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On strong normalisation
of explicit substitution calculi

Frédéric Lang
Pierre Lescanne

August 31, 1999

Abstract

In this paper, we present an attempt to build a calculus of explicit substitution
expected to be confluent on open terms, to preserve strong normalisation and to
simulate one step G-reduction. We show why our attempt failed and we explain
how we found a counter-example to the strong normalisation or termination of
the substitution calculus. As a consequence, we provide also a counter-example
to the strong normalisation of another calculus, namely 7 (the substitution
calculus of Ar) of Rids, for which the problem was open.

Keywords: Explicit Substitution, Strong Normalisation,
Confluence, Termination, Lambda Calculus

Résumé

Dans cet article, nous rendons compte d’une tentative pour construire un calcul
de substitutions explicite sensé étre confluent sur les termes ouverts, préserver la
forte normalisation et simuler la f-réduction en une seule étape. Nous montrons
pourquoi notre tentative a échoué et nous expliquons comment nous avons
trouvé un contrexemple & la terminaison du calcul de substitutions. Comme
conséquence nous exhibons un contrexemple & la forte normalisation d’un autre
calcul & savoir le calcul 7 (le calcul de substitution de A7) de Rids, pour lequel
le probléme était ouvert.

Mots-clés: Substitution Explicite, Normalisation Forte,
Confluence, Terminaison ,Lambda Calcul



1 Introduction

This paper deals with A-calculi with explicit substitution i.e., first order calculi
which simulate the G-reduction of the A-calculus. Many such calculi have been
proposed and studied and much attention has been done on confluence, one step
simulation of the B-reduction, and preservation of strong B-normalisation.

Confluence. Given a relation R on a set S, confluence ensures that for every
element a of S, if a rewrites to b in one or more steps and if a rewrites to ¢ in
one or more steps, then there exists a d such that both & and ¢ rewrite to d in
one or more steps. In the setting of term rewriting systems, one distinguishes
between confluence on closed terms when S is the set of terms without first-
order variables and confluence on open terms when S is the set of patterns of
terms or terms with meta-variables or unbound variables. The first is called
ground confluence and the second is called meta-confluence.

One step simulation. M-calculi of explicit substitution are meant to simulate
A-calculus. There are two ways to consider it. Either the A-calculus of explicit
substitution is used to compute the same normal forms as the A-calculus, in
other words both calculi lead to the same normal form. Or one has a calculus of
explicit substitution which simulates faithfully the A-calculus, in the sense that
each reduction in the A-calculus can be simulated by reduction in the A-calculus
of explicit substitution. Usually this is done in a few steps, namely one step,
which creates an explicit substitution, followed by steps which get rid of this
substitution. If the system simulates A-calculus in the second sense, one says
that it fulfils one step simulation.

Preservation of strong f-normalisation. An explicit substitution calculus
adds new possible reductions w.r.t. the A-calculus, hence it may be the case
that a term which has no infinite derivation in the A-calculus has ones in the
A-calculus with explicit substitution. If this is never the case the calculus is said
to preserve strong [-normalisation of the A-calculus.

To make short, let us call ground confluence GC, meta-confluence MC, one
step simulation 1SIM, and preservation of strong normalisation PSN.

People are interested in these properties, because they insure that the whole
behaviour of the A-calculus is preserved. The first calculus of explicit substitu-
tion is the AC€¢ of de Bruijn [dB78], of which [BBLRDY6] has a presentation in
today notations. But it is somewhat traditional to set the beginning of explicit
substitutions with [ACCL91] where the authors define a one step simulating
calculi they call Ao. They are mainly interested on the meta-confluence issue,
but they are not aware of the PSN issue. Actually, the calculus Aoy, [CHL96],
a direct descendant of Ao, is the first meta-confluent and one step simulating
calculus of explicit substitution to date. Later on, Melliés [Mel95] exhibited
a simply typable A-term which leads to an infinite derivation in Acy. Guil-
laume [Gui98, Gui99] did the same for As. [KR97], which was expected to solve
the problem of Acoy. Other calculi [BBLRD96, BR95, KR95, LRD95, FKP99],
have 1SIM, PSN and, GC, but not MC. These calculi define, in some sense,
sub-relations of the previous ones, restricted enough to preserve strong normal-
isation, not too much so to keep one step simulation, but too much to preserve



confluence on open terms. In another direction, Munoz [Mun96] defined a re-
stricted relation as a calculus which has PSN and MC, but not 1SIM.

We worked on the problem of finding a calculus which would enjoy 1SIM,
MC and PSN. For this we defined our own calculus. We failed in our endeavour,
but in that process we found a counter-example to the strong normalisation
of its substitution calculus. This was not a real failure, since we immediately
adapted this counter example to the calculus At of Rios [Rio93] (also presented
in [Les94]) which was at that time a challenger for 1SIM,; PSN and MC. As this

approach is instructive, we feel it is worth to be presented.

