Jean-Yves Peterschmitt 
  
Bernard Tourancheau 
  
  
  
  
Trace2au Audio Monitoring Tools for Parallel Programs

Keywords: Monitoring, Parallelism, Sound on a workstation, Soni cation Monitoring, Parall elisme, Son sur une station de travail, Sonorisation Monitoring, Parallelism, Sound on a workstation, Sonication

It is not easy to reach the best performances you can expect of a parallel computer. We therefore have to use monitoring programs to study the behavior of parallel programs. We i n troduce here a way to generate sound in real-time on a workstation, with no additional hardware, and we apply it to such monitoring programs.

Introduction

Monitoring the behavior and performances of massively parallel programs has proved to be quite di cult. We h a ve to deal with two major problems: gathering the monitoring data and using it to understand the behavior of the studied parallel program to, hopefully, increase its performances. This paper will focus on the latter problem. More precisely, w e will see how sound can be generated in real-time1 on a workstation, and used to extract relevant information from the monitoring trace les. We therefore suppose that the monitoring data is already available, and that we h a ve o n e way or another to access it.

The idea of using sound in a program is not new. We h a ve been used to hearing our computers beep to catch our attention when we w ere getting new mail, or committing some kind of error.

Yet, the use of sound is new in the sense that sound chips have become standard equipment o n w orkstations only very recently. Using fancy sounds is no more the privilege of personal computers. We are only beginning to use sound, and we will probably bene t from the steady breakthroughs coming from the multimedia eld.

Very few programs use the newly available sound capabilities of workstations. We believe that the advances made in this eld are slowed down by the lack of users actually using audio enhanced programs in their daily work. Potential users are still quite skeptical about the advantages that these kinds of programs could bring them.

We present in this paper our attempt to make small, stand-alone programs, that use sound to convey monitoring information. These programs can generate sound in real-time, and can be easily modi ed to suit the needs of a given user (e.g. doing on-line monitoring). All we need is a processor that can compute sound samples at a rate higher than the frequency supported by the sound chip.

After the introduction, we study in section two h o w t o c o n vey data with sound. In the third section, we present what can be done with the builtin sound chip of Sun's SPARCstations. In the next section, we show the kinds of sound waves we generate to analyze the monitoring data. The fth section presents a prototyping tool that allows the user to determine how well sounds relate to each others. The last section gives more details about the actual audio monitoring programs we h a ve implemented. We e v entually conclude by explaining that using our basic tools, it is straightforward to build any kind of dedicated tool and study any kind of traced event. These tools should be able to t the needs of anybody who tries to improve a massively parallel program.

We hope that this paper will also help programmers add sound generating procedures to their programs. Workstations such as Sun's SPARCstations have become widely available, and we do believe that not using their sound chips would be a waste of resources. Moreover, it will be easy for all the people having access to Sun's SPARCstations to use the sound programs released for these stations.

2 Conveying data with sound Scienti c visualization is the science (maybe we should still say the art) o f using visual displays to extract information from huge raw data les, and to get a better insight i n to whatever simulation or experiment produced the data. In this eld, it is common to use the term dimension, w h e n w e s p e a k about the number of independent v ariables that we can display at the same time. People always look for new ways of displaying more dimensions at the same time. Yet, you must be careful to keep the resulting display clear enough (a display might q u i c kly get confusing). Using a 3D-plot gives you three dimensions. Color is an additional dimension, time (animation) is yet another dimension, and so on.

Therefore, using sound in a scienti c visualization application will add another (set of) dimension(s) to the existing ones. Several papers have a lready studied this subject (see for example BH92, FJA91, M a d 9 2 , R A M + 92, ZT92]). Using sound in such a c o n text has been coined soni cation or auralization. Concerning monitoring, FJA91] focuses on the mapping of events to the MIDI format2 , and uses the resulting sounds in parallel with Para-Graph ( HE91]). Mad92] i n troduces a more general purpose soni cation tool, and uses it in the Pablo monitoring environment (see also RAM + 92]). This tool allow s t h e u s e r t o s w i t c h easily between using MIDI or sound on a Sun's SPARCstation.

