Vincent Lef

Jean-Michel Muller

Arnaud Tisserand

The Table Maker's Dilemma

Keywords: Table Maker's Dilemma, Elementary Functions, Correct Rounding, Floating-Point Arithmetic Dilemme du constructeur de tables, fonctions l mentaires, arrondi correct, arithm tique virgule ottante

The Table Maker's Dilemma is the problem of always getting correctly rounded results when computing the elementary functions. After a brief presentation of this problem, we present new developments that have helped us to solve this problem for the double-precision exponential function in a small domain. These new results show that this problem can be solved, at least for the doubleprecision format, for the most usual functions.

Introduction

The IEEE-754 standard for oating-point arithmetic 2, 1 1] requires that the results of the arithmetic operations should always be correctly rounded. That is, once a rounding mode is chosen among the four possible ones, the system must behave as if the result were rst computed exactly, with in nite precision, then rounded. There is no similar requirement for the elementary functions. The possible rounding modes are: round towards ;1: r(x) is the largest machine number less than or equal to x round towards +1: (x) is the smallest machine number greater than or equal to x round towards 0: Z(x) is equal to r(x) if x 0, and to (x) if x < 0 round to the nearest: N (x) is the machine number which is the closest to x (with a special convention if x is exactly between two consecutive machine numbers).

Throughout this paper, machine number means a number that is exactly representable in the oating-point format being considered. The rst 3 modes are called directed modes . A very interesting discussion on the current status of the IEEE-754 standard is given by Kahan 13].

Our ultimate goal is to provide correctly rounded elementary functions at a reasonable cost. Requiring correctly rounded results not only improves the accuracy of computations: it is the best way t o m a k e n umerical software portable. Moreover, as noticed by Agarwal et al. 1], correct rounding facilitates the preservation of useful mathematical properties such as monotonicity, symmetry1 , a n d some identities.

Throughout the paper, we w ant to implement a function f (f being sine, cosine, exponential, natural logarithm or arctangent) in a radix-2 oating-point number system, with n mantissa bits. We assume that from any r e a l n umber x and any i n teger m (with m > n), we are able to compute an approximation of f(x) with an error on its mantissa y less than or equal to 2 ;m+1 . This can be achieved with the presently known methods, using polynomial or rational approximations or Cordic-like algorithms, provided that a very careful range reduction is performed [START_REF] Nesterenko | On the approximation of the values of exponential function and logarithm by algebraic numbers (in Russian)[END_REF]12,[START_REF] Schulte | Hardware designs for exactly rounded elementary functions[END_REF][START_REF] Daumas | Rounding of oating-point i n tervals[END_REF][START_REF] Muller | Towards exact rounding of the elementary functions[END_REF]. The intermediate computations can be carried out using a larger xed-point or oating-point format.

Therefore the problem is to get an n-bit mantissa oating-point correctly rounded result from the mantissa y of an approximation of f(x), with error 2 ;m+1 . This is not possible if y has the form: in rounding to the nearest mode, m bits Although we deal with radix-2 oating-point systems, the same problem obviously occurs with other radices2 . F or instance, in a radix 10 oating-point number system, with 4 digit mantissas, sin(73:47) = ;0: 9368 0000058 : : : therefore a problem may occur with a directed rounding mode. Similar problems with radix 10, directed rounding modes, and the cosine function are given in Table 1. n x cos(x) 4 1:149 0:409400000428 : :: 5 1:6406 ;0:69747000000219 : :: 6 1:41162 0:15850500000180 : :: 7 1:225910 0:33808970000005907 : :: 8 1:9509449 ;0:37105844000000012 : :: Table 1: Worst cases for n-digit mantissa, radix-10, oating-point n umbers between 1 and 2, directed rounding modes and the cosine function.

Our problem is to know if there is a maximum value for m, and to estimate it. If this value is not too large, then computing correctly rounded results will become possible.

