N

N

A new bound on the 2-dimension of partially ordered
sets.
Eric Thierry

» To cite this version:

Eric Thierry. A new bound on the 2-dimension of partially ordered sets.. [Research Report] LIP
RR-2003-47, Laboratoire de I'informatique du parallélisme. 2003, 2+5p. hal-02101757

HAL Id: hal-02101757
https://hal-lara.archives-ouvertes.fr /hal-02101757
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lara.archives-ouvertes.fr/hal-02101757
https://hal.archives-ouvertes.fr

Laboratoire de I’ Informatique du Parallélisme

O
- L. CENTRE NATIONAL
i Ecole Normale Supérieure de Lyon % DE LA RECHERCHE
Unité Mixte de Recherche CNRS-INRIA-ENS LYON r 5668 SCIENTIFIQUE

A new bound on the 2-dimension
of partially ordered sets

Thierry Eric October 2003

Research Report N° 2003-47

Ecole Normale Supérieure de Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France
III Tééphone : +33(0)4.72.72.80.37 1 N R I A
Téécopieur : +33(0)4.72.72.80.80 .

Adresse électronique : 1ip@ens-lyon.fr



A new bound on the 2-dimension
of partially ordered sets

Thierry Eric
October 2003

Abstract

This paper provides a new upper bound on the 2-dimension of partially ordered
sets. The 2-dimension of an ordered set P is the smallest cardinality of a set .S
such that there exists an order-embedding of P into the boolean lattice 2° (all
the subsets of S ordered by inclusion). The proof is non-contructive and uses
a probabilistic argument. We link the result and the proof with two known
theorems of the theory of ordered sets.
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Résumé

Ce papier présente une nouvelle borne supérieure sur la 2-dimension des en-
sembles ordonnés. La 2-dimension d’un ordre P est le cardinal minimum d’un
ensemble S tel qu’il existe un plongement d’ordre de P dans le treillis boo-
léen 25 (composé de tous les sous-ensembles de S ordonnés par l'inclusion).
La preuve est non-contructive et utilise un argument probabiliste. Nous rap-
prochons ce résultat et sa preuve de deux théorémes connus en théorie des
ensembles ordonnés.

Mots-clés: ensemble ordonnées, 2-dimension, plongements d’ordre, treillis booléen.
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Abstract
This paper provides a new upper bound on the 2-dimension of partially ordered sets. The 2-dimension
of an ordered set P is the smallest cardinality of a set S such that there exists an order-embedding of P
into the boolean lattice 2° (all the subsets of S ordered by inclusion). The proof is non-contructive and
uses a probabilistic argument. We link the result and the proof with two known theorems of the theory
of ordered sets.

1 Definitions and notations

Let P = (X, <p) be a partial order (or order) on the ground set X. We only consider finite orders and we
also denote by |P| the cardinal of X. The same order relation <p restricted to a subset ¥ of X is called a
suborder of P and also referred as the order induced by P on Y. Let z,y € X, © # y, we say that z and
y are comparable in P if either x <p y or y <p x. Otherwise we say that = and y are incomparable. an
order where every pair of elements is comparable is called a chain. By extension, for the order P = (X, <p),
a nonempty subset Y of X is called a chain of P if every pair of elements of Y is comparable in P. The
maximum cardinality of a chain of P minus 1 is called the height of P and is denoted by h(P). An element
x € X is called the mazimum (resp. minimum) of P if for all y € X, y <p x (resp. = <p y).

The strict order relation for P = (X,<p) is denoted by <p and defined for all z,y € X as z <p y if
x <py and z # y. For each z € X, we will consider the set of predecessors (resp. successors) of z in P
defined by Predp(z) = {y € X|y <p x} (resp. Succp(z) = {y € X|z <p y}). For each z € X, we will also
consider its ideal | p x = Predp(xz) U {z} and its filter 1p = Succp(z) U {z}.

The dual of P, denoted by P, is the order P? = (X, <pa) where x <pa y if and only if y <p .

Let xz,y € X, the couple (z,y) is called an arrow pairif z £p y and for alla € X, a <p x = a <p y and
foralla € X,y <pa= z <pa. It is denoted by = ,/*p y. It is known that for all z,y € X, = £p y, there
exist u,v € X such that v ,/*p v, u <pzx and y <p v [9].

A lattice L = (X, <r) is an order such that for all z,y € X, the pair {z,y} has an infimum z Ar y and a
supremum z Vp, y. For instance, the set of all the subsets of a fixed set .S ordered by inclusion is a lattice. It
is denoted by 2° for short and called a boolean lattice of dimension |S|. All boolean lattices of dimension k
are isomorphic.