What is maybe most important is the fact that the rst set of dimensions described above relies on seeing, whereas the sound related dimensions rely on hearing. These two sets of dimensions are radically orthogonal because they use two di erent senses, and can therefore convey information to our brain in parallel. Moreover, one of the advantages of sound is that we c a n process part of the information in a passive manner (i.e. without intently listening to it). This advantage has been detailed in ZT92].

To convey information, using sound, we can play w i t h t h e basic parameters of sound, and have them change over time:

The pitch is related to the frequency, and can be used to convey a numerical value. The human ear can theoretically hear frequencies in the range 20...20,000] Hz. In practise, we cannot generate such a wide range on a computer (only 100...3,500] Hz on a Sun's SPARCstation).

The timbre depends on the waveform of a sound. Two sounds of the same pitch, having a di erent t i m bre, will sound di erent. This is what allows us to make the di erence between two m usical instruments.

The amplitude of the waveform. A feature of the human ear is that it is actually sensitive t o t h e intensity of a sound rather than to its amplitude. The intensity is a linear function of the square of both the amplitude and the frequency. Therefore, a sound with a high pitch will seem louder than a sound with the same amplitude but with a lower pitch. We can adjust the variation over time of the intensity of a sound. This is called the envelope of the sound, and is divided into three parts: attack, sustain and decay.

The duration of a sound determines how l o n g a g i v en sound is played. It is natural to use this parameter to represent the length of an event. By using this parameter in the right w ay, w e can often get an idea of a speci c rhythm related to the studied data set.

We can also use secondary characteristics of sound: a g i v en sound mixes well with another sound. The resulting sound is at the same time di erent from the two original sounds, and still retains enough characteristics of them to allow us to recognize them. a sound can be located in space. Using two o r m o r e s p e a k ers, we c a n make the placement of a sound in space change over time.

Note that for obvious technical reasons, we can not achieve all these sound e ects on a standard workstation. We will talk about this in the next section.

As it is emphasized in BH92], sound can be used for four di erent reasons in a scienti c application: reinforcing existing visual displays, conveying distinctive patterns or signatures (that are not obvious with mere displays), replacing displays or signaling exceptional conditions.

Unfortunately, there are still some drawbacks in the use of sound! A few people can recognize the absolute pitch of a tone, but most people can only assess pitch i n tervals3 . There is the same problem with the intensity: people can tell whether a sound is loud, or louder than another one, but that is about all they can say. Nobody can determine precisely the numerical value of a sound parameter. We h a ve the same problems with the perception of colors, but in this case, we can at least display a color scale on the side of a graphical display. Unfortunately, there is no such thing as a sound scale that could be used in the same way as a color scale. We can use xplayer, the prototyping tool described in section 5, to determine what a given pitch sounds like, but we are not able yet to play at the same time this reference pitch and the studied sound. To be able to do this in the best way, w e w ould need to have access to two di erent c hannels at the same time. This could be done on a single workstation o ering stereo audio support, or on two di erent w orkstations4 . Remember that if you work with a single workstation, the channels are not completely independent, in the sense that only one program can access the audio device at a time. Therefore, the same sound program would have to compute and supply the reference pitch, as well as the studied sound. What we can already do, with the currently available programs, is to create a trace sound le, load it into xplayer, then create a sound having a given pitch with xplayer and mix those two sounds. We are then able to listen to these two sounds at the same time, on a single channel.

We believe that the users will be able to understand increasingly complex parallel programs, thanks to the use of sound, with some appropriate training. The more dimensions you can use/display at the same time, the more processors and parameters you can study. This will be crucial when we w i l l h a ve to study truly massively parallel programs.

Sound on Sun's SPARCstations

Sound can be generated in real-time on any w orkstation having a processor that can compute sound samples at a rate higher than the frequency supported by the sound chip. According to VR93], the following manufacturers sell workstations with built-in sound capabilities: DEC, Hewlett-Packard, NeXT, SGI, Sony and Sun. We h a ve w orked with the Sun's SPARCstations that were available in our laboratory, but our programs could be easily modi ed to run on other workstations.

