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An algorithm for finding entire solutions of systems
of difference equations

Nicolas Brisebarre
November 2003

Abstract

We present an algorithm that computes the entire solutions of systems
of two difference equations and of systems of one differential equation
and one difference equation, all with complex polynomials coefficients.
The problem of the determination of such solutions arose in the field of
diophantine approximation. Our algorithm, which uses previous works
by Abramov and Petkovsek, allows also to determine, for each of the sys-
tems considered, all the solutions of the form Ry (2)e?? +- .-+ Rg(z)es?,
with S € N, d1,...,05 € C and Ry(2),...,Rs(z) € C(z).

Keywords: difference equations, exponential polynomials, exponential
fractions, linear differential equations, P-recursive functions, quasirational
functions.

Résumé

On présente un algorithme qui calcule les solutions entiéres, i.e. ho-
lomorphes sur tout le plan complexe, de systémes de deux équations
aux différences & coefficients polynomiaux et de systémes formés d’une
équation aux différences et d’une équation différentielle linéaire & coeffi-
cients polynomiaux. Cet algorithme, qui utilise certains travaux de S.A.
Abramov et M. Petkovsek, permet aussi de déterminer pour chacun des
systémes considérés toutes les solutions de la forme Ry(z)e’'% 4 --- +
Rs(2)e’s% avec S €N, 6y,...,05 € C et Ri(2),...,Rs(2) € C(2).

Mots-clés: Equations aux différences, polynémes exponentiels, fractions
exponentielles, fonctions P-récursives, fonctions quasi-rationnelles
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1 Introduction

An entire function is a function from C to C holomorphic over all the com-
plex plane. An exponential polynomial is an entire function of the form z —
25521 Hy(z)e%* with § € N, H, in C[z] and d, in C for all s. By anal-
ogy, we call exponential fraction a function, not necessarily entire, of the form
z 25521 Rs(2)e’? with R, in C(z) and 6, in C for all s. Let f denote an
entire solution of the system of difference equations

Y Pu(2)f(z +ma) = (2),
0<m<M (1)
> Qu2)f(z+np) =T(2),

0<n<N

where (Pp)o<m<m and (Qn)o<n<n are finite sequences over C[z] such that
PyQnPyQo # 0, a and 8 two complex numbers linearly independent over R,
and ® and ¥ two exponential fractions. Such a system, with ® = ¥ = 0, arose
in the proof by Gramain (1981) that an entire function which maps the ring
of Gauss integers Z[i] = {a + ib; a,b € Z} into itself and which satisfies some
growth condition is necessarily a polynomial with complex coefficients.

In answer to a question of Masser (1982), Bézivin and Gramain (1993,
1996) proved that f is necessarily an exponential fraction. They also proved
that this result remains true when the second difference equation is replaced by
a differential equation with complex polynomial coefficients, i.e. when f is an
entire function solution of the system

S Pul)f(z+ma) = 0(2),
0<m<M (2)
S Qul2)f () = (),

0<n<N

where (Pp)o<m<m and (Qn)o<n<n are finite sequences over Clz] with Py Qn
PyQo # 0, o is any nonzero complex number, ® and ¥ being two exponential
fractions.

Brisebarre and Habsieger (1999) generalized Bézivin and Gramain’s result
about (1) to the case a/f € R\Q (which was also done by Loeb (1997)). They
proposed also a new approach to this problem that allowed to find again some
results of Bézivin and Gramain (1993, 1996).

Once the structure of the entire solutions of (1) and (2) known, the problem
of the computation of these solutions arose. Brisebarre and Habsieger (1999)
gave the sketch of an algorithm, inspired by Chapter 8 of Petkovsek et al.
(1996), that computes the entire solutions of system (1) where it was assumed
that ® = ¥ = 0. Moreover, a slight adaptation of this algorithm yielded a second
algorithm that computes the entire solutions of (2), still under the assumption
that ® = ¥ = 0.