It is worth noticing that even if the maximum value of m is quite large, it is not necessary to always evaluate f(x) with large accuracy. The key point i s that if the intermediate approximation y is not accurate enough, we are in one of the four cases listed above, so we can be aware of the problem. This leads to a solution rst suggested by Ziv 23]: we rst start to approximate f(x) with a value of m slightly larger than n (say, n + 1 0). In most cases this will su ce to get a correctly rounded result. If this does not su ce, we c o n tinue with a larger value of m, and so on. We increase m until we h a ve enough accuracy to be able to correctly round f(x). In a practical implementation of this strategy, the rst step may be hardwired, and the other ones are written in software. It is very important that the rst steps (say, the rst two steps) be fast. The other ones are unlikely to occur, so they may be slower without signi cantly changing the average computational delay.

In 1882, Lindemann showed that the exponential of a nonzero (possibly complex) algebraic number is not algebraic 3]. From this we easily deduce that the sine, cosine, exponential, or arctangent o f a m a c hine number di erent f r o m z e r o cannot be a machine number (and cannot be exactly between two consecutive machine numbers), and the logarithm of a machine number di erent f r o m 1 cannot be a machine number (and cannot be exactly between two consecutive machine numbers). Therefore, for any non-trivial machine number x (the cases x = 0 and x = 1 are obviously handled), there exists m such that the TMD cannot occur. This is not always true for functions such a s 2 x , log 2 x, o r x y . This is why w e do not consider them in this paper 3 . Since there is a nite number of machine numbers x, there exists a value of m such that for any x the TMD cannot occur. Schulte and Swartzlander 20,[START_REF] Schu L T E A N D | Exact rounding of certain elementary functions[END_REF] proposed algorithms for producing correctly rounded results for the functions 1=x, p

x, 2 x and log 2 x in single-precision. Those functions are not discussed here, but Schulte and Swartzlander's result helped us to start our study. T o nd the correct value of m, they performed an exhaustive search for n = 1 6 and n = 2 4 . F or n = 1 6 , t h e y found m = 3 5 for log 2 x and m = 2 9 for 2 x , and for n = 2 4 , they found m = 5 1 for log 2 x and m = 4 8 for 2 x . W e performed similar exhaustive searches for very small values of n and a few di erent exponents only, a n d a l w ays found m close to twice n. F or instance, the largest value of m for cosines of single-precision numbers between 1 and 2 is obtained for 3 numbers, including O n e w ould like to extrapolate those gures and nd m 2n.

In 16], two o f u s s h o wed that if the bits of f(x) after the n-th position can be viewed as if they were random sequences of zeroes and ones, with probability 1 2 for 0 as well as for 1, t h e n f o r n-bit mantissa normalized oating-point input numbers, assuming that n e di erent exponents are considered, m is close to 2n + l o g 2 (n e) with very high probability 4 . Similar probabilistic studies have been done previously by Dunham 9], and by Gal and Bachelis 10].

Of course, probabilistic arguments do not constitute a proof: they can only give an estimate of the accuracy required during the intermediate computation to get a correctly rounded result. There are a few results from number theory that can be used to get an upper bound on the maximum value of m. U nfortunately, s u c h bounds are very large. In practice, they appear to be much larger than the actual maximum value of m. F or instance, using a theorem due to Nesterenko a n d W aldschmidt 18], we could show 16] that getting correctly rounded results in double-precision could be done with m 1 0 0 0 0 0 0 . Although computing functions with 1 000 000 digits is feasible (on current m a c hines, this would require less than half an hour using Brent's algorithms 5] for the functions and Zuras' algorithms 24] for multiplication), this cannot be viewed as a satisfactory solution. Moreover, after the probabilistic arguments, the actual bound is likely to be around 110. Therefore, we decided to study how could an exhaustive search o f t h e w orst cases be possible.