Sound programs on a Sun's SPARCstation take a d v antage of the builtin digital to analog converter. With this, they can play a sound of 8,000 samples per second (8 KHz), on a single channel. This provides audio data quality equivalent to standard telephone quality 5 .

The data supplied to the sound chip is compressed with -law encoding. In this encoding algorithm, the spacing of sample intervals is close to linear at low amplitudes, but is closer to logarithmic at high amplitudes. Therefore, instead of supplying the chip with 14-bit samples, we just send it 8-bit samples. Thus, a 1 minute sound will use around 470 Kbytes instead of 820 Kbytes. We don't have access to the source of the format converting functions provided in the sound handling library, but we can assume that compressing the sound (going from the actual amplitude values to the -law encoded values) will take longer than the reverse operation. Now that we h a ve the technical details (see also Sun91, Sun92a, VR93]), let us see what kind of sound we c a n h a ve on Sun's SPARCstations, with regard to the parameters discussed in the previous section. We also have t o ke e p i n m i n d t h a t w e w ant t o m a k e programs that will have l o w memory requirements, and be fast enough to produce sound in real-time 6 . according to the Nyquist theorem7 , the highest pitch w e will be able to get will be of 4 KHz. if we w ant to use sounds with several di erent t i m bre, we will need a lot of storage space: 8,000 bytes per second of sound, a few milliseconds of sound for each note of a given instrument, all this multiplied by the number of notes and the number of instruments... Of course, we could try to create sounds having di erent t i m bre, but this would be computation intensive, and we could not do it in realtime. we can mix several sounds together but, assuming that the sounds to be mixed are available in uncompressed form, we will still have t o perform a lot of -law encoding operations (one call for each sample, with the current c o n verting function). This may cost a lot of CPU power. we can't locate a sound in space, because we h a ve only one output channel. Of course, it could be possible to have t wo n e a r b y stations work together to produce a stereo sound, but this is beyond the scope of this project. We will probably have to consider this in our future work, if we w ant to be able to study massively parallel computers more accurately.

Implementation

Our goal in this project was to create small stand-alone programs. We could therefore not a ord to rely on a large library of recorded sounds, digitized o -line, to produce the nal monitoring sounds. Moreover, we a l s o w anted to be able to produce the sounds in real-time, to avoid having to store them in a huge temporary le, thus allowing a very scalable implementation. Our programs needed to be fast and have at the same time low memory and disk-space requirements.

This approach w as a bit di erent from the usual one, where you choose to optimize either the speed or the the memory usage. We w ere nevertheless lucky, i n t h a t w e got interesting enough results with seemingly very simple sound waves: basic sine waves. 

Creating and using the master sine wave

We start by computing the master sine wave. I t i s a n a r r a y o f SAMPLE FREQ8 samples, where we store the samples corresponding to a sine wave o f e xactly one hertz (i.e. the rst element o f t h e a r r a y i s sin(0), and the last is sin(2 (1 ;

1 SAMPLE FR E Q ))).
Depending on what kind of sound we plan to create, we either store the oating point v alues of the samples, or directly their -law encoded values. If we don't plan to perform additional computations on the samples, it is best to store them in the -law form so that we don't have to lose time doing the compression when we start generating the sound.

Suppose now t h a t w e w ant to create a sine wave of frequency f, l a s t i n g T seconds. We will have to generate NB SAMPLES = SAMPLE FREQ * T deduce the new sine wave from the master sine wave b y copying selected samples from the master wave t o t h e a r r a y where we store the new wave. Since the master wave has a frequency of 1 Hz, we j u s t h a ve t o c o p y every fth sample to the new array t o g e t a s i n e w ave of frequency f. W e copy NB SAMPLES samples this way. T h e p o i n ter to the sample to be copied from the master sine wave is computed modulo SAMPLE FREQ, so that we never get out of range9 .