In this article, we give an improved version of our two algorithms: we deal
with a more general situation, since ® and ¥ are any exponential fractions, and
a more careful analysis makes our algorithms more efficient. Moreover, we give
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all the details of these algorithms and of their proofs (the previous versions of
the algorithms and their proofs were only sketched in Brisebarre and Habsieger
(1999)). Let us mention that our two algorithms can give all the exponential
fractions solutions of (1) and (2). The paper is organized as follows. In Section 2,
we introduce parametrized versions of two algorithms of Abramov and Petkovsek
that are used in our algorithms. In Section 3, we give and prove the algorithm
Pasrec that provides us with the entire solutions of system (1). We briefly
present in Section 4 the algorithm Pasrecd that constructs the entire solutions
of (2). Eventually, we compare in Section 5 our algorithms to another algorithm
of Abramov (1991) for constructing the exponential fractions solutions of one
linear differential or one finite-difference equation with polynomial coefficients.
A brief analysis shows that:

e when we know beforehand that (1) or (2) has an exponential fraction
solution, it is worth replacing some parts of our algorithms by Abramov’s
algorithm,;

e otherwise, it is useless to take into account Abramov’s algorithm.

In the first case, we give the modifications that we have to do in our algorithms.

2 Parametrized versions of some algorithms of Abramov
and Petkovsek

Given a linear difference equation
pum(2)R(z+ M)+ -+ p1(2)R(z+ 1) + po(2)R(z) = b(z) (3)

where M € N and py,...,pur,b € K[z] with K a field of characteristic zero, the
combination of these algorithms allows to find all rational solutions R of (3).
The algorithm of Abramov (1995) constructs a polynomial D divisible by the
denominator of any rational solution of (3). On the other hand, the algorithm
Poly of Petkovsek (see Petkovsek et al. (1996)) gives us the polynomial solutions
of (3). Thus, every rational solution R of (3) can be written as H/D where
H € K|[z] and D is the polynomial given by Abramov’s algorithm. Then we use
algorithm Poly to find all the solutions H in K[z] of the equation

p1(2)
D(z+1)

pm(2)
D(z+ M)

Hz+ 1)+ 23 g2y Z ).

Hz+M)+---+ D)

One can find the algorithm Poly and its theoretical background in Chapter 8 of

Petkovsek et al. (1996). In the present work, we need slightly modified versions

of these two algorithms since we deal with more general difference equations.
Let a« € K*, we consider the linear difference equation

prm(2)R(z+ Ma) + -+ p1(2)R(z + @) + po(2) R(z) = b(2) (4)

where M € N and pyg,...,pym,b € K[z]. When looking for the polynomial
solutions of (4), a careful reading of the proof of correctness of Poly allows to
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give the following adaptation (if P is a polynomial, lc(P) denotes its leading
coefficient and we agree that deg P = —oo if P = 0):

Algorithm Poly with parameter «
Input: The polynomials py,...,par, b from equation (4), @ € K*.
Output: The general polynomial solution of (4) over K.

1. For j =0,...,M, G; + Zn]\f:j (Zr-l)pm-

2.t + maXOSjSM(deg Gj — ]),

T(z)« Y 1(Gjadz(z—1)-(z—j+1),
0<j<M
deg G —j=t1

ty <+ max{z € N, T'(z) = 0},
d < max{degb —t1,—t1 — 1,t2}.

3. Plug R(z) = 3.7, ciz" into (4).
Solve the linear system whose unknowns are the c;.

In the sequel of the paper, we only need the following shortened algorithm.

Algorithm ShortPoly with parameter «
Input: The polynomials py,...,par, b from equation (4), a« € K*.
Output: d, an upper bound for the degree of polynomial solutions of (4).

1. Step 1 of Poly with parameter «.
2. Step 2 of Poly with parameter a.

In the previous two algorithms, we can assume that pg,...,pur,0 € K(2):
it suffices, for instance, to multiply the members of (4) by a nonzero common
denominator of these fractions to get an input of polynomials.

Now, we give the adaptation (easy to obtain) of the algorithm from Abramov
(1995). If P and Q are polynomials, Res,(P(z),Q(z)) denotes their resultant.

Abramov’s algorithm with parameter «
Input: The polynomials py and pjy; from equation (4), a € K*.
Output: D, a denominator of the rational solutions of equation (4).

1. [Initialization] A1(z) < pym(z — M), As(2) « po(z), D « 1.
2. R(m) < Res;(A1(2), A2(z + ma)).