Exhaustive tests

For a given elementary function f, a given oating-point format (in practice, IEEE-754 double precision), a given rounding mode, and a given range (ideally, the range of all machine numbers for which the function is mathematically de ned, but this may be di cult in some cases), we w ant to nd worst cases . A w orst case is a machine number x, belonging to the considered range, for which the distance between f(x) and a machine number (for directed rounding modes) or the distance between f(x) and the middle point o f t wo consecutive machine numbers (for rounding to the nearest) is minimal. Here, distance means mantissa distance , that is, the distance between f(x) and y is jf(x) ; yj 2 blog 2 jf(x)jc : To nd such w orst cases within reasonable time, we need to workout e cient lters. A lter is an algorithm that allows to eliminate most cases, that is, that quickly eliminates any n umber x for which the distance between f(x) and a machine number or the middle point o f t wo consecutive m a c hine numbers is far from being minimal. If the lter is adequately designed, a very small fraction of the set of the considered machine numbers will not have been ltered out, so that we will be able to deal with these numbers later on, during a second step, using more accurate yet much slower techniques.

We consider here two di erent lters. Both are based on very low degree (consequently, v alid on very small domains only) polynomial approximations of the functions being considered. 4 If all possible exponents are considered, this formula can be simpli ed: with a p-bit oating-point n umber system, it becomes n + p. A n d y et, we prefer the formula 2n + l o g 2 (ne) because in practice, we seldom have to deal with all possible exponents: when an argument is very small (i.e., its exponents are negative a n d h a ve a rather large absolute value), simple Taylor expansions su ce to nd a correctly rounded result. When an argument i s v ery large, the value of the functionmay b e t o o l a r g e t o b e r e p r e s e n table(for instancewith the exponential function), or so close to a limit value that correctly rounding it becomes obvious (for instance with the arctangent function).

The exhaustive search is restricted to a given interval outside this interval other methods can be chosen. Indeed, if x is small enough (less than 2 ;53 for double precision), an order-1 Taylor expansion can be used, and if x is large enough, the exponential gives an over ow, and the values of trigonometric functions do not make m uch sense any longer for most applications (although we prefer to always return correctly rounded results).

A similar work for the single-precision oating-point n umbers has already been done by v arious authors 20, 16]. Our methods have rst been applied to the exponential function with double-precision arguments in the interval 1 2 1). We are extending them to other intervals and other functions. Results concerning other intervals cannot be deduced from the results in 1 2 1), t h us these intervals will have to be considered later.

Concerning the double-precision normalized oating-point n umbers (n = 53), there are 2 52 possible mantissas (the rst bit is always 1), which is a large number. Thus one of the most important concerns is that the test program should be as fast as possible, even though it is no longer portable (we only used SparcStations). Indeed, one cycle per test corresponds to approximately two years of computation on a 100 MHz workstation: saving any cycle is important! 2.1 First ltering strategy

Algorithm (general idea)

The TMD occurs for an argument x if the binary expansion of f(x) has a sequence of consecutive 0's or 1's starting from a given position, where the position and the length of the sequence depend on the nal and the intermediate precisions. The problem consists in checking for all x whether these bits are all 0's or all 1's, and in this case, nding the maximal value of m for which t h e TMD occurs.

As explained previously, to get fast tests, we apply a two-step strategy similar to Ziv's 23]. The rst step (that is, the lter) must be very fast and eliminate most arguments the second one, that may b e m uch slower, consists in testing again the arguments that have failed at the rst step, by a p p r o ximating f(x) with higher precision.

The rst step consists in testing a given subsequence of the binary expansion (bits of weight 2 ;54 to 2 ;(M;1)) o f a n a p p r o ximation of each f(x) with error 2 ;M . In our case, we h a ve c hosen M = 8 6 from the algorithm and the processor characteristics. The test fails if and only if these bits are the same, and the argument will have t o b e c hecked during the second step. In the opposite case, one can easily show that the bits 54 to M of the exact result cannot all be equal. In the following, we assume f(x) = e x .

First step: overall presentation

To perform the rst step, the exponential function is approximated by a polynomial. The chosen polynomial must have a l o w degree for the following reasons: on the one hand, to reduce the computation time, on the other hand, to limit possible rounding errors. As a consequence, the approximation is valid on a small interval only.

Let us consider an interval ;2 r;53 2 r;53), w h e r e r is a positive i n teger (it will be about 15), in which w e k n o w a polynomial approximation. We can use the formula e t+x = e t :e x where x is in this interval and t has the form (2`+1)2 r;53 , t o t e s t e v ery argument in the range 1=2 to 1.