Note that, even if we play the sound as soon as the samples are computed, we usually store 1 second worth of samples (SAMPLE FREQ samples) in a bu er array before sending them to the audio device. Otherwise, writing one sample at a time to the audio device would be too slow.

Figure 1 shows how w e get from the master sine wave to a higher frequency wave. On this example, we retain every other sample of the master wave, thus doubling the frequency of the original wave. Two things are worth noticing :

when we reach the end of the master wave array (plain lines), we start over near the beginning of the array (dashed lines), and we k eep on doing this until we h a ve enough samples. if we plan on storing the resulting wave in a new array, and cycling through this array to play a c o n tinuous sound of the speci ed frequency, w e are likely to get sharp clicks in the speaker. These clicks come from the discontinuity b e t ween the value of the last sample, and the value of the rst sample (in the new wave).

That is why, i n s u c h case, we c o m p u t e s o m e additional samples (bottom left of the gure), so that the value of the last sample is as close as possible to the one of the rst sample. This way, w e will ensure the continuity of the wave. Note that, to get even better results, we should try to ensure the continuity of the rst derivative of the wave. As shown on gure 1, we h a ve only ensured the the continuity of the function, in our program: f(0) = f(n), but f (1) (0) 6 = f (1) (n).

Mapping events to frequencies

Now t h a t w e are able to get sounds of di erent frequencies, it is time to decide how w e should map them to the events or values we w ant to study.

The events we study are details about the execution that we can deduce from the monitoring data: for instance the time when the SENDs and the RECEIVEs take place. We can also choose to study the change of numerical values over time (e.g. how m a n y messages have been sent but not received, at a given time). We assume that we h a ve N di erent e v ents or values, and that the range of frequencies we can actually get on Sun's SPARCstations is f min :::f max ]10 .

It would seem natural to use the usual linear mapping between events and frequencies. Yet, we will rather use a logarithmic mapping, because the human ear is sensitive to logarithmic changes in frequency. W e will therefore have the following mapping :

f n =
f n;1 , where is a constant and f 1 = f min , f N = f max or f n = n;1 f min , with = N;1 q fmax fmin

Changing the amplitude

When we create a sound, we also have t o c hoose its amplitude, keeping in mind that the absolute value of the samples must be smaller than 1.0. I t i s straightforward to imagine that a given sine wave will sound louder, when played, if its amplitude is closer to 1.0. Unfortunately, the sound also seem louder if, for a given amplitude, we increase the frequency. That is why w e rather have to adjust the intensity of the sine wave : t wo sounds having the same intensity will seem to be of equal loudness.

We h a ve I = a 2 f 2 With I : intensity of the sound : constant a : amplitude of the sine wave f : frequency Therefore, if we w ant to generate several waves of equal intensity, w e have to make sure that the product a f remains constant. On the other hand, we h a ve to increase the value of this product if we w ant the sound to grow louder. The correct mixing formula is usually found by trial and error, and looks like the weighted sum of the di erent sounds: new sample t] = P lastsound first i sample i t] P i i

Mixing sounds

The formula can get more complex, depending on what we w ant t o g e t . For example, in one of our programs, we w anted to mix several sine waves, wave i t], of amplitude 1.0. All the waves being played with the same intensity, and have the generated sound seem louder when more processors were sending. We e v entually used the following formula: new sample t] = P sending procs a 2 i wave i t] ( P sending procs a i ) (1 + 7 nb proc ; nb sending nb proc ) where a i was such that all the waves had the same intensity. Note that we c hose to use the number 7 in the previous formula, so that we w ould get 8 di erent loudness levels, depending on the number of sending processors. We could have c hosen another number of levels, but this was what yielded the best results.