3. If R(m) has some nonnegative integer root then
L + the largest nonnegative integer root of R(m),
fori=L,L—1,...,0,
d(z) := ged(A1(2), Az (z + i),
Ai(z) = Ai(2)/d(2),
Ag(2) := Ag(2)/d(z — i),
D(z) := D(z)d(2)d(z — ) - -+ d(z — iav),
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3 The case of two difference equations: algorithm
Pasrec

Let f be an entire function solution of (1) where a and 8 are two complex num-
bers linearly independent over Q. We know from Bézivin and Gramain (1996)
and Brisebarre and Habsieger (1999) that f is necessarily a finite sum of the
form 25:1 Rj;,(2)e%? with R;, in C(z) and &, in C for all s. The complex
numbers ds and the rational fractions Ry, (z) are respectively called the frequen-
cies and the coefficients of the exponential fraction f. Let g be an exponential
fraction. We denote Spec(g) its spectrum, i.e. the set of the frequencies of g,
and R, s denotes the coefficient of g associated to e (it may be 0). If E is a
finite set, #FE denotes the number of elements of E. If z is a nonzero complex
number, Log (z) is the complex number log |z| + iArg z with Argz € | — m, 7,
Re(z) is the real part of z and Im(z) is the imaginary part of z.

First, we state the algorithm and explain the improvements it contains with
respect to the algorithm of Brisebarre and Habsieger (1999). In a second
subsection, we give the refinement we can get in the case /8 € C\R. Then, we
give a worked example. In a fourth subsection, we provide a proof of correctness
of the algorithm. Eventually, we discuss the particular situation that we can
deal with in the case where o/ € R\ Q.

3.1 Algorithm Pasrec

Input: «, € C* such that o/ € C\ Q,

PO?"'aPMaQOa"'aQN € C[Z]a
®, ¥ two exponential fractions.
Output: The general entire solution of (1).

1. [Determination of a set containing the frequencies ]

(a) Spec + Spec(®)U Spec(¥),
dp < MaXo<m<M deg Pm, dQ < mMaxo<n<N deg Qn,
am < coefficient of 297 in P,,(2), b, < coefficient of 2@ in Q,(z).

(b) Solve > ycpners @mX™ =0 = J distinct nonzero roots z1,...,z.
Solve Y )<,y bnY™ = 0 = L distinct nonzero roots yi,...,yr.

(c) For § € Spec(®)\Spec(¥),

if % ¢ {y1,...,yr}, then

return: no entire solution.
For § € Spec(¥)\Spec(®),

ife® ¢ {z1,...,27}, then

return: no entire solution.
(d) Forj=1,...,J,fori=1,...,L,

If there exists a solution (k, k') € Z? of
k/o—k'/B = (Log (y1)/B — Log (z;)/a) /(2im)
then

Spec < Spec U {(Log (z;) + 2ikm)/a}.
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(e) If #Spec = 0 then
return: no entire solution but 0
else
Spec is a set containing Spec(f).

2. [Determination of a common denominator of the coefficients of the exponen-
tial fractions solutions of (1)]
D¢ + g.c.d. of the coefficients of ®, Dy < g.c.d. of the coefficients of ¥,
D, < Abramov’s algorithm with parameter « applied to (D¢ Pyr, Do FPy),
Dg < Abramov’s algorithm with parameter 5 applied to (DyQn, Dy Qo).
D «+ gcd(Dy, Dg).

3. [Determination of the coefficients Ry s(2)]
For ¢ € Spec,

(a) deg,, < ShortPoly with parameter « applied to the equation

M

Py e6ma
mzo %Iﬁ(z + ma) = Re 5(2). (5)

degz < ShortPoly with parameter 3 applied to the equation

5nﬂ

Z @nl( v + nIB Hs(z +np) = Ry (). (6)

d < min(deg,,,degg).

(b) Plug a generic polynomial Z;'izo a;z’ into (5) and (6).
Solve the resulting linear system in the unknowns ay, ..., aq.
If there is no solution then
return: no entire solution
else
Hjs < a particular solution of (5) and (6),

Fj5 <+ a basis of the direction of the C-affine solution space of (5)
and (6).

