
HAL Id: hal-02101759
https://hal-lara.archives-ouvertes.fr/hal-02101759

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trace2au: Audio Monitoring Tools for Parallel Programs
Jean-Yves Peterschmitt, Bernard Tourancheau

To cite this version:
Jean-Yves Peterschmitt, Bernard Tourancheau. Trace2au: Audio Monitoring Tools for Parallel Pro-
grams. [Research Report] LIP RR-1993-24, Laboratoire de l’informatique du parallélisme. 1993,
2+20p. �hal-02101759�

https://hal-lara.archives-ouvertes.fr/hal-02101759
https://hal.archives-ouvertes.fr

LIP
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Trace�au

Audio Monitoring Tools for

Parallel Programs

Jean�Yves Peterschmitt

Bernard Tourancheau
September ����

Research Report No �����

Ecole Normale Supérieure de Lyon
46, Allée d’Italie, 69364 Lyon Cedex 07, France,

Téléphone : + 33 72 72 80 00; Télécopieur : + 33 72 72 80 80;
Adresses électroniques :

lip@frensl61.bitnet; lip@lip.ens−lyon.fr (uucp).

Trace�au

Audio Monitoring Tools for

Parallel Programs

Jean�Yves Peterschmitt

Bernard Tourancheau

September ����

Abstract

It is not easy to reach the best performances you can expect of
a parallel computer� We therefore have to use monitoring pro�
grams to study the behavior of parallel programs� We introduce
here a way to generate sound in real�time on a workstation� with
no additional hardware� and we apply it to such monitoring pro�
grams�

Keywords� Monitoring� Parallelism� Sound on a workstation� Soni�cation

R�esum�e

Sur un ordinateur parall�ele� il n�est pas facile d�obtenir des per�
formances proches des performances th�eoriques attendues� Il est
donc n�ecessaire d�utiliser des programmes de monitoring pour
�etudier le comportement des programmes parall�eles� Nous pr�esen�
tons dans ce rapport une fa�con de g�en�erer du son en temps�r�eel
sur une station de travail� sans carte suppl�ementaire� Nous ap�
pliquons ensuite cette m�ethode �a des programmes de monitoring�

Mots�cl�es� Monitoring� Parall�elisme� Son sur une station de travail� Sonori�
sation

Trace�au

Audio Monitoring Tools for Parallel Programs

Jean�Yves Peterschmitt �

LIP

Unit�e de Recherche Associ�ee ���� du CNRS

Ecole Normale Sup�erieure de Lyon

��	 all�ee d
Italie

����� Lyon Cedex ��

France

Bernard Tourancheau yz

University of Tennessee

Computer Science Department

Knoxville	 TN ����������

USA

e�mail btouranc�lip�ens�lyon�fr

September ��	 ����

Abstract

It is not easy to reach the best performances you can expect of a

parallel computer� We therefore have to use monitoring programs to

study the performances of parallel programs� We introduce here a way

to generate sound in real�time on a workstation� with no additional

hardware� and we apply it to such monitoring programs�

�This work was supported by Archipel SA and MRE under grant ���� DRET and the
PRC C��

yOn leave from LIP� CNRS URA ����� ENS Lyon� �� all	ee d
Italie� ����� Lyon Cedex
��� France�

zThis work was supported in part by CNRS�NSF grant ���������� Archipel SA and
MRE under grant ���� the National Science Foundation under grant ASC�������� the Na�
tional Science Foundation Science and Technology Center Cooperative Agreement CCR�
������� the DARPA and ARO under contract DAAL������C������ PRC C�� and DRET�

�

Keywords� Monitoring� Parallelism� Sound on a workstation� Soni��

cation

� Introduction

Monitoring the behavior and performances of massively parallel programs
has proved to be quite di	cult� We have to deal with two major problems

gathering the monitoring data and using it to understand the behavior of
the studied parallel program to� hopefully� increase its performances�

This paper will focus on the latter problem� More precisely� we will see
how sound can be generated in real�time� on a workstation� and used to
extract relevant information from the monitoring trace �les� We therefore
suppose that the monitoring data is already available� and that we have one
way or another to access it�

The idea of using sound in a program is not new� We have been used
to hearing our computers beep to catch our attention when we were getting
new mail� or committing some kind of error�

Yet� the use of sound is new in the sense that sound chips have become
standard equipment on workstations only very recently� Using fancy sounds
is no more the privilege of personal computers� We are only beginning to use
sound� and we will probably bene�t from the steady breakthroughs coming
from the multimedia �eld�

Very few programs use the newly available sound capabilities of work�
stations� We believe that the advances made in this �eld are slowed down
by the lack of users actually using audio enhanced programs in their daily
work� Potential users are still quite skeptical about the advantages that
these kinds of programs could bring them�

We present in this paper our attempt to make small� stand�alone pro�
grams� that use sound to convey monitoring information� These programs
can generate sound in real�time� and can be easily modi�ed to suit the needs
of a given user �e�g� doing on�line monitoring�� All we need is a processor
that can compute sound samples at a rate higher than the frequency sup�
ported by the sound chip�

After the introduction� we study in section two how to convey data with
sound� In the third section� we present what can be done with the built�
in sound chip of Sun�s SPARCstations� In the next section� we show the

�We mean by real�time that the sound can be played as soon as it is generated� without
having to store it in a temporary �le�

kinds of sound waves we generate to analyze the monitoring data� The �fth
section presents a prototyping tool that allows the user to determine how
well sounds relate to each others� The last section gives more details about
the actual audio monitoring programs we have implemented� We eventually
conclude by explaining that using our basic tools� it is straightforward to
build any kind of dedicated tool and study any kind of traced event� These
tools should be able to �t the needs of anybody who tries to improve a
massively parallel program�

We hope that this paper will also help programmers add sound generat�
ing procedures to their programs� Workstations such as Sun�s SPARCsta�
tions have become widely available� and we do believe that not using their
sound chips would be a waste of resources� Moreover� it will be easy for all
the people having access to Sun�s SPARCstations to use the sound programs
released for these stations�

� Conveying data with sound

Scienti�c visualization is the science �maybe we should still say the art� of
using visual displays to extract information from huge raw data �les� and
to get a better insight into whatever simulation or experiment produced the
data� In this �eld� it is common to use the term dimension� when we speak
about the number of independent variables that we can display at the same
time� People always look for new ways of displaying more dimensions at
the same time� Yet� you must be careful to keep the resulting display clear
enough �a display might quickly get confusing�� Using a �D�plot gives you
three dimensions� Color is an additional dimension� time �animation� is yet
another dimension� and so on�

Therefore� using sound in a scienti�c visualization application will add
another �set of� dimension�s� to the existing ones� Several papers have al�
ready studied this subject �see for example �BH�� FJA��� Mad�� RAM���
ZT���� Using sound in such a context has been coined soni�cation or aural�
ization� Concerning monitoring� �FJA��� focuses on the mapping of events
to the MIDI format�� and uses the resulting sounds in parallel with Para�
Graph ��HE����� �Mad�� introduces a more general purpose soni�cation
tool� and uses it in the Pablo monitoring environment �see also �RAM�����
This tool allows the user to switch easily between using MIDI or sound on

�Musical Instrument Digital Interface� a communication protocol that allows sound
synthesizers to be interconnected and computer controlled �Ass����

�

a Sun�s SPARCstation�
What is maybe most important is the fact that the �rst set of dimensions

described above relies on seeing� whereas the sound related dimensions rely
on hearing� These two sets of dimensions are radically orthogonal because
they use two di�erent senses� and can therefore convey information to our
brain in parallel� Moreover� one of the advantages of sound is that we can
process part of the information in a passive manner �i�e� without intently
listening to it�� This advantage has been detailed in �ZT���

To convey information� using sound� we can play with the basic param�
eters of sound� and have them change over time

The pitch is related to the frequency� and can be used to convey a numer�
ical value� The human ear can theoretically hear frequencies in the
range ����������� Hz� In practise� we cannot generate such a wide
range on a computer �only ������������� Hz on a Sun�s SPARCstation��

The timbre depends on the waveform of a sound� Two sounds of the same
pitch� having a di�erent timbre� will sound di�erent� This is what
allows us to make the di�erence between two musical instruments�

The amplitude of the waveform� A feature of the human ear is that it is
actually sensitive to the intensity of a sound rather than to its am�
plitude� The intensity is a linear function of the square of both the
amplitude and the frequency� Therefore� a sound with a high pitch
will seem louder than a sound with the same amplitude but with a
lower pitch�

We can adjust the variation over time of the intensity of a sound�
This is called the envelope of the sound� and is divided into three
parts
 attack� sustain and decay�

The duration of a sound determines how long a given sound is played� It
is natural to use this parameter to represent the length of an event�
By using this parameter in the right way� we can often get an idea of
a speci�c rhythm related to the studied data set�

We can also use secondary characteristics of sound

� a given sound mixes well with another sound� The resulting sound
is at the same time di�erent from the two original sounds� and still
retains enough characteristics of them to allow us to recognize them�

�

� a sound can be located in space� Using two or more speakers� we can
make the placement of a sound in space change over time�

Note that for obvious technical reasons� we can not achieve all these
sound e�ects on a standard workstation� We will talk about this in the next
section�

As it is emphasized in �BH��� sound can be used for four di�erent reasons
in a scienti�c application
 reinforcing existing visual displays� conveying
distinctive patterns or signatures �that are not obvious with mere displays��
replacing displays or signaling exceptional conditions�

Unfortunately� there are still some drawbacks in the use of sound� A few
people can recognize the absolute pitch of a tone� but most people can only
assess pitch intervals�� There is the same problem with the intensity
 people
can tell whether a sound is loud� or louder than another one� but that is
about all they can say� Nobody can determine precisely the numerical value
of a sound parameter� We have the same problems with the perception of
colors� but in this case� we can at least display a color scale on the side
of a graphical display� Unfortunately� there is no such thing as a sound

scale that could be used in the same way as a color scale� We can use
xplayer� the prototyping tool described in section �� to determine what a
given pitch sounds like� but we are not able yet to play at the same time
this reference pitch and the studied sound� To be able to do this in the best
way� we would need to have access to two di�erent channels at the same time�
This could be done on a single workstation o�ering stereo audio support�
or on two di�erent workstations�� Remember that if you work with a single
workstation� the channels are not completely independent� in the sense that
only one program can access the audio device at a time� Therefore� the
same sound program would have to compute and supply the reference pitch�
as well as the studied sound� What we can already do� with the currently
available programs� is to create a trace sound �le� load it into xplayer� then
create a sound having a given pitch with xplayer and mix those two sounds�
We are then able to listen to these two sounds at the same time� on a single
channel�

�The human ear is in fact sensitive to logarithmic changes in frequency� This makes it
hard� if not impossible� to make the di�erence between two sounds that di�er only by a
small change in pitch� If you only change the pitch slightly� you need to change the timbre
to be able to make the di�erence between two sounds�

�With the sound program running on the �rst one� and xplayer running on the other
one�

�

We believe that the users will be able to understand increasingly com�
plex parallel programs� thanks to the use of sound� with some appropriate
training� The more dimensions you can use�display at the same time� the
more processors and parameters you can study� This will be crucial when
we will have to study truly massively parallel programs�

� Sound on Sun�s SPARCstations

Sound can be generated in real�time on any workstation having a processor
that can compute sound samples at a rate higher than the frequency sup�
ported by the sound chip� According to �VR���� the following manufacturers
sell workstations with built�in sound capabilities
 DEC� Hewlett�Packard�
NeXT� SGI� Sony and Sun� We have worked with the Sun�s SPARCstations
that were available in our laboratory� but our programs could be easily mod�
i�ed to run on other workstations�

Sound programs on a Sun�s SPARCstation take advantage of the built�
in digital to analog converter� With this� they can play a sound of �����
samples per second �� KHz�� on a single channel� This provides audio data
quality equivalent to standard telephone quality��

The data supplied to the sound chip is compressed with ��law encoding�
In this encoding algorithm� the spacing of sample intervals is close to linear at
low amplitudes� but is closer to logarithmic at high amplitudes� Therefore�
instead of supplying the chip with ���bit samples� we just send it ��bit
samples� Thus� a � minute sound will use around ��� Kbytes instead of
�� Kbytes� We don�t have access to the source of the format converting
functions provided in the sound handling library� but we can assume that
compressing the sound �going from the actual amplitude values to the ��law
encoded values� will take longer than the reverse operation�

Now that we have the technical details �see also �Sun��� Sun�a� VR�����
let us see what kind of sound we can have on Sun�s SPARCstations� with
regard to the parameters discussed in the previous section� We also have to
keep in mind that we want to make programs that will have low memory
requirements� and be fast enough to produce sound in real�time��

�Sun has announced in �Sun��b� that the SPARCstation �� would be capable of simul�
taneous input and output of ���bit stereo audio at rates up to �� KHz� It would� among
other things� support the standard CD sampling rates ����bit� ���� KHz�� and Digital
Audio Tape rates ����bit �� KHz��

�Producing sound in real time means being able to create at least ����� samples per
second�

�

� according to the Nyquist theorem�� the highest pitch we will be able
to get will be of � KHz�

� if we want to use sounds with several di�erent timbre� we will need a lot
of storage space
 ����� bytes per second of sound� a few milliseconds
of sound for each note of a given instrument� all this multiplied by the
number of notes and the number of instruments���

Of course� we could try to create sounds having di�erent timbre� but
this would be computation intensive� and we could not do it in real�
time�

� we can mix several sounds together but� assuming that the sounds
to be mixed are available in uncompressed form� we will still have to
perform a lot of ��law encoding operations �one call for each sample�
with the current converting function�� This may cost a lot of CPU
power�

� we can�t locate a sound in space� because we have only one output
channel� Of course� it could be possible to have two nearby stations
work together to produce a stereo sound� but this is beyond the scope
of this project� We will probably have to consider this in our future
work� if we want to be able to study massively parallel computers more
accurately�

� Implementation

Our goal in this project was to create small stand�alone programs� We could
therefore not a�ord to rely on a large library of recorded sounds� digitized
o��line� to produce the �nal monitoring sounds� Moreover� we also wanted
to be able to produce the sounds in real�time� to avoid having to store them
in a huge temporary �le� thus allowing a very scalable implementation� Our
programs needed to be fast and have at the same time low memory and
disk�space requirements�

This approach was a bit di�erent from the usual one� where you choose
to optimize either the speed or the the memory usage� We were nevertheless
lucky� in that we got interesting enough results with seemingly very simple
sound waves
 basic sine waves�

�This theorem states that to reproduce a signal� the sampling rate must be greater
than twice the bandwidth of the input signal�

�

master wave (SAMPLE_FREQ samples)

new sine wave (NB_SAMPLES samples)

additional samples

Figure �
 Computing a new wave

��� Creating and using the master sine wave

We start by computing the master sine wave� It is an array of SAMPLE FREQ�

samples� where we store the samples corresponding to a sine wave of ex�
actly one hertz �i�e� the �rst element of the array is sin���� and the last is
sin�� � ��� �

SAMPLE FREQ
���� Depending on what kind of sound we plan

to create� we either store the �oating point values of the samples� or directly
their ��law encoded values� If we don�t plan to perform additional compu�
tations on the samples� it is best to store them in the ��law form so that we
don�t have to lose time doing the compression when we start generating the
sound�

Suppose now that we want to create a sine wave of frequency f� lasting T

�In our case SAMPLE FREQ � ������

�

seconds� We will have to generate NB SAMPLES � SAMPLE FREQ � T samples�
We deduce the new sine wave from the master sine wave by copying

selected samples from the master wave to the array where we store the new
wave� Since the master wave has a frequency of � Hz� we just have to copy
every fth sample to the new array to get a sine wave of frequency f� We
copy NB SAMPLES samples this way� The pointer to the sample to be copied
from the master sine wave is computed modulo SAMPLE FREQ� so that we
never get out of range	�

Note that� even if we play the sound as soon as the samples are computed�
we usually store � second worth of samples �SAMPLE FREQ samples� in
a bu�er array before sending them to the audio device� Otherwise� writing
one sample at a time to the audio device would be too slow�

Figure � shows how we get from the master sine wave to a higher fre�
quency wave� On this example� we retain every other sample of the master
wave� thus doubling the frequency of the original wave� Two things are
worth noticing

� when we reach the end of the master wave array �plain lines�� we start
over near the beginning of the array �dashed lines�� and we keep on
doing this until we have enough samples�

� if we plan on storing the resulting wave in a new array� and cycling
through this array to play a continuous sound of the speci�ed fre�
quency� we are likely to get sharp clicks in the speaker� These clicks
come from the discontinuity between the value of the last sample� and
the value of the �rst sample �in the new wave��

That is why� in such case� we compute some additional samples �bot�
tom left of the �gure�� so that the value of the last sample is as close
as possible to the one of the �rst sample� This way� we will ensure
the continuity of the wave� Note that� to get even better results� we
should try to ensure the continuity of the �rst derivative of the wave�
As shown on �gure �� we have only ensured the the continuity of the
function� in our program
 f��� � f�n�� but f
����� �� f
���n��

��� Mapping events to frequencies

Now that we are able to get sounds of di�erent frequencies� it is time to
decide how we should map them to the events or values we want to study�

�We can cycle through this array this way because the master array holds a whole
period of a sine function�

�

The events we study are details about the parallel program execution that
we can deduce from the monitoring data
 for instance the time when the
SENDs and the RECEIVEs take place� We can also choose to study the change
of numerical values over time �e�g� how many messages have been sent but
not received� at a given time�� We assume that we have N di�erent events
or values� and that the range of frequencies we can actually get on Sun�s
SPARCstations is �fmin���fmax����

It would seem natural to use the usual linear mapping between events
and frequencies� Yet� we will rather use a logarithmic mapping� because the
human ear is sensitive to logarithmic changes in frequency� We will therefore
have the following mapping

fn � � � fn��� where � is a constant and f� � fmin� fN � fmax

or fn � �n�� � fmin� with � � N��

q
fmax
fmin

��� Changing the amplitude

When we create a sound� we also have to choose its amplitude� keeping in
mind that the absolute value of the samples must be smaller than ���� It is
straightforward to imagine that a given sine wave will sound louder� when
played� if its amplitude is closer to ���� Unfortunately� the sound also seem
louder if� for a given amplitude� we increase the frequency� That is why we
rather have to adjust the intensity of the sine wave
 two sounds having the
same intensity will seem to be of equal loudness�

We have I � � � a� � f�

With

I
 intensity of the sound
�
 constant
a
 amplitude of the sine wave
f
 frequency

Therefore� if we want to generate several waves of equal intensity� we
have to make sure that the product a � f remains constant� On the other
hand� we have to increase the value of this product if we want the sound to
grow louder�

��� Mixing sounds

It is not easy to quickly �nd the best way to mix sounds and get the kind
of sound e�ect you are looking for� Of course� it always involves the serial

�	We have determined that the best results were obtained with fmin � ��� Hz and fmax
� ��� Hz�

��

addition of the samples�� of all the sounds you want to mix� But then� you
have to take several problems into account

� how should the individual sounds be normalized� We must make sure
that the samples resulting from the addition still have an absolute
value smaller than ����

� what should we do if we want all the mixed sine waves appear to have
the same intensity�

� what should we do if we want one wave to appear louder than the
other ones�

The correct mixing formula is usually found by trial and error� and looks
like the weighted sum of the di�erent sounds

new sample�t� �

Plastsound

first �i � samplei�t�P
i �i

The formula can get more complex� depending on what we want to get�
For example� in one of our programs� we wanted to mix several sine waves�
wavei�t�� of amplitude ���� All the waves being played with the same inten�
sity� and have the generated sound seem louder when more processors were
sending� We eventually used the following formula

new sample�t� �

P
sending procs a

�
i � wavei�t�

�
P

sending procs ai� � �� � � � nb proc � nb sending

nb proc
�

where ai was such that all the waves had the same intensity� Note that
we chose to use the number � in the previous formula� so that we would get
� di�erent loudness levels� depending on the number of sending processors�
We could have chosen another number of levels� but this was what yielded
the best results�

There is another problem that should not be overlooked when you mix
sounds
 it takes a lot of CPU power to mix sounds� Even if you assume
that you already have the samples to be mixed in the correct uncompressed
form� you will still have to perform many computations before you get the

��It is important to add the actual numerical values of the samples� and not their ��law
encoded form�

��

�nal result� You need two nested loops� one loop for the time �samples�� and
a computation intensive inner loop� The inner loop will perform as many
�oating�point additions as there are sounds to mix� Besides� you also need
several �oating�point operations to normalize the sound� At last� when you
have the �nal sample� you have to convert it to the ��law form before you
can send it to the sound chip� It is therefore quite important to take all this
into account� if you still want your program to generate a sound in real�time�

� The prototyping tool

Figure
 The prototyping tool

In the course of the project� we developed an audio prototyping tool� xplayer�
We wanted to be able to determine how well di�erent sounds related to each
other�

�

xplayer is a kind of interactive audio workbench that allows the user to
experiment with sounds� Figure shows some typical windows of xplayer�
The user can work with several di�erent sounds at a time� The sounds
are placed in �ve slots� that can be selected�deselected to determine what
sounds are to be played� The tool allows you to