Plan of the paper. In Section 2, we present our calculus Ave, obtained by
joining the critical pairs of the calculus Av [Les94, BBLRD96]. We show in
Section 3, using an abstraction presented as a kid game, that a subsystem of
two rules extracted from Awve is not strongly normalizing, whereas it should to
preserve strong normalisation. In Section 4 we adapt the counter example to Ar.
We conclude in Section 5.

Preliminary Definitions. Given a relation —, we denote by —7 its tran-
sitive closure and by —» its reflexive and transitive closure. In this paper we
mention calculi called A [0 where [J can be filled by any of v, ve, 7, oy, se, etc.
We adopt the convention to designate by [ the substitution calculus included
in A O t.e., the calculus induced by all rules but the one which introduces the
substitution by contraction of a f-redex, namely (B-0OJ).

2 Joining the critical pairs of \v

The calculus Av (lambda upsilon) [Les94, BBLRD96] is a A-calculus with ex-
plicit substitution. Unlike the A-calculus, the substitution is part of the syntax,
here written between brackets. Figure 1 presents Av. It was designed as a min-
wmal calculus i.¢e., a calculus in which every operator and rule is introduced by
necessity to get a calculus simulating (one step) S-reduction. These operators
are /, 1, and {} (read respectively slash, shift, and lift). Roughly speaking, /
is introduced by (B-v), where a[b/] means that the variable denoted by 0 is
to be substituted by b in a. The operator {} is introduced by (Lambda-v), to
express that some indexes in the substitution will have to be incremented due
to the propagation under a binder. At last, the operator 1 is introduced by
(RVarlift-v), to actually increment the free indexes of a term. Hence, both the
a-renaming and the substitution, usually implicit in the A-calculus, are here
performed explicitly.

The calculus Av has 1SIM, PSN, and GC. However, it is not confluent on open
terms, as shown in Figure 2 by the non-joinable critical pair between rules (B-v)
and (App-v). A system which has no such critical pair is said locally confluent.

One technique to get a confluent system from a non-confluent one is the so-
called completion [KB70]; it works by adding (recursively) new rules whenever
a critical pair is found. Usually, completion is associated with a well founded
order which tells how to orient rules properly in order to insure the termination
of the system. A terminating and locally confluent system is said convergent.
Newman lemma [New42] tells us that convergent systems are confluent. Av is not



Syntax. Awv is the set of terms inductively defined by the following BNF:

a,b=ab | da | n | afs] (Terms)
ss¢ta=af | M(s) | T (Substitutions)
n €N (Naturals)

Rules. Av reduction is defined as the reflexive, transitive, contextual, and
substitution closure of the following rewriting rules:

(Aa)b — alb/] (B-v)
(ab)[s] — als] b[s] (App-v)
(Aa)[s] — Aa[fr(s)] (Lambda-v)

Oa/] = a (FVar-v)
n+lla/]=n (RVar-v)
Offr(s)] =0 (FVarlift-v)
n+ 1[f1(s)] — nls][1] (RVarlift-v)
n[f] = n+1 (VarShift-v)

Figure 1: The calculus Av

((Aa) b)[s]
\ (App-v)
(B-v) (Aa)[s] b[s]
L(Lambda—v)
(Aa[fr(s)]) b[s]
L(B-U)
alni(s)][o[s]/]

Figure 2: Non-joinable critical pair of the calculus Av.




terminating (strongly normalising), since it contains the A-calculus. However, v
itself, which is strongly normalising, is convergent, since it has no critical pair.

Our goal is to obtain a confluent A-calculus of explicit substitution. For this,
we start with Av and we use an ad-hoc procedure to join the critical pairs of Av,
orienting the new rules according to an intuitive order, with no proof of well
foundedness. We cross fingers with the hope we are not adding other sources of
non-termination as the ones inherent to the A-calculus.