4. [Determination of the linear combination that makes the function entire]
Solve the linear system in the unknowns A5 € C of equations

#F (lj)
e Y [Hso(2) + Y AonFse(z)| € (z) =0, (7)
d€Spec k=1
1<j5<r0<Il; <vj—1, where z,2,...,2 are the complex roots of D
with respective multiplicity orders v1,19,..., ;.

In step 1b, as we do not care about the order of multiplicity of the roots,
we can replace the polynomial P(X) =Y ., . <1 amX™ by a squarefree divisor
having the same irreducible factors like P(X)/gcd(P(X),P'(X)). The same

applies to Q(Y) = > g, oy Y™
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This algorithm allows to determine all the exponential fractions solutions of
(1): we only have to skip step 4 which is the only step where we require that
the solution is entire.

Let us now see how this new version improves on Brisebarre and Habsieger
(1999). First, the systems of difference equations we can deal with are more
general: the systems in Brisebarre and Habsieger (1999) were homogeneous
whereas our algorithm solves systems whose right members can be any expo-
nential fractions. Then, in the previous version of the algorithm, steps 2 and
3 were done using only the first equation of (1). We used the second equation
to check the solutions found. In the present version, we use both equations at
each step. This may decrease the degrees of the common denominator given by
step 2 and of the numerator of each coefficient given by step 3a, which has the
following consequences:

e if we get a smaller degree for the common denominator, this speeds up
the applications of ShortPoly (remember that, according to Remark 2,
equations (5) and (6) must be changed into equations with polynomial
coefficients). It also speeds up step 4 since there are fewer equations to
create when forming the system solved at step 4. Moreover, as we need
to know the roots of this common denominator, it is of course important
to get it with a degree as small as possible;

e if, in step 3a, we get a smaller degree for the numerator of the coefficient,
this speeds up step 3b since the linear system is smaller.

3.2 The case a/f € C\R

When «a/f belongs to C\ R, we can replace step 1d with
For j=1,...,J,forl=1,...,L,
k + Re(fLog (;) — aLog (y1))/ (2xIm(B/a)),
K« Re(Log ()8 — Log (z;)/)/ (2xTm(a/B)),
if (k, k') € Z?, then
Spec « Spec U {(Log (z;) + 2ik;m)/a}.

3.3 Worked example

We determine the entire functions f solutions of the system

(z+3)f(z+3)+ (22 + (L —e)z—2(L+¢€))f(z +2)
—((1+e)22+z.— e)f(z+1)+ezf(z) = ®(2), (8)
3(z+3i)f(z + 3i) — _(2 +3¢") (2 +2i) f(z + 2i)
+(2¢' = 1) (z+ i) f(z +1) +'2f(2) = U(2),

with
d(z) =3((e — 1)z + €2 —e)e*t! and U(z) = —3i(—3€* + 2¢' + 1)e*+.

Step 1. Here we have @ = 1 and 8 =i and the ratio /8 belongs to C\ R.
We also have Spec(®) = Spec(¥) = {1}. We start by determining the potential
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frequencies of the solutions. We use the notations of Subsections 3.1 and 3.2.

We have

dp = deg P, =2 d dg= d =1.
p = max degPp an Q 01;13;(3 eg Qn

0<m<

We have to solve the equations

X2 - (14+e)X+e=0 (9)

and
3Y% — (24 3e")Y? + (2¢' —1)Y + €' =0. (10)
The roots of the equation (9) are z; = 1 and z2 = e, those of (10) are

y1 = l,ys = —1/3 et y3 = e'. We put in Table 1 the values of the couples
(kj,la k‘l,j)lngQ defined by
1<1<3
kji = Re(iLog (z;) — Log (y1))/2m,
and

ki ; = Re(iLog (y;) + Log (z;)) /2.

The only solutions in Z? are (kl,l,kllyl) = (0,0) which is associated with fre-

I=1] (0,0) <L°2g7r(3),—%> <0, —%)

[=2 (0%) (L%p,—%—i-%) (0,0)

Table 1: Pairs (kj,l,kg,j)

quency 01 = Log(z1) + 2ik;1m = 0 and (kz,g,k;,Z) = (0,0) associated with
frequency 0o = Log (z2) + 2ikg 3m = 1, which was already in Spec. Therefore,
Spec is the set {0, 1}.