Let P = (X,<p) and Q = (Y, <g) be two orders. An embedding from P into @) is an mapping ¢ from X
into Y such that for all z,y € X,z <p y if and only if ¢(z) <g ¢(y). By requiring that ¢) should belong
to a particular class of orders, different interesting classes of embeddings can be defined.

This note provides a new result about bit-vector encodings of orders which are embeddings into boolean
lattices and are associated with the parameter called 2-dimension. Let P = (X, <p) be an order, a bit-vector
encoding of P is an mapping ¢ from X into 2° (the set of all the subsets of a set S, ordered by inclusion)
such that for all z,y € X, z <p y if and only if ¢(z) C ¢(y). We will only consider finite orders and the
size of the encoding ¢ is the cardinal of S. There always exists a canonical bit-vector encoding embedding P
into 2% and defined for all z € X by ¢(z) = {y € X|y <p x}. Given an order P, the smallest size of a
bit-vector encoding of P is called the 2-dimension of P and denoted by Dimg(P).

Bit-vectors encodings and the 2-dimension were originally studied from a mathematical point of view and
later from an algorithmic point of view. They have found applications in the fields of databases, knowledge
representation or object oriented programming. The interested reader is referred to the syntheses of Nourine
and Habib [3], Habib et al [4] or Thierry [6].



2 The upper bound

Some interesting bounds on the 2-dimension have been provided in the litterature for particular classes of
orders: trees, crowns, ideals of booleans lattices, distributive and extremal lattices (see [6]). However in the
general case, we only had the trivial classical bounds given in Proposition 1.

Proposition 1 Let P = (X, <p) be an order, then
h(P) < Dims(P) < |P|.

These lower and upper bounds are reached for some orders. Trotter even gave a characterization of the
orders such that Dima(P) = |P| [7] and Habib and al proved that it is NP-complete to recognize the orders
such that Dima(P) = h(P) [4] even though they are numerous (for instance chains reach the lower bound).
However there was a hope that we could bound more precisely the 2-dimension of an order using some other
parameters of the order. This was suggested by the results previously obtained in the theory of ordered
sets and it lies within a more general framework: finding tight bounds for parameters hard to compute (e.g.
NP-complete) in terms of parameters easy to compute.

Theorem 1 Let P=(X,<p) be an order, D(P)=max{| |p z|,x€ X} (resp. U(P)=max{|tp z|,z€X}).
Then
Dim,(P) < [2e(D(P) + 1) In|X]|] (resp. Dimy(P) < [2e(U(P) + 1) In|X]] ).

To prove this result, we resort to a probabilistic argument. Given P = (X, <p), take a set S of a fixed
cardinal ¢, then consider the space £ of all applications from X into 2°. The idea is to find an appropriate
cardinal ¢ and an appropriate probability distribution on £ such that we can prove that the probability that
an application of £ is an embedding, is strictly positive.

One simple way to define a probability distribution on £ is to associate with each element i of S a real
number p;, 0 < p; < 1, and say that for the applications ¢ € £, Prob(i € ¢(z)) = p; for alli € S and z € X,
and where all these events are independent.

However, for a given ¢t and a probability distribution on £, proving directly by counting/probabilistic
arguments that the probability that there exists one embedding of P in £ is strictly positive, is rather
difficult since the constraints involved by embeddings are highly codependent and can not be easily turned
into tight inequalities.

One way to bypass this difficulty is to relax the properties of the searched object (namely the embedding)
by looking for a variation object (here a “quasi-embedding”) which enables to reconstruct a searched object
and which is more frequent (useful for counting and proving that there exists one such varaition object).

Here is the definition of the variation object we will consider in our case. Given the order P = (X, <p),
let S be a set of cardinal ¢ and £ the set of all applications from X into 2. An application ¢ of £ is a
quasi-embedding if the application ¢ defined for all z € X by ¢(z) = Uy<pz ¢(y) is an embedding of P (note
that any embedding is a quasi-embedding). Figure 1 presents an order with (i) a bit-vector encoding (of
optimal size), (ii) a quasi-embedding ¢ and (i) the associated embedding ¢.

{1,2,3,4} {2,4} {1,2,3,4,5,6,7}

{1,2,3} {2,4} i) {3,5,7} 2,3,4,
1.2 {1 1.2} y
{4} {2,3,5}
i) {2}

0) (if) (iii)

Figure 1: (i) an embedding, (i) a quasi-embedding with (ii¢) its associated embedding.

The next proposition provides a characterization of quasi-embeddings.