There is another problem that should not be overlooked when you mix sounds: it takes a lot of CPU power to mix sounds. Even if you assume that you already have the samples to be mixed in the correct uncompressed form, you will still have to perform many computations before you get the nal result. You need two nested loops, one for the time (samples), and a computation intensive inner loop. The inner loop will perform as many oating-point additions as there are sounds to mix. Besides, you also need We w anted to be able to determine how w ell di erent sounds related to each other.

xplayer is a kind of interactive audio workbench that allows the user to experiment sounds. Figure 2 shows some typical windows of xplayer. The user can work with several di erent sounds at a time. The sounds are placed in ve slots, that can be selected/deselected to determine what sounds are to be played. The tool allows you to: load/save a sound into/from one of the ve a vailable slots. create a sound of a given frequency and amplitude in one of the slots. mix sounds from two di erent slots, and store the resulting sound in a third slot. Notice that you have t o s p e c i f y h o w m uch o f e a c h sound you want. select the sounds you want to play sequentially (boxes with a tick mark in the upper left window), and play them. When you are dealing with very small sounds (lasting less than a second), you can also adjust the speed at which they will be played. This tool was the rst sound program we d e v eloped. Our aim was to learn how to use sound on a Sun's SPARCstation, and solve the lack o f available sound programs for this kind of workstation. We h a ve therefore programmed it in such a w ay that it could easily be given additional features (Special menu in the main window), but we did not spend time working on features that we did not really needed for our project.

The AudioTrace programs

We will now talk about the actual monitoring programs we h a ve w orked on.

Common points

All of our audio monitoring programs have the same structure, and share therefore several common features: the source code is small, and the resulting executable is small as well (less than 50 Kbytes) 12 . This shows that adding the same kind of sounds to existing programs will not make these programs much b i g g e r .

the input is a trace le or a stream. The content of the supplied trace data is sorted according to increasing timestamps. We d e c i d e d to use the same kind of trace le we w ere using with vol tmspg (our customized version of ParaGraph for the ARCHIPEL Volvox m a c hine HE91, E n v92, v R T92]): ASCII \.trf" les. The kind of trace le used can be easily modi ed. All we n e e d i s a way t o k n o w when the interesting events (SENDs and RECEIVEs in our current tools) take place. the output is a \.au" sound 13 . The sound is created with a valid audio header, and can be either played directly, or stored for future use. the programs are fast. This allows us to generate and play the created sound on the y. T h us, we only need a way to access trace data (no storage problem, with our scalable implementation), and have n o n e e d to store the (usually) huge resulting sound le. The duration of the generated sound depends on two parameters, length and scale, a s h o wn in gure 3. At the beginning of the program, the time is set to 0. It is then incremented by scale units of time at each step. This is called the replay time. A t the same time, the trace le is read sequentially, in search o f interesting events14 . At a given replay time, we are always in one of these two cases:

{ no interesting event took place between the previous and the current r e p l a y time, and we generate length samples of a sound having a low frequency and amplitude (i.e. a sound that won't be heard, unless the loudness of the speaker is set to a high value).

{ one or more interesting events took place, and we generate as many consecutive sounds of length samples as there were interesting events.

Using the programs

The programs all work the same way, and have a name in the form tr xxx, where xxx speci es the type of the program (\tr " means that we w ork with TRace les). They have four common parameters, speci ed on the command line:

le is a trace le (\.trf" ASCII le). nb is the number of events we w ant to map to frequencies. nb can be, for instance, the total number of processors involved in the parallel program. When possible, nb should be given the smallest possible value (i.e. the exact number of events), so that we h a ve a s m uch di erence as possible between two consecutive frequencies15 . scale is the replay time unit (as it was explained above). In our case, scale is a time in microseconds, because the timestamps in the trace les we use are given in microseconds.

length is the number of samples created for each e v ent. As shown on gure 3, we m a y sometimes have s e v eral events taking place during scale microseconds, if scale is too big. In this case, we create an integer number of length samples for scale units of time. Note that a sound composed of length samples will last length SAMPLE FREQ16 seconds. In other words, if the trace le contains n events that took place less than scale units of time apart, n * length samples will be generated for just one scale interval. When this happens, the total length of the created sound is no longer exactly proportional to the execution time of the parallel program. On the other hand, trace les can be quite long, and we don't lose the relative order of the events (increasing timestamps), even if we are no more exactly proportional. Therefore, it can often be useful to start with big values of scale to quickly get a rough idea of what happened in the program. Common starting values of these parameters are: scale > 100 milliseconds and length < 200 samples.