Step 2. Then, applying Abramov’s algorithm with parameter 1 yields a
common denominator to the rational fractions solutions of the first equation of
the system (8). We have here A;(z) = P3(z — 3) = z and As(2) = Py(z) = ez?.
Let Ri(m) = Res,(A1(2), A2(z + m)) = em? whose 0 is the only one integer
root. Therefore, as the largest nonnegative integer root is 0, we have D;(z) =
ged(Aq(z), A2(z)) = z. Now, applying Abramov’s algorithm with parameter ¢ to
the couple A1(z) = Q3(z —3i) = 3z and A(z) = Qo(2) = €'z, we get D;(z) = 2.
Finally, the common denominator searched is D(z) = ged(D1(2), D;i(z)) = 2.
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Step 3. In order to determine the rational fractions Ry s coefficients of the
functions e* (with § € {0,1}), we have to solve the equations

z2+3 224+ (1-e)z—2(1 +e)
H 3
L Z+2

l+e)2+z—e ez’
| i+1 Jﬂﬂz+n+~24%®)=R@d@v

e? Hs(z + 2)

and

3(z 4 30)e* Hy(z 4+ 3i) (24 3e?) (2 + 2i)e® Hy(z + 2i)

z+ 3 z4+ 2
2¢t — 1) (z +4)e® Hs(z + 4 ‘2H
+( ) ( ). s( )+ez d”::R%d@.
Z+1 Z

After simplifications, we obtain the equivalent equations

¥ Hs(z43) + (z — (1 +¢€))e? Hs(z + 2)
—((1+e)z— e)e‘SH(;(z +1) +ezH;(2) = Rp 5(2), (11)

and

3¢50 Hy(z + 3i) — (2 + 3¢’) €® Hy(2 + 2i)
+ (2¢' — 1) e’ Hs(2 +14) + €'Hs(z) = Ry 4(2). (12)

We assume 6 = 0. We have Ry g = Ry o = 0. We use algorithm ShortPoly with
parameter 1 to determine an upper bound deg; for the degree of the polynomial
solutions Hy of (11). We compute the polynomials G; = Zil:j (T) P,, where
P, denotes the coefficient of Ho(z +m) in (11). We find

Go=0, Gi=(1—-¢e)(z+1), Go=2z+2—¢ and G3 = 1.

Hence, ¢; = maxo<;<3(deg G; — j) = deg G; — 1 = 0. Moreover, we notice that

T(z)= Y. l(Ga(z—1)---(z—j+1)=(1—e)z

0<j<3
deg Gj—j=t1

where lc(G) denotes the leading coefficient of Gj. The degree of the polynomial
solution is thus bounded by deg; with

deg, = max (—t; — 1,max{z € N, T(z) = 0}) = max(—1,0) = 0.

The same computations give an upper bound deg; for the degree of the polyno-
mial solutions Hy of (12) equal to zero. We plug a generic polynomial of degree
zero into (11) and (12). Hence, we obtain that 0 is a particular solution of (11)
and (12) and {1} is a basis of the direction of the C-affine space of polynomial
solutions of (11) and (12). In the same way, if we assume § = 1, we get a
particular solution H; ¢ = 3z and a basis Fi = {1}.
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Step 4. Finally, we have to determine the complex numbers Ay and \;
)\0 + ()\1 + 3Z)6z
z

an entire function.

that make the linear combination z

Therefore we solve the equation
Ao+ A =0.

Hence, the necessary condition is Ay = —A;. We finally showed that the entire
solutions of the system (8) are the functions

e —1

2z A +3¢%, A eC.

z

3.4 Proof of correctness of algorithm Pasrec

We know from Bézivin and Gramain (1993, 1996) that f is necessarily an ex-
ponential fraction. So, we write f as z +— ) 5. Rf,(;(z)e‘sz, where the Ry 5(2)
are almost all zero, into the first equation of (1). Then, we get

M
> Pul2) (ZRf,a(z+ma>e5maeéz> = > Reg(a)e.
m=0 0eC 8’ €Spec(®)