Proposition 2 Let P = (X,<p) be an order and ¢ an application from X into 2°. Then the following
statements are equivalent:

(1) ¢ is a quasi-embedding.
(2) for all z,y € X, x £p y, there exists i € S such that Ju <p z, i € ¢(u) and Vv <p y, i € ¢(v).
(8) for all x,y € X, v /'p y, there exists i € S such that i € ¢(x) and Vv <p y, i & ¢(v).

Proof
(1) = (2) since ¢ as defined before is an embedding and z £p y implies d(x) € d(y). Let i € ¢p(x)\p(y),
it clearly satifies the condition (2) due to the definition of ¢.

(2) = (1) since the definition of ¢ implies that for all z,y € X,  <p y implies P(z) C (Z)(y) Now let
z,y € X,z £p y and i € S satisfying the condition (2), then by definition of ¢, we have i € ¢(z)\d(y) and
thus ng( ) g ng( ). Consequently, ¢ is an embedding.

(2) = (3) since for all z,y € X, z ,/*p y, we have z £p y. Thus by condition (2), there exists i € S such
that Ju <p z, i € ¢(u) and Vv <p y, i € ¢(v). If u <p z, due to the definition of /p, u <p y and thus
i & ¢(u). We necessarily have u = x and ¢ satisfies the condition (3).

(3) = (2) since for all z,y € X, z £p y, we know that there exist u,v € X such that v 'p v, u <p x
and y <p v. The condition (3) implies that there exists i € S such that i € ¢(u) and Yw <p v, i € ¢p(w).
Thus u satisfies condition (2) and Yw <p y, we have w <p v and 7 ¢ ¢(w). O

Proof of Theorem 1

Given P = (X,<p) a fixed order, take a set S of cardinal ¢, namely S = {1,...,t} and consider the
space £ of all applications from X into 2. Define a probability distribution on £ as mentioned before:
associate with each element i of S a real number p;, 0 < p; < 1, and say that for the applications ¢ € &,
Prob(i € ¢(x)) = p; for all i € S and = € X, and assume that all these events are independent. This
correctly defines a probability distribution on £. Now let ¢ be a random application of £ with respect to
our distribution, we can evaluate the probability that ¢ is a quasi-embedding.

Due to Proposition 2, ¢ is a quasi-embedding if and only if for all z,y € X, z /*p y, we have A, ,;
where A, , ; is the event “there exists ¢ € S such that ¢ € ¢(z) and Vv <p y, i € ¢(v)”. For fixed parameters

x,y,i, this event occures with probability Prob(Ag i) = pig; D@ where gi=1—p;and D(y) = | lp y|- Thus
Prob(A,.,.) < pigt ",
Let us bound the probability that ¢ is not a quasi-embedding:

Prob(¢ is not a quasi-embedding) = Prob( U ﬂ Az i) Z H quZD(P) .
z /' py 1<i<t 2 py 1<i<t
A rough upper bound of the number of couples (x,y) such that # ,/*p y is n? where n = |X|. Thus
Prob(¢ is not a quasi-embedding) < n? H (1 plqlD(P)).
1<i<t

Now we look for values of ¢ and the p;’s such that n?[], ., (1 — pig”") < 1. Tt will ensures that
Prob(¢ is not a quasi-embedding) < 1 and thus that there exists at least one quasi-embedding in &, which
is equivalent to say that there exists at least one embedding from P into 2° or to say that dims(P) < t.

n? H pquD(P) ) < 1if and only if 2In(n Z In(1 pquD(P)) 0.
1<i<t 1<i<t

This is true if 2In(n) < El<i<tpiqiD(P) (since In(1 — z) < —x for all real x < 1). We are free to choose

the p;’s, so we take the same value p for all of them: p; = ... = p, = p (and we denote ¢ = 1 — p). The
preceding inequality is now equivalent to 21n(n) < tpg”") or (if p # 0 and p # 1)
1
2In(n)——— <t

(1-q)gP®



We are interested in the smallest values of ¢ such that this inequality holds (since we wish to give a small
upper bound to dimg(P)). A careful analysis (using derivation) of the function f defined on ]0,1[ by
flg) = (1-@% shows that it decreases from 400 down to a minimum at gmin = D(P)/(D(P) + 1) (which
belongs to ]0,1[) and then it increases to +o0o. Consequently, we choose to take ¢ = D(P)/(D(P) + 1) for
the probability distribution, then our sufficient inequality ensuring the existence of quasi-embeddings (and
thus embeddings into 27) is

1 )D(P) <t

D(P)