To join the critical pair of Figure 2, we can add the following rule:

alb/ls] — alfi(s)][b[s]/]

(There are many reasons why we do not orient this rule the other way, which
we do not develop in this note.) This rule introduces more critical pairs, which
can be generated by a completion (which diverges in this case). We are rapidly
tempted to add a more general — conditional — rule of the form

alf” (b)IN" T ()] = alf™F ()] (0™ ()1/)]

where {}"*1(s) intuitively denotes ﬂ(ﬂ”(s)) and 1}°(s) denotes s. We call this
rule (P) for permutation. The way we write superscripts on lifts i.e., as sums,
is a meta-notation to avoid writing side conditions. These conditions can be
included as part of a sophisticated matching algorithm. For instance, in the left
hand side of (P), the condition is that the superscript of the first lift is less or
equal than the superscript of the second lift. It is the only case in which one
can instantiate n and m, since a natural p is greater or equal than another n
if and only if there exists a natural m such that p equals n + m. The process
leads us also to consider a slightly different way of encoding variables. Instead
of encoding them with usual natural numbers, we use the substitution 1 as a
constructor applied to the variable 0, hence acting like the successor constructor,
similarly to the encoding of variables in Ao [ACCL91] and others. Hence, the
index n of Av will be encoded in the new calculus by the expression

ol (1.
—————

n times

The process leads us to the locally confluent system of Figure 3, which we call
Ave. Our encoding of variables allows us to write more general rules than the
ones acting on indexes in Av. Compare for instance (RLift-ve) with (RVarLift-v),
and (R-ve) with (RVar-v).

Yet, it 1s not clear that this process preserves the strong normalisation of v.
In other words, it has to be proven that ve is strongly normalising. We show in
the next section that this is hopeless.

3 The kid game of permutations

For the sake of termination much care should be done to rules (P-ve) and
(RLift-ve), because they permute substitutions. One natural preliminary step
in proving strong normalisation, or on the contrary in finding a counter example
to strong normalisation, is to address first the strong normalisation of this small
subsystem of two rules. In order to draw our attention on an abstraction of this
system, we describe it as a kid game.



Syntax. Awc is the set of terms inductively defined by the following BNF:

a,b=Xa | ab | 0| a[fi”(s)] (Terms)
s,¢tu=af | 1 (Substitutions)
n €N (Naturals)

Rules. Awvc reduction is defined as the reflexive, transitive, contextual,
and substitution closure of the following rewriting rules:

(Aa) b — alf®(b/)] (B-ve)

(@)™ (s)] = alf" (s)] B[ (5)] (App-ve)
Aa) [N (s)] = Aa["(s)] (Lambda-vc)

0[N’ (a))] = a (FVar-ve)

alfy" (DI (b/)] = a (R-ve)
0"+ (s)] = 0 (FVarLift-ve)

alf" (DI ()] = alh™ " ()]0 (1)) (RLift-ve)
alf" (o)™ ()] = a7 ()]0 (B[N (5)]/)] (P-ve)

Figure 3: The calculus Ave

The game of permutations Let white and black be two teams of any num-
bers of kids. Each player of each team has an arbitrary score, any natural
number. All the players are aligned side to side. Then the game processes as
follows, where each player can be involved in at most one move at a time:

White move. A player of the white team with a score n can exchange its
position with his (her) left hand neighbour (of any team) with a score m
provided m > n. Then, m is decremented.

Black move. A player of the black team with a score n can exchange its posi-
tion with his (her) left hand side neighbour (of any team) with a score m
provided m > n. Then, m is incremented.

In our game, the white team abstracts out 1 substitutions, so that {}*(1) is
interpreted as a white player of score n, while the black team abstracts out
/ substitutions, so that for any a, )" (a/) is interpreted as a black player of
score n. Hence, a white move abstracts out a (P-ve) step, while a black move
abstracts out a (RLift-vc) step. Hence, the abstraction is only concerned with
what happens on a string a[s1]...[s,] of substitutions, but not in proper sub-
terms s1,...,s, of this string. The problem is then the following:

Problem 1 Is it possible to have configurations with which the game of permu-
tations can proceed forever?

Answer 1 Unexpectedly to us, the answer is yes. Let black and white have two
players each, everyone with score 0. Figure 4 shows a configuration which in
four moves gets into a similar configuration.



1.

Black move

2.

White move

3.

Black move

4.

White move

5.

Black move

etc.

Figure 4: A configuration of the game of permutations leading to an infinite
play.

This leads to a direct answer to the problem of strong normalisation of ve.
Corollary 1 Let ag, by, ¢ be any terms in Ave, and
ngr = bn bngr = an [N (DIN"(0n/)]
then
M (an NI DIIN Bn /)] =T " DI (@ns2 NI (DN (brs1/)]

Proof: Tt is a four steps reduction using only the two rules (P-vc)
and (RLift-vc). The permutable substitutions of the selected redex
of each reduction are underlined.

e[ (NI (an NI (DIN° (Bn /)]

— I (1] [ (an [ (DIN] 11" (b /)] (P-ve)
— MMM (@[t (1)1N)] [0 (b /)] (RLift-vc)
— M I (ba )] [0 (an (DN (52 )]/)] (P-ve)
— I B NN (D] [N (@ O DIN°(5a/)]/)]  (RLift-ve)
= e[t (DN (n g1 /NN DN (b1 /)]

6



O
The following corollary is hence a trivial consequence of the previous one.