The family of functions (65')
(1974)). Therefore

sec 18 free over C(z) (see for example Waldschmidt

M
Z Py (2)Rys(z + ma)e’™® = Ry 5(2), for all § € C. (13)
m=0

Likewise, we get for every 0 € C

N

> Qu(2)Rys(z +nB)e’™ = Ry 5(2). (14)

n=0

Step 1. We first determine a set, called Spec, containing the spectrum of
f. From (13) and (14), we see that, necessarily, Spec(®) U Spec(¥) C Spec(f),
hence the first line of step la. Then, we search for the other elements of Spec(f).
Let dp and dg be as in step 1a, let § € Spec(f) \ (Spec(®) USpec(T)). Relation
(13) is equivalent to the equation

<l Pm(z) Rf,5(z + ma) dma
Z e = 0.
zdP Rf,(;(z)

m=0
Let ay,, for m = 0,..., M, be as in step la. We let z tend to infinity: we get
Z%:o ame’™® = 0, which is a polynomial equation in e’®. Likewise, let by, for
n=20,...,N, be as in step la, we have Z;V:o bne®™? = 0. Therefore, in step 1b,
we solve the equations

M N
Y apX™=0and » b,Y" =0, for X =’ and Y =€, (15)
m=0

n=0
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We can notice that, for § € Spec(®) \ Spec(¥) (resp. Spec(¥) \ Spec(®)), if e
(resp. €®) is not a root of Q(Y') (resp. P(X)), then there is no entire solution
of (1). This remark corresponds to step lc.

The solving of (15) yields J (< M) distinct classes of solutions in C/2ira~'Z
for the first equation and L (< N) distinct classes of solutions in C/2in3 ! Z for
the second equation that we have to intersect to find the possible missing fre-
quencies. This is done as follows. Let z be a nonzero root of P = Z%:o A X™
and y a nonzero root of Q) = Zﬁ:o b, Y. We associate with z a frequency of the
form (Log () +2imk)/a and with y a frequency of the form (Log (y) 4 2ink )/B
where k, k' are in Z. So, we have to solve for k and k' € Z the equations

Log (z) + 2imk _ Log (y) + 2ink'
« N I5} ’
with z in the set of the nonzero roots of P and y in the set of the nonzero roots
of . These equations are equivalent to

k- k' 1 (Log(y) Log(x)
( B ) '

From the irrationality of a/3, we are sure to find a finite number S of solutions:
it is easy to see that for each pair (x,y) there is at most one solution (k, k') € Z2
of equation (16). The solving of the equations (16) allows us to exhibit a finite
set (that can be empty) of possible frequencies {d1,...,dg}.

When a/f € C\R, solving (16) is trivial: considering (16) and its conjugate
yields

_ Re(log(e) —alog(y) . ,, _ Re(Log(s)/6 ~ Log (s)/a)
27Im(B/ ) 27Im(a/B) ’

We will discuss in Subsection 3.5 the case where a/8 € R\ Q.

The union of the sets {d1,...,ds} and Spec(®) U Spec(¥) gives a set, that
we call Spec, of possible frequencies. Note that Spec(f) C Spec (this inclusion
can be strict). That implies in particular that if Spec is empty then Spec(f) is
also empty: 0 is then the only entire solution.

Step 2. We turn now to the determination of a common denominator D of
the coefficients of the exponential fractions solutions of (1), i.e. of the rational
fractions solutions of equations (13) and (14). Abramov’s algorithm with pa-
rameter « applied to (13) gives us D,, a common denominator of the rational
solutions of this equation. Since this algorithm requires that the right member
of the difference equation is a polynomial, we first multiply (13) by Dg, a com-
mon denominator of the coefficients of ®. We recall that only the polynomials
Dg(z — Ma)Pp(z — Ma) and Dg(z)Py(z) are involved in Abramov’s algo-
rithm. Therefore, the computation of a common denominator is independent of
frequency 6.

Similarly, applying Abramov’s algorithm with parameter 5 to (14) (multi-
plied by Dy, a common denominator of the coefficients of ¥), we obtain Dg, a
common denominator of the rational solutions of this equation. As the denomi-
nator of every rational solution of (13) and (14) should divide both D, and Dg,
the g.c.d. of these two polynomials is a suitable common denominator.

a B 2m

(16)
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Step 3. The next step is the determination of the coefficients Ry 5. Since we
know, from step 2, a common denominator D of these coefficients, we replace
Rys in (13) and (14) with H;/D. Hence, for § € Spec, we are looking for the
polynomial solutions Hy of (5) and (6). Algorithm ShortPoly with parameter «
applied to (5) gives an upper bound deg,, for the degree of polynomial solutions
Hjy of this equation. Likewise, we get an upper bound degg for the degree
of polynomial solutions Hjs of equation (6). So, the maximal degree of the
polynomials Hy searched is bounded by d = min(deg,,degg). Then, as in step
3 of Algorithm Poly, we plug a generic polynomial Z;l:o a;2’ into (5) and (6).
We get a linear system of equations in the unknowns ag,...,aq € C. If we get
no particular solution of it, that means that there is no entire solution of (1).
Otherwise, we have obtained a particular solution Hsg of (5) and (6) and a
basis (which can be empty) Fy = {Fsx},_, ,p of the direction of the C-affine
space of solutions of (5) and (6).

Step 4. We have to find the complex coefficients As; such that the function

sespec |Hoo(2) + 00 Aé,kFé,k(z)] e’
D(z)

Z =

is entire. If D € C (therefore equal to 1, cf. Section 2), then the algorithm ends
and the entire solutions are the sum of fy = Zaespec H(;,g(z)e‘sz and of every

linear combination over C of the elements of the families {Fg,k(z)e‘sz } seSpec,
k=1,..., #Fg

Otherwise, we have to find the \;; € C for which the roots of D are also roots
(counted with multiplicity) of the exponential polynomial

#Fs
> | Hso(z) + D AapFop(z) | .
d€Spec k=1
If z1,29,...,2 denote the roots of D with respective order vq1,vs,...,v,, the

coefficients A are the solutions of the linear system whose equations are (7).

3.5 The case a/f € R\ Q

This is the solving of equations (16) that makes difficult the computer imple-
mentation of our algorithm in the case a/f € R\ Q. Indeed, as the subgroup
Z + Za/p is dense in R, we can have several couples of rational integers appar-
ently solutions of these equations, whereas there should be at most one solution
in Z?2 because of the irrationality of /3. Though a solution to the general case
is theoretically impossible to get, our algorithm works if we assume that the
size of the frequencies is bounded by some constant. This would imply that the
k and k' solutions of (16) are bounded by another constant K. The algorithm
LLL (1982), that looks for short vectors in lattices, is able to give us all couples
(k, k") € Z? solutions of (16) such that max(|k|,|k'|) < K. Another way to do
it is to use the continued fraction expansion of /3, as it was originally done in
Baker and Davenport (1969). In that situation, the only problem comes from
the fourth step of the algorithm, in which we want to combine the functions
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Ry 5(2)e’® solutions of the system in order to get an entire solution. Indeed, if
we missed some frequencies belonging to Spec(f) but whose modulus is larger
than the bound we chose, we can have no entire solution at the end, because
of the loss of some components, though there were really entire solutions of the
initial system (1). Nevertheless, we can skip this problem in two cases where
step 4 becomes useless:

e if the common denominator of the coefficients Ry 5(2) determined in step
2 is a constant;

e if we only search for the exponential fractions solutions.

Another reason for being able to handle the case a/f € R\ Q is the fact,
proved by Loeb (1997), that the continuous functions f : R — R solutions of
(1) are also exponential fractions.

4 The mixed case differential and difference equa-
tions, the algorithm Pasrecd

Now, we are dealing with the entire functions f solutions of (2). We know from
Bézivin and Gramain (1993, 1996) that f is necessarily an exponential fraction.
Here again, we have algorithms to find rational solutions of linear differential
equations (see Abramov and Kvashenko (1991) for example). The main change
with regard to Pasrec are the steps 1c and 1d which become

1. (c) For ¢ € Spec(®)\ Spec(¥),
if 6 ¢ {y1,...,yr}, then
return: no entire solution.