We always have (1 + 1/D(P))P?¥) < e, thus to conclude, if 2¢(D(P) + 1)In(n) < t, then for the choosen
probability distribution Prob(¢ is a quasi-embedding) > 0, which implies that there exists at least one
embedding from P into 2% (in other words, dim»(P) < t). O

2In(n)(D(P) +1)(1 +

3 Remarks and open questions

Links to previous results

As mentionned previously, the form of the upper bound of Theorem 1 is close to known results in the
theory of ordered sets: similar theorems exist for the 2-dimension of particular orders and for the dimension
of general orders. Here is the first theorem which bounds the 2-dimension of some ideals of boolean lattices.
Its proof by Kierstead can be found in [5] (Theorem 2.4, page 224).

Theorem 2 (Kierstead [5]) Let n > k > 1 and B(1,k;n) the set of all 1-subsets of {1,...,n} and all
k-subsets of {1,...,n} (ordered by inclusion). Let dims(1,k;n) be the 2-dimension of this order, then:

dims (1, k;n) < e(k 4+ 1)%In(n).

A careful look at the proof shows that it is exactly the same reasoning as the one of Theorem 1 in this
very particular case (it can be seen that the characterization given in their proposition 0.8 corresponds to
the definition of quasi-embeddings for this particular case). This proof contains the fact that we can use
parameters in the definition of the probability distribution (so that we can adjust them later) instead of
basically using a uniform distribution. However it lacks the definition of quasi-embeddings for an extension
to the general case.

The other close theorem by Fiiredi and Kahn [1] deals with the dimension of orders, a proof can be found
in [8] (Theorem (4.1), page 166).

Theorem 3 (Fiiredi, Kahn [1]) Let P = (X,<p) be an order and D(P)=max{| |p z|,z€ X}, then
dim(P) < 2(D(P) + 1) In(n)

The probabilistic proof uses the notion of quasi-realizers (instead of the usual realizers for the dimension).
A careful look at the definition of quasi-realizers shows that it exactly corresponds to quasi-embeddings in
the case of the dimension. In fact, a general definition involving these two notions can be given in the
framework of embeddings into products of chains. For k& > 1, we denote by [1, k] the usual order on the
integers {1,...,k}.

Definition 1 Let II = [1, k] x - -- X [1, kq] be the product of d chains (ordered with the usual product order).
Let P = (X, <p) be an order. An application ¢ = (¢1,...,0q) from X into [1,k1] x --+ X [1,kq] is called a
I1-quasi-embedding if the application ¢ defined for all x € X by ¢(z) = (maxy<paz &1(Y), - .-, mazy<p20a(y)),
is an embedding of P into II.

Our quasi-embeddings clearly correspond to II-quasi-embedding when IT = [1,2] x - - - x [1, 2], and quasi-
realizers correspond to II-quasi-embedding when II = [1,n] x -+ x [1,n] (where n = | X]).



Links between the 2-dimension and the dimension

These similar bounds in the study of the dimension and the 2-dimension asks the question of the existence
of links between these two notions. For now, such links are not perfectly clear. Their definitions are quite
similar (embeddings into cartesian products of chains) and thus they share some good properties. However
they differ on many points:

o qualitatively: e.g. the dimension is a comparability invariant, the 2-dimension is not,

e quantitatively: the dimension is often much more smaller than the 2-dimension, even if the only in-
equality which is always true is Dim(P) < Dimg(P),

e computationally: both parameters are associated with NP-complete problems, but the 2-dimension
seems more difficult to compute (non-approximability results and see the case of trees).

A thorough study of the bounds we can obtain for the 2-dimension and the comparison with the dimension
would certainly lead to some new insights in the study of these interesting but complex parameters of orders.

Questions

At first, it would be interesting to know whether the bound of Theorem 1 is tight. For any fixed integer
d > 1, does there exist an infinite class of orders P such that D(P) = d and such that their 2-dimension
reach our upper bound (up to a constant factor) ?

Our proof is non-constructive due to the use of some probabilistic arguments. Is it possible to generate
efficiently bit-vector encodings that achieve this upper bound ?

Of course, it may be possible to improve our bound or to find other bounds on the 2-dimension depending
on some other parameters of orders, either in the general case or for specific classes of orders. For instance
there is a conjecture still open concerning the 2-dimension of lattices, which is presented in [2, 6].

In the perspective of practical applications of bit-vector encodings, the knowledge of tight bounds on the
2-dimension in function of easily computed parameters (such as D(P)) would enable to check if there is a
chance that the encodings provide a storage of the order with a good space compression.
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