Corollary 2 wvc s not strongly normalising.

4 Non-termination of the calculus 7

Our counter example for ve can be adapted to the calculus 7 [Rio93], presented
in Figure 5. The calculus 7 has the same operators as v, plus the operator o
which allows to compose substitutions. Thanks to this, the calculus is locally
confluent on open terms and, unlike v and we, several substitutions can be
propagated (under abstractions and applications) in a single step as a single
substitution. Indexes in 7 are encoded in a similar way as in ve t.e., the index n

is encoded as Q[f ot o...01].
e —

The calculus 7 hag much similarity with ve. In particular, have a look at
three of its rules, namely (MapSl-) and (ShiftLift i-7) (¢ = 1, 2), which perform
similar permutations as do rules (P-vc) and (RLift-ve). Therefore, we can state
the principal result, that 7 is not strongly normalising. Note the similarities
between Theorem 1 and Corollary 1.

Theorem 1 Let ag, by be any terms in At, and

Ap41 = bn bn+1 = an[T © bn/]

then
Fo (an/ o (10 ba/)) =% 10 (ansr/ o (1 0 buy1/))

Proof: It is a three steps reduction, using only three rules of the
calculus.

To(an/o(tobn/)) = 1o (T obn/)oan[lobn/]/) (MapSkr)
= (Tobn/)o(Toan[tobi/]/)

(Shift Lift2-r)
— 1o (by/o(Toan[ted,/]/) (AssEnv-7)
=To(ans1/ o (T ebnyi/))

O
Corollary 3 7 s not strongly normalising

To prove that At does not have PSN, we can now show that a pure simply typed
A-term translates into a term in A7 which may reduce to a term matching the
pattern of the theorem above.

Corollary 4 At does not preserve strong normalisation.



Syntax. Ar is the set of terms defined inductively by the following BNF:

a,b:=Xalab]|0|als]
s,ti=af|sot|N(s) | 1]id

(Terms)

(Substitutions)

Rules. At is defined as the reflexive, transitive, contextual, and substitu-

tion closure of the following rewriting rules:

(Aa) b — a[b/]

(ab)[s] — a[s] b[s]
(Aa)[s] = Aalfi(s)]
a[s][t] — a[s o t]

(sot)ou—so(tou)

af o5 = fi(s) oalsl/
0

1(s) o ) = (s o 1)
1(s) o (1) 0 w) = s o 1) o
idos—s
soid — s
M(id) = id
afid] = a

Figure 5: The calculus Ar.

(AssEnv-r

(FVarLiftl-r
(FVarLift2-r
(Shift-7
(ShiftLift1-r
(ShiftLift2-r
(Lift1-r
(Lift2-r

(IdR-T
(LiftId-r

-7)
-7)
7)
-7)
)
-7)
-7)
)
)
)
)
)
)
)
-7)
)
)
(Id-7)




Proof: Consider the closed A-term Az.((Ay.Az.z) z ). It is simply
typable with type a — a. It can be translated into a term in A7 as
/\((/\/\Q[T o1]) 0 Q). This one can be reduced as follows:

A((AXO[T 0 11) 0 0) = A((AO[T o 11)[0/] 0) (B-7)
— A((AQ[1 o 1I[N(0/)]) 0) (Lambda-7)

— AQQ[T o AI[M(Q/)]10/]) (B-7)
([t o [ 00/ (Clos-1)
QI o ) o (1(0/) 0 0/)))  (Clos-r)
(Q[T © (T © (ﬂ(O/) © Q/))]) (ASSEHV 7')
(Ot o (0/ o (teo0/)])  (ShiftLift2-7)

]
]

0/)
0/)

This last term may reduce infinitely, as shows Theorem 1 (take
ap = by = 0). Hence a strongly normalisable A-term has an infi-
nite reduction in A7 i.e.; AT has not PSN.[O

5 Conclusion

AT does not preserve strong normalisation of the A-calculus since 7 itself is not
even strongly normalizing. We have found a simple counter-example of the
termination of 7, thanks to an abstraction of another, similar calculus, namely
ve obtained by a “pseudo” completion of Awv.

The problem of finding a calculus with 1SIM, MC, and PSN, has now been
solved by David and Guillaume [DG99, Gui99] who proposed a calculus called
A¢. The idea of this calculus is to block a certain kind of substitutions in terms,
so that they can not interact with others. Recently, Ritter [Rit99] has defined
a criterion for calculi which satisfy PSN, and deduced a calculus from Aoy
which he claims has the expected properties. The criterion i1s a generalisation
of the restriction the first author proposed with Rose in [LR98] (also presented
in [Lan98]) for the calculus Axci.
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