For § € Spec(¥)\ Spec(®),
ife® ¢ {z1,...,27}, then
return: no entire solution.
(d) For j=1,...,J,fori=1,...,L,
k < (ay, — Log (z;))/(2i)
if k € Z, then
Spec < SpecU {y;}

Proof of correctness of the algorithm. We know from Subsection 3.4 that Spec(®) C
Spec(f). We plug f = > s5cc Ry,s(2)e”, where the Ry 5(z) are almost all zero,
into the second equation of system (2) and we get

N
S0 (Brare) = Y Res@e )

deCn=0 d"eSpec(¥)

Leibniz’s formula gives, for every n € N and ¢ € C,

P () P g Y cn—
(Rf,(;(z)e‘s ) =¢ Z (k>6 kR(f]fg (2).
k=0
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It follows from (17) and from the linear independence over C(z) of the family
(66.)5€(C that

N n n
> 0o (35 (1) mie)) = rosto
n=0

k=0

for every 0 € C. Hence Spec(¥) C Spec(f). Let 0 € Spec(f) \ (Spec(®) U
Spec(¥)), we then have

N

Let b, denote the coefficient of 2%@ in Q,(z) and let z tend to infinity. We get
the equation ZQLO bp0™ = 0. Hence, we have to solve the following polynomial
equations in X =e® and Y = 4:

k=0

M N
Z amX™ =0 and Z b,Y" = 0.
m=0 n=0

So, we find J (< M) distinct classes of solutions in C/(2ira'Z) for the first
equation that we easily intersect with the L (< N) distinct solutions in C of
the second equation. It gives a finite set that we add to Spec(®) U Spec(¥)
to get Spec, a set that contains Spec(f). Here again, we can notice that, for
§ € Spec(®) \ Spec(¥) (resp. Spec(¥) \ Spec(®)), if & (resp. e®) is not a root
of N b, Y™ (resp. SN a,, X™), then there is no entire solution of (2).

5 Comparison with an algorithm of Abramov

Abramov (1991) gives an algorithm that finds all the exponential fractions
solutions of either one difference equation or one differential equation with
polynomial coefficients. These solutions have the form ;" A?R;(z) in the
first case and Y.1*, eM?R;(z) in the second case with A,..., A\, € K and
Ry,...,R,, € K(z), where K is what Abramov calls a feasible field, namely
a field of characteristic 0 with an algorithm for finding integer-valued roots of
polynomials with coefficients in K. In the sequel, the term “Abramov’s algo-
rithm” refers to the algorithm from Abramov (1991) and not to the one from
Section 2. We make our comparison only in the finite difference case, since the
comparison in the differential case is analogous.

The situations in Abramov (1991) and in our article are different: we have
a second equation and we want the function f to be entire. Our context, with
two equations, gives us more precise information about the exponential fractions
solutions since we can determine explicitely the frequencies § whereas Abramov
(1991), with only one equation, only provides e°.

Abramov’s algorithm is able, after the computation of a common denomi-
nator, to get both the exponentials of the frequencies — which corresponds to
step 1b of our algorithm — and a maximal degree for the polynomial solutions
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of resulting equations — which corresponds to step 3a of our algorithm —. More-
over, the procedure that leads to this simultaneous determination allows to skip
some frequencies not involved in the solution that our algorithm may get rid of
only at the end of the third step of our algorithm.

The use of Abramov’s algorithm to improve our algorithm depends on what
is known beforehand about the system of equations. Generically, a system (1)
or (2) has no exponential fraction solution. To give an idea of it, we can note
that the first step alone of Algorithm Pasrec requires that the intersection of two
countable subsets of C is non empty. Hence, if we deal with a system for which
existence of exponential fractions solutions is not ensured, we use Algorithm
Pasrec, without taking into account Abramov’s algorithm, since Pasrec starts
by a quite restrictive filter of determination of the possible frequencies, without
computing previously a common denominator, which is done in Abramov (1991)
on the other hand. The only case where it is worth using Abramov’s algorithm is
when we know beforehand that the system has an exponential fraction solution.
Then, we use it in the following way. We first execute step 2 of Pasrec, then
step 1 in which 1b is replaced by Abramov’s algorithm (which does step 3a in
the same time), step 3b and, if we want the exponential fraction to be entire,
we execute step 4.
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