If we w ant to play the sound at the same time it is created, we use: We h a ve three programs available. Others could be easily and quickly deduced from the available ones.

tr send : when a processor sends a message, tr send plays a beep at the frequency associated with this processor. This allows the user to determine how m a n y m e s s a g e s w ere sent during the execution, and when. This quickly gives an idea of the di erent phases of the algorithm. It also shows the iterative c o m m unication patterns, or the lack o f s u c h patterns. From a sound frequency (or pitch) point of view, the user can easily determine if processors or groups of processors communicate more than others. This knowledge can then be used to nd a better communication balance. If known groups of processors act the same way during the execution, it may be interesting to change the mapping of their associated frequencies, and get this way a n e v en better insight of what happened during the execution. It is easy to determine an interesting mapping with xplayer, the prototyping tool described in section 5. tr sendmix : a t a g i v en time, tr sendmix the frequencies associated to all the processors that have sent one or more messages, but whose messages have not all been received yet. This tool draws the user's attention towards the pending messages in the machine: the more messages there are, the louder the sound is. It gives not only a good idea of the phases, by p o i n ting out their starting time (like t r send), but also an idea of their duration. This makes it easy to nd out when the communication bottlenecks take place, even if they don't originate in the same phase, because the corresponding sounds are sustained until the reception of the messages. The mapping of the frequencies may a l s o b e c hanged, to emphasize groups of processors.

tr sendnum : the pitch of the sound generated by tr sendnum at a given time is proportional to the number of messages sent b y all the processors, but not received yet. This tool, based on tr sendmix, gives a simple and e cient w ay t o determine the communication bottlenecks of an execution. The user does not need to focus his attention on the sound produced by the tool. The high pitch corresponding to (too) many pending messages can be used as an attention catching signal. The user can then use more precise tools to study in details what happened during the execution. These three programs complement e a c h other. Using them, you can easily determine when the communications take place. It is also easy to hear several processors sending data on a regular basis, and others being o u t o f p h a s e . By listening carefully to the rhythm, you can also determine if the programs go regularly through the same communication patterns. Unfortunately, the programs have n o t y et been used extensively enough, and by enough di erent users to tell more about the help they can bring to the user.

Conclusion

This paper has shown how easy it is to use sound on a Sun's SPARCstation with our approach, and how sound can be used to convey data. The trouble is that it is still quite hard to tell whether using sound in a monitoring program will help the user or not, outside of the research c o m m unity. W e believe h o wever that the use of sound prove increasingly useful, as the users get more and more processors to work together, and have therefore more trouble understanding the behavior of their programs. We hope that the availability of our programs, and their ease of use will help more users to use sound regularly, or at least give i t a t r y . W e will then be able to get enough feed-back about what the users think about sound, and how it could be used to meet their needs in the best possible way.

In the future, we will try to add our sound procedures to existing mute programs 19 , such as HeNCE BDG + 92] or ParaGraph HE91]. We will also add a graphical user interface to our sound programs and start using them on top of PIMSY PTV92, v R TV92], our scalable monitoring system. We also plan to study the sound capabilities of workstations other than Sun's SPARCstations, and have our programs run on these stations as well.

8 Obtaining the sound tools

The tools discussed in this paper, and some example trace and sound les, are available from netlib. T o r e c e i v e a copy of the soundtools, send email to netlib@ornl.gov, and type send trace2au.shar from soundtools in the message. This research r e p o r t i s a vailable by anonymous ftp in: lip.ens-lyon.fr, in /pub/LIP/RR/RR93/RR93-24.ps.Z netlib2.cs.utk.edu, in tennessee/ut-cs-93-xxx.ps

Figure 1 :

 1 Figure 1: Computing a new wave

  several oating-point operations to normalize the sound. At last, when you have the nal sample, you have t o c o n vert it to the -law f o r m b e f o r e y ou can send it to the sound chip. It is therefore quite important t o t a k e all this into account, if you still want y our program to generate a sound in real-time. 5 The prototyping tool

Figure 2 :

 2 Figure 2: The prototyping tool In the course of the project, we d e v eloped an audio prototyping tool, xplayer.We w anted to be able to determine how w ell di erent sounds related to each other.

  frequency and amplitude sound, when nothing happens

Figure 3 :

 3 Figure 3: Relation between the execution time and the sound duration the duration of the created sound is proportional to the actual execution time of the studied parallel program. Therefore, the relative places of the sound events in the generated sound will be the same as in the actual execution of the parallel program.