The main idea consists in computing a polynomial approximation of the exponential in the intervals t ; 2 r;53 t + 2 r;53), t h e n e v aluating the obtained polynomial at consecutive v alues by the nite di erence method 14], brie y recalled in Section 2.1.4. This method is attractive, for it only requires additions (two for each argument in the case of a polynomial of degree two, which w as chosen) and the computations can be performed modulo 2 ;53 (the rst tested bit having weight 2 ;54). Thus the algorithm consists of two parts: the computation of the e t 's with error 2 ;s , where t will have the form (2`+ 1) 2 r;53 (and will be between 1=2 and 1), the computation of the e t+x 's with error 2 ;M , where x is in ;2 r;53 2 r;53), knowing e t with error 2 ;s .

For our tests, we c hose r = 1 6 , M = 8 6 and s = 8 8 . These parameters have been determined from an error analysis (giving relations between r, M and s) and hardware parameters (register width and disk size).

Computing the e t 's

We seek to compute u `= e y+`z with error 2 ;s , w h e r e y = 1 =2+2 r;53 , z = 2 r;52 and `is an integer such that 0 < 2 51;r .

The following method allows to compute a new term with only one multiplication (using the formula e a+b = e a :e b), with a balanced computation tree to avoid losing too much precision, and without needing to store too many v alues u `, the disk storage being limited.

We write `in base 2: `= `50;r `49;r : : :0. W e h a ve e y+`z = e y :e `0 0 :e `1 1 : : :e `50;r 50;r where e i = (e z) 2 i to simplify, e y and the e i 's are precomputed.

The problem now consists in computing for all I f 0 1 : : : h g containing h:

P I = Y i2I e i
where the e i 's are the above precomputed values (e h = e y). For that, we partition f0 1 : : : h g into two subsets that have the same size (or almost) to balance, and we apply this method recursively on each subset (we s t o p t h e recursion when the set has only one element) then we calculate all the products xy, where x is in the rst subset and y is in the second subset. The last products xy are computed later, just before testing the corresponding interval. These computations can be performed sequentially on one machine: they only need several minutes.

x P(x) P(x) = P (x + 1)

;P (x)

2 P(x) = P(x + 1)

; P(x) Table 2: Illustration of the nite di erence method, with P (x) = x 3 ; x 2 + 1 , x 0 = 0 and h = 1 . Once 4 consecutive v alues of P are evaluated, we compute 3 values of P , 2 v alues of 2 P and one value of 3 P using subtractions. After this, evaluating a new value P (x i) requires 3 additions only.

Computing and testing the e t+x 's

The exponential e x is approximated by 1+x+ 1 2 x 2 on the interval ;2 r;53 2 r;53]. The computation of the e t+x 's using that polynomial approximation i s p e rformed using the nite di erence method 14]. This method allows to calculate consecutive v alues of a polynomial of degree d with only d additions for each value. It is probably known by most readers, so we just brie y recall it, to make the paper self-contained. Assume we wish to evaluate a degree-d polynomial P at regularly-spaced values x 0 , x 1 = x 0 + h, x 2 = x 0 + 2 h,. . . , x i = x 0 + ih,. . . . De ne the values: P (x i) = P (x i+1) ; P (x i), 2 P(x i) = P (x i+1) ; P(x i), 3 P(x i) = 2 P(x i+1) ; 2 P(x i), . . . d P (x i) = d;1 P (x i+1) ; d;1 P (x i). It is quite easy to show that for any i, d P(x i) is a constant that only depends on P. This is illustrated in Table . 2 in the case P(x) = x 3 ; x 2 + 1 , x 0 = 0 and h = 1 . This shows that once the rst d + 1 values of P , then the rst d values of P, then the rst d ; 1 values of 2 P, . . . then the (constant) value of d P are computed, it su ces to perform d additions to get a new value of P.