� load�save a sound into�from one of the �ve available slots�

� create a sound of a given frequency and amplitude in one of the slots�

� mix sounds from two di�erent slots� and store the resulting sound in
a third slot� Notice that you have to specify how much of each sound
you want�

� select the sounds you want to play sequentially �boxes with a tick mark
in the upper left window�� and play them� When you are dealing with
very small sounds �lasting less than a second�� you can also adjust the
speed at which they will be played�

This tool was the �rst sound program we developed� Our aim was to
learn how to use sound on a Sun�s SPARCstation� and solve the lack of
available sound programs for this kind of workstation� We have therefore
programmed it in such a way that it could easily be given additional features
�Special menu in the main window�� but we did not spend time working on
features that we did not really needed for our project�

� The AudioTrace programs

We will now talk about the actual monitoring programs we have worked on�

��� Common points

All of our audio monitoring programs have the same structure� and share
therefore several common features

� the source code is small� and the resulting executable is small as well
�less than �� Kbytes���� This shows that adding the same kind of
sounds to existing programs will not make these programsmuch bigger�

��We don
t use a graphical user interface� just command line arguments� We will how�
ever soon add a user interface to our programs� to make their use more intuitive�

��

� the input is a trace �le or a trace stream� The content of the supplied
trace data is sorted according to increasing timestamps� We decided
to use the same kind of trace �le we were using with vol tmspg �our
customized version of ParaGraph for the ARCHIPEL Volvox machine
�HE��� Env�� vRT���
 ASCII ��trf �les�

The kind of trace �le used can be easily modi�ed� All we need is a
way to know when the interesting events �SENDs and RECEIVEs in our
current tools� take place�

� the output is a ��au sound��� The sound is created with a valid audio
header� and can be either played directly� or stored for future use�

� the programs are fast� This allows us to generate and play the created
sound on the �y� Thus� we only need a way to access trace data �no
storage problem� with our scalable implementation�� and have no need
to store the �usually� huge resulting sound �le�

0

Event 1
Event 2

Event 3
scale (units of time)

length (nb of samples)

Timestamps

Content of the
trace file

Samples created

Low frequency and amplitude sound, when nothing happens

Figure �
 Relation between the execution time and the sound duration

� the duration of the created sound is proportional to the actual exe�
cution time of the studied parallel program� Therefore� the relative
places of the sound events in the generated sound will be the same as
in the actual execution of the parallel program�

��Audio �les that can be played on a Sun
s SPARCstation usually have the ��au�
extension� For more details about the �le structure and the �le header� see �VR����

��

The duration of the generated sound depends on two parameters�
length and scale� as shown in �gure �� At the beginning of the
program� the time is set to �� It is then incremented by scale units
of time at each step� This is called the replay time� At the same time�
the trace �le is read sequentially� in search of interesting events���

At a given replay time� we are always in one of these two cases

� no interesting event took place between the previous and the
current replay time� and we generate length samples of a sound
having a low frequency and amplitude �i�e� a sound that won�t be
heard� unless the loudness of the speaker is set to a high value��

� one or more interesting events took place� and we generate as
many consecutive sounds of length samples as there were inter�
esting events�

��� Using the programs

The programs all work the same way� and have a name in the form tr xxx�
where xxx speci�es the type of the program ��tr means that we work with
TRace �les�� They have four common parameters� speci�ed on the command
line

�le is a trace �le ���trf ASCII �le��

nb is the number of events we want to map to frequencies� nb can be�
for instance� the total number of processors involved in the parallel
program� When possible� nb should be given the smallest possible
value �i�e� the exact number of events�� so that we have as much
di�erence as possible between two consecutive frequencies���

scale is the replay time unit �as it was explained above�� In our case� scale
is a time in microseconds� because the timestamps in the trace �les we
use are given in microseconds�

length is the number of samples created for each event� As shown on
�gure �� we may sometimes have several events taking place during
scale microseconds� if scale is too big� In this case� we create an
integer number of length samples for scale units of time� Note that a

��What we mean by interesting depends on what we are studying�
��Remember that the low frequencies are quite close on a logarithmic scale�

��

sound composed of length samples will last length � SAMPLE FREQ��

seconds�

In other words� if the trace �le contains n events that took place less
than scale units of time apart� n � length samples will be generated for
just one scale interval� When this happens� the total length of the created
sound is no longer exactly proportional to the execution time of the parallel
program� On the other hand� trace �les can be quite long� and we don�t lose
the relative order of the events �increasing timestamps�� even if we are no
more exactly proportional� Therefore� it can often be useful to start with
big values of scale to quickly get a rough idea of what happened in the
program� Common starting values of these parameters are
 scale � ���

milliseconds and length � 	�� samples�
If we want to play the sound at the same time it is created� we use

cat�� file�trf
 tr xxx nb length scale
 play��

Otherwise� to store the generated sound in a sound �le� we rather type

cat file�trf
 tr xxx nb length scale � file�au

We have three programs available� Others could be easily and quickly
deduced from the available ones�

tr send
 when a processor sends a message� tr send plays a beep at the
frequency associated with this processor�

This allows the user to determine how many messages were sent during
the execution� and when� This quickly gives an idea of the di�erent
phases of the algorithm� It also shows the iterative communication
patterns� or the lack of such patterns� From a sound frequency �or
pitch� point of view� the user can easily determine if processors or
groups of processors communicate more than others� This knowledge
can then be used to �nd a better communication balance� If known
groups of processors act the same way during the execution� it may
be interesting to change the mapping of their associated frequencies�
and get this way an even better insight of what happened during the
execution� It is easy to determine an interesting mapping with xplayer�
the prototyping tool described in section ��

��SAMPLE FREQ � ����� samples�s on a Sun
s SPARCstation�
��Note that the output of cat is used as the input stream of our program� Any stream

of traces could be used� and there is therefore no limitation to the size of the trace �le
studied� This allows us to avoid storage problems� and makes our approach scalable�

��play is the standard on�line sound playing program supplied with Sun
s SPARCsta�
tions �usually located in the �usr�demo�SOUND directory�

��

tr sendmix
 at a given time� tr sendmixmixes the frequencies associated
to all the processors that have sent one or more messages� but whose
messages have not all been received yet�

This tool draws the user�s attention towards the pending messages
in the machine
 the more messages there are� the louder the sound
is� It gives not only a good idea of the phases� by pointing out their
starting time �like tr send�� but also an idea of their duration� This
makes it easy to �nd out when the communication bottlenecks take
place� even if they don�t originate in the same phase� because the
corresponding sounds are sustained until the reception of the messages�
The mapping of the frequencies may also be changed� to emphasize
groups of processors�

tr sendnum
 the pitch of the sound generated by tr sendnum at a given
time is proportional to the number of messages sent by all the proces�
sors� but not received yet�

This tool� based on tr sendmix� gives a simple and e	cient way to
determine the communication bottlenecks of an execution� The user
does not need to focus his attention on the sound produced by the tool�
The high pitch corresponding to �too� many pending messages can be
used as an attention catching signal� The user can then use more
precise tools to study in details what happened during the execution�

These three programs complement each other� Using them� you can
easily determine when the communications take place� It is also easy to
hear several processors sending data on a regular basis� and others being
out of phase� By listening carefully to the rhythm� you can also determine
if the programs go regularly through the same communication patterns�
Unfortunately� the programs have not yet been used extensively enough�
and by enough di�erent users to tell more about the help they can bring to
the user�

� Conclusion

This paper has shown how easy it is to use sound on a Sun�s SPARCstation
with our approach� and how sound can be used to convey data� The trouble
is that it is still quite hard to tell whether using sound in a monitoring
program will help the user or not� outside of the research community� We

��

believe however that the use of sound will prove increasingly useful� as the
users get more and more processors to work together� and have therefore
more trouble understanding the behavior of their programs� We hope that
the availability of our programs� and their ease of use will help more users
to use sound regularly� or at least give it a try� We will then be able to get
enough feed�back about what the users think about sound� and how it could
be used to meet their needs in the best possible way�

In the future� we will try to add our sound procedures to existing mute
programs�	� such as HeNCE �BDG��� or ParaGraph �HE���� We will also
add a graphical user interface to our sound programs and start using them
on top of PIMSY �PTV�� vRTV��� our scalable monitoring system� We
also plan to study the sound capabilities of workstations other than Sun�s
SPARCstations� and have our programs run on these stations as well�

� Obtaining the sound tools

The tools discussed in this paper� and some example trace and sound �les�
are available from netlib� To receive a copy of the soundtools� send email
to netlib�ornl�gov� and type

send trace	au�shar from soundtools

in the message�

This research report is available by anonymous ftp in

� lip�ens�lyon�fr� in �pub�LIP�RR�RR���RR�����ps�Z

� netlib�cs�utk�edu� in tennessee�ut�cs����xxx�ps

References

�Ass��� MIDI Manufacturers Association� MIDI � Musical Instrument
Digital Interface� Speci�cation ���� International MIDI Associa�
tion� Los Angeles� CA� �����

��We will have to deal with two problems� identifying where to add the calls to the
sound procedures� and synchronizing the sounds with the data displayed on the screen�

��

�BDG��� A� Beguelin� J� Dongarra� A� Geist� R� Manchek� K� Moore� and
V� Sunderman� PVM and HeNCE
 Tools for heterogeneous net�
work computing� In J� Dongarra and B� Tourancheau� editors�
Environments and tools for parallel scienti�c Computing� vol�
ume � of Advances in parallel computing� pages ���!���� Saint
Hilaire du Touvet � France� September ���� CNRS � NSF� El�
sevier Sciences Publisher�

�BH�� Marc H� Brown and John Hershberger� Color and sound in al�
gorithm animation� Computer� December ����

�Env�� Volvox Machines Programming Environment� VolTms User�s

Guide� ARCHIPEL SA� ����� Annecy�le�vieux� France� ����

�FJA��� Joan M� Francioni� Jay Alan Jackson� and Larry Albright� The
sounds of parallel programs� In IEEE Computer Society Press�
editor� The Sixth Distributed Memory Computing Conference

Proceedings� �����

�HE��� M� Heath and J� Etheridge� Visualizing the performance of par�
allel programs� IEEE Software� �
�!��� September �����

�Hor��� Bill Horne� The sound of music� Computing Today� April �����

�Mad�� Tara Maja Madhyastha� A portable system for data soni�cation�
Master�s thesis� University of Illinois at Urbana�Champaign�
����

�PTV�� S� Poinson� B� Tourancheau� and X� Vigouroux� Distributed
monitoring for scalable massively parallel machines� In J� Don�
garra and B� Tourancheau� editors� Environment and Tools for

Parallel Scienti�c Computing� volume � of Advances in paral�
lel computing� pages ��!���� Saint Hilaire du Touvet � France�
September ���� CNRS � NSF� Elsevier Sciences Publisher�

�RAM��� Daniel A� Reed� Ruth A� Aydt� Tara M� Madhyastha� Roger J
Noe� Keith A� Shields� and Schwartz Bradley W� An overview of
the pablo performance analysis environment� Technical report�
University of Illinois at Urbana�Champaign� November ����

�Rem��� Claire Remy� Le compositeur et l�ordinateur� Micro�Systemes�
June �����

��

�Sun��� Sun Microsystems� SPARCstation Audio Programming� July
����� Part No
 FE������

�Sun�a� Sun Microsystems� Multimedia Primer� February ���� Part No

 FE�����

�Sun�b� Sun Microsystems� SPARCstation �� System Architecture� May
���� Part No
 ��� FE�����K�

�VR��� Guido Van Rossum� Faq
 Audio �le formats� Usenet News� May
�����

�vRT�� M� van Riek and B� Tourancheau� The design of the general par�
allel monitoring system� In N� Topham� R� Ibbett� and T� Bem�
merl� editors� Programming Environments for Parallel Comput�

ing� volume A��� of IFIP� pages ��!���� Edinburgh� Scotland�
April ���� IFIP� North�Holland�

�vRTV�� M� van Riek� B� Tourancheau� and X� Vigouroux� The massively
parallel monitoring system �a truly scalable approach to parallel
monitoring�� In G� Haring� editor� Performance Measurement
and Visualization of Parallel Systems� Moravany� CZ� October
���� Elsevier Sciences Publisher�

�ZT�� Eugenio Zabala and Richard Taylor� Process and processor in�
teraction
 Architecture independent visualization schema� In
J� J� Dongarra and B� Tourancheau� editors� Environments and
Tools for Parallel Scienti�c Computing� volume � of Advances in
parallel computing� Saint Hilaire du Touvet � France� September
���� CNRS � NSF� Elsevier Sciences Publisher�

�

