there an integer x� belonging to
the considered domain� and another integer i such that � � i � ax � b � �� �
Now� we compute modulo �� and we look for an integer x such that b � ax
modulo � is less than ��� Now we can understand in what this problem is related
to the ��distance theorem� We compute modulo �� the reals modulo one can
be viewed as the points of a circle� a given point being arbitrarily chosen for
representing �� Adding a value a modulo � to some number z is equivalent to
rotating the point that represents z of an angle ��a� Therefore� by choosing
x� � b and � � ���a� building the values b � ax �where x is an integer� is
equivalent to building the values x�� x�� x�� � � of the 
�distance theorem�

Now� we give a fast algorithm that computes the lower bound on the distance
d between a segment and the points of a regular� rectangular grid� More details
are given in ��
�� This algorithm is related to the ��distance theorem and is an
extension to Euclid�s algorithm� which is used to compute the development of
a real number �the slope of the segment� into a continued fraction� We have
seen that� in the ��distance theorem�that there are in�nitely many values of n
�number of points� for which the distance between two points that are neighbors
on the circle can take two values� Let us call 	i and 
i these distances the i�th
time there are two distances� The algorithm given below directly computes the
sequences 	i and 
i� without having to build the points xi�
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In the following� fxg denotes the positive fractional part of the real number
x� i�e�� fxg � x� bxc�

As previously � let y � ax � b be the equation of the segment� where x is
restricted to the interval ��� N���� The following algorithm gives a lower bound
on fb� axg� where x is an integer in ��� N � ���

Initialization� 	 � fag � 
 � �� fag � d � fbg � u � v � ��
In�nite loop�

if �d � 	�
while �	 � 
�

if �u� v � N � exit

 � 
 � 	� u � u� v�

if �u� v � N � exit
	 � 	 � 
� v � v � u�

else
d � d� 	�
while �
 � 	�

if �u� v � N � exit
	 � 	 � 
� v � v � u�

if �u� v � N � exit

 � 
 � 	� u � u� v�

Returned value� d

	 and 
 contain the lengths that appear in the ��distance theorem� u and v
contain the number of intervals �arcs� of respective lengths 	 and 
 �u�v is the
total number of intervals� i�e�� the number of points�� During the computations�
d is the temporary lower bound �for the current number of points u� v�� which
becomes the �nal lower bound when the algorithm stops�

� Results

In ����� we tested the exponential function with double�precision arguments in
the interval ��� � ��� using the �rst �ltering strategy �see Section ����� We needed
up to ��� machines during three months for the �rst step� The second step was
carried out in less than one hour on one machine�

The very same results have been obtained in January ����� with the second
�ltering strategy �see Section ������ � Thanks to this better strategy� we needed
a few machines only� The computation was approximately �
� times faster than
with the �rst strategy �we tested �� arguments per cycle on average��

Among all the ��� � ���� �	
 intervals� each containing ��� values� � ��	 
�

exceptions have been found� From the probabilistic approach� the estimated
number of exceptions was to be ��� � ���	 ���� This shows that� in this case�
the probabilistic estimate is excellent� Our experiments allowed us to perform
an in�depth check of the probabilistic hypotheses� For each double�precision
number x� let us de�ne an integer kx such that the mantissa of ex has the
following form�

b�b�b� � � � b��� �z �
�
 bits

b����� � � ���� �z �
k bits

� � � �

��



or
b�b�b� � � � b��� �z �

�
 bits

b����� � � ���� �z �
k bits

� � � � �

From the probabilistic hypotheses� kx � k� for given numbers x and k� with a
probability of ���k��

In the following table� we give the following numbers as a function of k�
�with k� � ��� for �

� � x � ��

� the actual number of arguments for which kx � k��

� the actual number of arguments for which kx � k��

� the estimated �after the probabilistic hypotheses� number of arguments
for which kx � k�� �

�� � ���k�� i�e� ����k��

k� kx � k� kx � k� estimate
�� ���
 ����� �������
�� ���� ���� ������
�� ���� ���� ������
�� ��� ��
� ������
�� 
�� ��
� ������
�
 �
� 
�� 
����
�� ��� ��� �
���
�� �� ��� �����
�� �� �� ����
�� �� �� ����

� 
 �� ����

� � �� ���

� � 
 ���

� � � ���

� � � ���


 � � ��


We see that the probabilistic estimate is still very good�

Now� let us focus on the worst case� for the exponential of double precision
numbers between ��� and �� This worst case is constituted by the exception for
kx � ��� namely

x � ��������������������������������������������������������

�
�	�� ��
� ��	� ��
��	�

�
�� ���� ��
� ����
��

with

expx � ���������������������������������

��������������������� � ����� � � ������ �z �
��

�� � � � �

Therefore the value of m for the exponential function in ��� � �� in double�
precision is ��� � �
������ We are computing the worst cases for the logarithm
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function� For instance� one of the worst cases for logarithms of double precision
numbers between � � ���	 and � � 
������ ���	� and directed rounding� is

x � �������������������������������������������������������

�
�� ���� �����
��
�
� ���

�� ��
� ����
�	�
	�� ��


with

lnx � ���� � ����������������������������������

�������������� ������������ � � ����������� �z �
��

����� � � � �

� Conclusion

We have shown� using as an example the case of the exponential function in
��� � ��� that correctly rounding the double�precision elementary functions is an
achievable goal� Moreover� if all the values of m have the same order of magni�
tude as the value we obtained for the exponential function �this is likely to be
true�� always computing correctly rounded functions will not be too expensive�
As said in the introduction� correct rounding will facilitate the preservation of
useful mathematical properties� And yet� to be honest� we must say that there
are a few examples for which correct rounding may prevent from preserving a
useful property� Let us consider the following example ����� Assume that we use
an IEEE��
� single�precision arithmetic� The machine number which is closest
to arctan����� is

�
� �	
� 	��

�� 
��� 
��
� ���	�	�

	���
��

����
	��

�

�
�

Therefore� if the arctangent function is correctly rounded in round�to�nearest
mode� we get an arctangent larger� than ���� A consequence of this is that in
our system�

tan
�
arctan

�
���

��
� �����		 	 	 	� ��
�

In this case� the range preservation property �j arctanxj is less than ��� for any
x� is not satis�ed due to the use of correct rounding in round�to�nearest mode�
This is a very peculiar case� One can easily show the following property

Theorem � If a function f is such that�

� f�x� is de�ned for any x 
 �a� b��

� c � minx��a�b� f�x� is a machine number�

� d � maxx��a�b� f�x� is a machine number�

then if f�x� is computed with correct rounding� for a machine number x 

�a� b�� the computed value will belong to �c� d��

�But equal to the machine representation of ����
�Assuming this is possible
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This property shows that the problem that occurred in the previous exam�
ple will not appear frequently with the usual functions� For example� if they
are correctly rounded �in any rounding mode�� sines� cosines and hyperbolic
tangents will always be between �� and ���

Our programs were written for Sparc�based machines� but a small portion
of the code only is written in assembly code� so that getting programs for other
machines would be fairly easy� Of course� it is very unlikely that somebody will
be able to perform exhaustive tests for quadruple�precision in the near future�
but all the results of our experiments shows that the estimates obtained from
the probabilistic hypotheses are very good� so that adding a few more digits to
�n� log��ne� for the sake of safety will most likely ensure correct rounding �it
is important to notice that if correct rounding is impossible for one argument�
we can be aware of that� so a �ag can be raised�� Therefore we really think
that in the next ten years� libraries and  or circuits providing correctly rounded
double�precision elementary functions will be available� Now� it is time to think
about what should appear in a �oating�point standard including the elementary
functions� Among the various issues that should be discussed� one can cite�

� should we provide correctly rounded results in all the range of the func�
tion being evaluated �that is� for all machine numbers belonging to the
domain where the function is mathematically de�ned�� or in a somewhat
limited range only � Although we would prefer the �rst solution� it might
lead to more complex �and therefore time�consuming� calculations when
computing trigonometric functions of huge arguments�

� even if we provide correctly rounded results� should we allow a �faster
mode�� for which faithful rounding ��� only is provided � Faithful rounding
means that the returned result is always one of the two machine numbers
that are nearest to the exact result� This is not a rounding mode in the
usual sense �for instance� it is not monotonic�� Should we allow roundings
that are intermediate between faithful rounding and correct rounding� for
instance� should we allow instead of rounding to the nearest� results that
are within ���ulp� � from the exact result� for some very small ��
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