In our problem (with h = 1 and x 0 = 0), the polynomial is not given by its coe cients nor by its rst values P (0), P (1),. . . , P (d), but by the elements P(0), P (0), 2 P(0), These values are more suited to our computations.

They are the coe cients of the polynomial in the base 1 X X(X ; 1) 2 X(X ; 1)(X ; 2) 3! : : : :

The test of the bits cannot be performed with only one instruction on a Sparc processor without modi cations. This test consists in testing whether a n umber is in a given interval centered on 0 modulo 2 ;53 . With the nite di erence method, we can translate the interval so that its lower bound is 0, and we can use an unsigned comparison to test whether the number is in the interval thus we nally need only one instruction.

Thus the rst step takes 5 cycles per argument o n a verage (two 64-bit additions and one 32-bit comparison), the time required by the other computations branch instructions being negligible.

Parallelizing on a computer network

The total amount of CPU time required for our computations is several years. We w anted to quickly get the results of the tests (within a few months). Therefore we had to parallelize the computations. We used the network of 120 workstations of our department. These workstations often have a small load. We sought to use each m a c hine at its maximum without disturbing its user in particular, the process uses very little memory and there are very few communications (e.g. le system accesses).

Second step

The second step consists in a more precise test for the arguments that failed during the rst step. The exponential is computed with a higher precision, chosen so that the probability that the test fails for an argument i s v ery low. We c hose a variation of De Lugish's algorithm 8] for computing the exponential (since it contains no multiplication). The computations were performed on 128-bit integers (four 32-bit integers). The algorithm was implemented in assembly language (which is, for the present purpose, simpler than in C language).

Improvements

The algorithm given above (rst ltering strategy) has been used during the summer of 1996. We present the results in Section 3. Since 1996, we h a ve developed another ltering strategy, presented in Section 2.2.1. Before examining that strategy, let us notice some remarks that may help to accelerate the tests.

First, we can test both a function and its inverse at the same time. As we would need to test twice as many n umbers as before, it seems that we w ould save nothing, but this is no longer true in combination with the following methods.

Since testing a function and testing its inverse are equivalent (the exponential of a machine numbera is close to a machine numberb if and only if the logarithm of b is close to the machine number a), we c a n c hoose the function that is the fastest to test, i.e. the function for which t h e n umber of points to test is the smallest in the given domain of course, this choice may depend on the considered domain.

We can approximate a degree-2 polynomial by s e v eral degree-1 polynomials in subintervals (which is not equivalent to directly approximating the function by degree-1 polynomials). By doing this, the tests would require 3 cycles per argument i n a verage instead of 5 cycles. But we m a y do better: now w e h a ve a function that may be simple enough (a translation of a linear function) to nd an attractive algorithm based on advanced mathematical properties. This is done in the next section.

2.2 Second ltering strategy: towards faster tests

Faster tests

As previously, w e wish to know h o w close can f(x) be to a machine number (or the middle point o f t wo consecutive m a c hine numbers), where x is a machine number. Our second approach i s b a s e d o n t h e 3-distance t h e orem 4]. Let us start from a circle and an angle . W e build a sequence of points x 1 , x 2 ,. . . on the circle (see Fig. 1) as follows:

x 0 is chosen anywhere on the circle x i+1 is obtained by rotating x i of angle . The 3-distance theorem says that, at any time during this process (that is, for any given n, when the points x 0 , x 1 , x 2 , . . . ,x n are built), the distance between two points that are neighbors on the circle can take at most 3 possible values. This is illustrated on Fig. 2. Moreover, there are in nitely many v alues of n (number of points) for which the distance between two points that are neighbors on the circle can take t wo v alues. To use this result, we will do the following: the initial domain is cut into subdomains small enough to make sure that, within an acceptable error, function f can be approximated by a linear approximation on each sub-domain. We also assume that all numbers in a sub-domain I, a s w ell as in exp(I), h a ve the same exponent now, let us focus on a given sub-domain. We scale the problem (input oating-point n umbers, linear approximation) so that oating-point n umbers now correspond to integers. Therefore our problem becomes the following: given a rectangular grid (whose points have i n tegral coordinates belonging to a given range), a straight line, and a (small) real number , are there points of the grid that are within a distance from the line ? we slightly modify the problem again: we translate the line down by a distance . Our initial problem is equivalent to: are there points of the grid that are above the (translated) line, and at a distance less than 2 from it ? After these modi cations, assuming that the translated straight l i n e i s o f equation y = ax ; b, our problem becomes: is there an integer x, belonging to the considered domain, and another integer i such t h a t 0 i ; ax + b 2 ? Now, we compute modulo 1, a n d w e look for an integer x such t h a t b ; ax modulo 1 is less than 2 . N o w w e can understand in what this problem is related to the 3-distance theorem. We compute modulo 1: the reals modulo one can be viewed as the points of a circle, a given point being arbitrarily chosen for representing 0. A dding a value a modulo 1 to some number z is equivalent t o rotating the point that represents z of an angle 2 a. Therefore, by c hoosing x 0 = b and = ;2 a, building the values b ; ax (where x is an integer) is equivalent to building the values x 1 , x 2 , x 3 . . . of the 3-distance theorem. Now, we give a fast algorithm that computes the lower bound on the distance d between a segment and the points of a regular, rectangular grid. More details are given in 15]. This algorithm is related to the 3-distance theorem and is an extension to Euclid's algorithm, which is used to compute the development o f a real number (the slope of the segment) into a continued fraction. We h a ve seen that, in the 3-distance theorem,that there are in nitely many v alues of n (number of points) for which the distance between two points that are neighbors on the circle can take t wo v alues. Let us call i and i these distances the i-th time there are two distances. The algorithm given below directly computes the sequences i and i , without having to build the points x i . function. For instance, one of the worst cases for logarithms of double precision numbers between 1 + 2 ;29 and 1 + 351040 2 ;29 , and directed rounding, is

Conclusion

We h a ve s h o wn, using as an example the case of the exponential function in 1 2 1), that correctly rounding the double-precision elementary functions is an achievable goal. Moreover, if all the values of m have the same order of magnitude as the value we obtained for the exponential function (this is like l y t o b e true), always computing correctly rounded functions will not be too expensive.

As said in the introduction, correct rounding will facilitate the preservation of useful mathematical properties. And yet, to be honest, we m ust say that there are a few examples for which correct rounding may prevent from preserving a useful property. Let us consider the following example 17]. Assume that we u s e an IEEE-754 single-precision arithmetic. The machine number which i s c l o s e s t to arctan(2 30) is 13 176 795 8 388 608 = 1 :57079637050628662109375 > 2 : Therefore, if the arctangent function is correctly rounded in round-to-nearest mode, we get an arctangent larger 5 than =2. A consequence of this is that in our system, tan ; arctan ; 2 30 = ;2:2877 10 7 : In this case, the range preservation property j arctan xj is less than =2 for any x is not satis ed due to the use of correct rounding in round-to-nearest mode. This is a very peculiar case. One can easily show the following property Theorem 1 If a function f is such that: f(x) is de ned for any x 2 a b], c = min x2 a b] f(x) is a machine number, d = max x2 a b] f(x) is a machine number, then if f(x) is computed w i t h c orrect rounding 6 for a machine number x 2 a b], t h e c omputed value will belong to c d]. 5 But equal to the machine representation o f =2. 6 Assuming this is possible [START_REF] Kahan | Minimizing q*m-n[END_REF] This property s h o ws that the problem that occurred in the previous example will not appear frequently with the usual functions. For example, if they are correctly rounded (in any rounding mode), sines, cosines and hyperbolic tangents will always be between ;1 and +1.