  It is not easy to quickly nd the best way to mix sounds and get the kind of sound e ect you are looking for. Of course, it always involves the serial addition of the samples 11 of all the sounds you want to mix. But you have t o t a k e several problems into account :

	how should the individual sounds be normalized? We m ust make sure that the samples resulting from the addition still have an absolute value smaller than 1.0.
	what should we d o i f w e w ant all the mixed sine waves appear to have the same intensity?
	what should we d o i f w e w ant one wave to appear louder than the other ones?

  cat 17 file.trf | tr xxx nb length scale | play 18Otherwise, to store the generated sound in a sound le, we rather type:

cat file.trf | tr xxx nb length scale > file.au

We m e a n b y real-time that the sound can be played as soon as it is generated, without having to store it in a temporary le.

Musical Instrument Digital Interface, a communication protocol that allows sound synthesizers to be interconnected and computer controlled Ass88].

The human ear is in fact sensitive to logarithmic changes in frequency. T h i s m a k es it hard, if not impossible, to make the di erence between two sounds that di er only by a small ch a n g e i n p i t c h. If you only change the pitch slightly, y ou need to change the timbre to be able to make the di erence between two s o u n d s .

With the sound program running on the rst one, and xplayer running on the other one.

Sun has announced in Sun92b] that the SPARCstation 10 would be capable of simultaneous input and output of 16-bit stereo audio at rates up to 48 KHz. It would, among other things, support the standard CD sampling rates (16-bit, 44.1 KHz), and Digital Audio Tape rates (16-bit 48 KHz).

 6 Producing sound in real time means being able to create at least 8,000 samples per second.

This theorem states that to reproduce a signal, the sampling rate must be greater than twice the bandwidth of the input signal.

In our case SAMPLE FREQ = 8,000.

We can cycle through this array t h i s w ay because the master array holds a whole period of a sine function.

We h a ve determined that the best results were obtained with fmin = 100 Hz and fmax = 3 5 0 0 H z .

It is important to add the actual numerical values of the samples, and not their -law encoded form!

We don't use a graphical user interface, just command line arguments. We w i l l h o wever soon add a user interface to our programs, to make their use more intuitive.

Audio les that can be played on a Sun's SPARCstation usually have t h e \ .au" extension. For more details about the le structure and the le header, see VR93].

What we m e a n b y interesting depends on what we are studying.

Remember that the low frequencies are quite close on a logarithmic scale.

SAMPLE FREQ = 8,000 samples/s on a Sun's SPARCstation.

Note that the output of cat is used as the input stream of our program. Any stream of traces could be used, and there is therefore no limitation to the size of the trace le studied. This allows us to avoid storage problems, and makes our approach scalable.

play is the standard on-line sound playing program supplied with Sun's SPARCstations (usually located in the /usr/demo/SOUND directory)

We will have to deal with two problems: identifying where to add the calls to the sound procedures, and synchronizing the sounds with the data displayed on the screen.

This work was supported by A r c hipel SA and MRE under grant 974, DRET and the PRC C 3 . y On leave f r o m L I P , CNRS URA 1398, ENS Lyon, 46 all ee d'Italie, 69364 Lyon Cedex 07, France. z This work was supported in part by CNRS-NSF grant 950.223/07, Archipel SA and MRE under grant 974, the National Science Foundation under grant ASC-8715728, the National Science Foundation Science and Technology Center Cooperative Agreement CCR-8809615, the DARPA and ARO under contract DAAL03-91-C-0047, PRC C 3 , and DRET.