Our programs were written for Sparc-based machines, but a small portion of the code only is written in assembly code, so that getting programs for other machines would be fairly easy. Of course, it is very unlikely that somebody will be able to perform exhaustive tests for quadruple-precision in the near future, but all the results of our experiments shows that the estimates obtained from the probabilistic hypotheses are very good, so that adding a few more digits to 2n + log 2 (n e) for the sake of safety will most likely ensure correct rounding (it is important to notice that if correct rounding is impossible for one argument, we c a n b e a ware of that, so a ag can be raised). Therefore we really think that in the next ten years, libraries and / or circuits providing correctly rounded double-precision elementary functions will be available. Now, it is time to think about what should appear in a oating-point standard including the elementary functions. Among the various issues that should be discussed, one can cite: should we p r o vide correctly rounded results in all the range of the function being evaluated (that is, for all machine numbers belonging to the domain where the function is mathematically de ned), or in a somewhat limited range only ? Although we w ould prefer the rst solution, it might lead to more complex (and therefore time-consuming) calculations when computing trigonometric functions of huge arguments even if we p r o vide correctly rounded results, should we allow a faster mode , for which faithful rounding 6] only is provided ? Faithful rounding means that the returned result is always one of the two m a c hine numbers that are nearest to the exact result. This is not a rounding mode in the usual sense (for instance, it is not monotonic). Should we allow roundings that are intermediate between faithful rounding and correct rounding, for instance, should we a l l o w instead of rounding to the nearest, results that are within 1=2ulp + from the exact result, for some very small ?

Figure 1 :

 1 Figure 1: The 3-distance theorem. Construction of the rst points.

Figure 2 :

 2 Figure 2: The 3-distance theorem. Construction of more points. There are at most 3 possible distances between consecutive p o i n ts.

Table Maker

 Maker

	's Dilemma (TMD) 11]. For example, assuming a oating-point arithmetic with 6-bit mantissa,
	sin(11:1010) = 0:0 111011 01111110 : : :
	a problem may occur with rounding to the nearest if the sine function is not computed accurately enough.

Only when the rounding mode itself is symmetric, i.e., for rounding to the nearest and rounding toward zero.

Other radices are actually used. For example, most pocket computers use radix 10.

However, these functions satisfy some properties that might probably be used. For instance, if x is a machine number and if x is not an integer, then 2 x cannot be a rational number.

In the following, fxg denotes the positive fractional part of the real number x, i.e., fxg = x ; b xc.

As previously , let y = ax ; b be the equation of the segment, where x is restricted to the interval 0 N ;1]. The following algorithm gives a lower bound on fb ; axg, w h e r e x is an integer in 0 N; 1].

In nite loop:

= ; u = u + v Returned value: d and contain the lengths that appear in the 3-distance theorem u and v contain the number of intervals (arcs) of respective lengths and (u+v is the total number of intervals, i.e., the number of points). During the computations, d is the temporary lower bound (for the current n umber of points u+ v), which becomes the nal lower bound when the algorithm stops.

Results

In 1996, we tested the exponential function with double-precision arguments in the interval 1 2 1), using the rst ltering strategy (see Section 2.1). We needed up to 121 machines during three months for the rst step. The second step was carried out in less than one hour on one machine.

The very same results have been obtained in January 1997, with the second ltering strategy (see Section 2.2.1) . Thanks to this better strategy, w e needed a few machines only. The computation was approximately 150 times faster than with the rst strategy (we tested 30 arguments per cycle on average).

Among all the 2 20 = 1 048 576 intervals, each c o n taining 2 32 values, 2 097 626 exceptions have been found. From the probabilistic approach, the estimated number of exceptions was to be 2 21 = 2 0 9 7 1 5 2 . This shows that, in this case, the probabilistic estimate is excellent. Our experiments allowed us to perform an in-depth check of the probabilistic hypotheses. For each double-precision number x, let us de ne an integer k x such that the mantissa of e x has the following form: From the probabilistic hypotheses, k x k 0 for given numbers x and k 0 with a probability o f 2 2;k0 . In the following table, we g i v e the following numbers as a function of k 0 (with k 0 40) for 1 2 x < 1: the actual number of arguments for which k x = k 0 the actual number of arguments for which k x k 0 the estimated (after the probabilistic hypotheses) number of arguments for which k x k 0 : 2 52 2 2;k0 , i.e. 2 54;k0 . Therefore the value of m for the exponential function in 1 2 1) in doubleprecision is 109 = 53+55+1. W e are computing the worst cases for the logarithm