Pierre-Yves Y Calland 
  
Anne Mignotte 
  
Olivier Peyran 
  
Yves Robert Fr 
  
Ed Eric Vivien 
email: frederic.vivien@lip.ens-lyon.fr
  
Yves Robert 
  
F Vivien 
  
Retiming DAGs

Keywords: Direct Acyclic Graph, clock period, optimization, retiming, delay model, registers Graphe acyclique orient e, p eriode d'horloge, optimisation, mod ele de d elai, registres

The increasing complexity of digital circuitry makes global design optimization no longer possible: a designer will only consider the critical parts of his circuit. This paper discusses timing optimization problems when these critical parts can be represented by Direct Acyclic Graphs (DAGs). We deal with di erent (though related) clock period problems, under various external constraints. The main algorithm concerns the determination of the optimal clock period of a given circuit. We propose an e cient solution, based on the retiming technique, which improves current results in the literature. We give three di erent formulations depending on which c o m binational gates delay model is used: same delay for every gate, di erent d e l a ys or non-uniform delays.

Introduction

Retiming i s a t e c hnique used to optimize synchronous VLSI circuits. The basic idea is to relocate registers along the paths in the circuit so as to reduce combinational rippling. The rule of the game is that the functional behavior of the circuit as a whole is preserved. There are di erent cost criteria to evaluate the e ciency of the retiming, but minimizing the clock period and/or the state (total number of registers) are the most frequently used. The survey paper of Leiserson and Saxe 8] g i v es several polynomial-time algorithms to compute the optimal retiming of a given circuit using the previous two cost criteria.

Pipelining VLSI circuits can be viewed as another instance of the retiming problem. Given a circuit with combinational elements, the problem is to determine the minimum number of registers that should be added, and to determine where to insert these registers, so as to achieve a xed clock period (when operating in pipelined mode, hence the name pipelining). The rule of the game is still that the functional behavior of the circuit is preserved, but the price to pay here is an increase of the latency.

Section 3 is devoted to a review of known results concerning various instances of the retiming problem. We formulate all these instances via a uni ed graph-theoretic framework as introduced in 8].

The main contribution of the paper is a new algorithm for retiming circuits without cycles, i.e. whose network graph is a DAG (Direct Acyclic Graph). In a word, our algorithm for retiming a DAG only requires two passes over the network graph, as opposed to jV j passes in 8], where jV j is the number of nodes in the network graph (see below in Section 3 for formal de nitions).

The rest of the paper is organized as follows: as already stated, Section 3 is devoted to a review of existing literature, together with a formal statement of our main results, whose proofs are given in Section 4 (for operators with the same delay), in Section 5 (for operators with arbitrary delays) and in Section 6 (for operators with non-uniform delays). Section 2 emphasizes upon the practical importance and usefulness of scheduling DAG circuits a target application is the design optimization of on-line arithmetic operators. We g i v e some nal remarks and conclusions in Section 7.

Motivation

In on-line arithmetic, the operands circulate through the operators in a digit-serial fashion, most signi cant digit rst. On-line arithmetic was introduced by Ercegovac and Triveli 4], who proposed algorithms for on-line multiplication and division. The operands enter the design at time t and the rst digit of the result output at time t + , w h e r e is the latency of the design. The main advantages of on-line arithmetics are the low resulting clock period even for complex applications and the simpli ed accuracy control. On-line arithmetic performs computation most signi cant digit rst. Each new digit of the result is then a complementary precision. The computation can stop as soon as the required accuracy is reached.

This serialization is possible only if all the operands circulate most signi cant digit rst. Unfortunately, the usual serial algorithms for addition and multiplication work least signi cant digit rst. A speci c number system is then used, namely the signed digit redundant n umber system, whose redundancy makes it possible to perform addition and multiplication with no carry propagation. For instance Figure 1 shows a borrow s a ve adder for redundant arithmetic.

Several algorithms and corresponding architectures have been proposed to perform basic and complex operators such as addition, multiplication, division, square root and trigonometric func- s i ,whose values are -1, 0 or 1, are represented by the bits a + i , a ; i , b + i , etc. such that a i = a + i ;a ; i b i = b + i ; b ; i : : :

2 x + y ; z = 2 t ; u t = maj (x y z) u = x y z -+ --+ x y z t u u t z y x + - + + - 0 0 -+ --+ -+ --+ -+ --+ -+ --+ + - + + - + - + + - + - + + - + - + + - a + 3 a + 2 a + 1 a + 0 b + 3 b + 2 b + 1 b + 0 a ;
tions 2], most signi cant digit rst. These operators are already temporized so as to satisfy a speci c behavior. They de ne a pipelined operator library for on-line arithmetic. For instance, Figure 2 shows a serial borrow s a ve adder. It corresponds to one stage of the adder of Figure 1. Registers are inserted to make sure that c ; n;1 , b ; n;1 of the previous stage be used to compute s + n;1 and s ; n;2 . Thus, a given application using on line arithmetic is pipelined by construction. This determines a given latency and a given clock period corresponding to the critical path of the design (i.e. the longest path in terms of cells with no register). Let us illustrate this on the application of Figure 3a. The critical path of the application is 6 cells. Nevertheless the resulting clock period may not be satisfying for a designer. Therefore, one may have to transform the design by grouping digits to increase the clock period or at the opposite, by inserting timing barriers between operators to reduce the clock period. We will focus on the second transformation as the rst one only deals with the pipelined operator library. Suppose that the designer inserts a timing barrier as shown in Figure 3b the critical path is reduced to 4 cells. Unfortunately, in that case the critical path is not optimized : it can be reduced to 3 cells by moving some registers, as shown in Figure 3c.

The problem of moving registers to optimize the clock period while preserving the whole behavior is the well known retiming problem. Moreover, on line arithmetic has two main properties: the design is only made up of two basic cells (PPM and half adders) and there is no loop in the applications (thus, we could sensibly consider that all the cells of the design have the same delay) and the design can be described with a DAG. These two properties will be exploited to reduce the algorithm complexity of retiming as described in the next sections. 3 Review of retiming techniques 3.1 A graph-theoretic framework Computational devices (VLSI circuits or VHDL programs) are represented by a nite, connected, vertex-weighted, edge-weighted directed multi-graph G = ( V E d w ). Vertices of the graph (or nodes) model the computational elements. Each v ertex v 2 V is weighted with its nonnegative delay d(v). Vertex delays d can be rational numbers, but since the graph is nite we c a n a l w ays change the time unit to have i n teger delays. The directed edges E of the graph model interconnections between functional elements. Each edge e 2 E is weighted with a \register" count w(e) (the register count corresponds to the number of \wait until clock" statements in VHDL programs). Edge delays are nonnegative i n tegers.

We need a few de nitions and notations.

For an edge e : u ;! v, w e w r i t e u = t(e) the tail of e and v = h(e) t h e head of e. W e de ne as input nodes (respectively output nodes) the nodes whose in-degree (respectively out-degree) is zero.

We add two special vertices v from host and v to host , with zero propagation delay, to model the interface of the graph with the external world: d(v fromhost ) = d(v to host ) = 0 . We l e t V 0 = V f v from host v to host g.

Finally, w e d e n e a n ull-weighted edge from v from host to each input node and a null-weighted edge from each output nodes to v to host . These edges are called respectively input edges and output edges. They form the set of interface e dges that we d e n o t e b y I . W e l e t E 0 = E I .

We use the same conventions as in 8]. For any simple path P = v 0 e0 ;! v 1 e1 ;! : : : ek;1 ;! v k , w e de ne the path tail t(P ) = v 0 as the tail of its rst edge, the path head t(P ) = v k as the head of its last edge, the path delay d(P ) = P k i=0 d(v i ) as the sum of the delay of the vertices of P , and the path weight w(P ) = P k;1 i=0 w(e i ) as the sum of the weights of the edges of P . W e denote by l(P ) the length of P , i.e. the number of edges in P . I f k = 0 , w e l e t l(P ) = 0 , d(P ) = d(v 0 ) and w(P ) = 0 .

We assume that G does not contain any zero-weight cycle: in any directed cycle C of G there is some edge with strictly positive w eight, i.e. w(C ) > 0. This condition ensures that the operation of G is well-de ned (in the case of VLSI circuits, we s a y G is synchronous). The clock period of G is then well de ned by the equation (G) = maxfd(P) w(P ) = 0 g. I n tuitively, t h e c l o c k period is the maximum amount of propagation delay through which a n y signal much ripple between clock ticks. The state of G is de ned as the sum of the registers over all edges: S (G) = P e2E w(e).

Retiming is an assignment o f a n i n teger lag r(v) t o e a c h v ertex v 2 V : it amounts to suppress r(v) \registers" to the weight o f e a c h e d g e l e a ving v (whose tail is v) and to add r(v) registers to each edge entering v (whose head is v). Formally, a retiming function r is a mapping from V 0 to Z such that r(v from host ) = r(v to host ) = 0. It leads to a new edge-weighting function w r de ned for an edge u e ! v by w r (e) = w(e) + r(v) ; r(u). A retiming is legal if the new edge weights w r are all nonnegative. Obviously, a legal retiming does not change the global behavior of the computational graph G, but both the clock p e r i o d r (G) and the total number of registers S r (G) = P e2E w r (e) are altered.

Several problems can be formulated:

Problem 1 Given a graph G = ( V E d w ) and a maximum allowable clock period c, nd a legal retiming r such t h a t r (G) c.

Problem 2 Given a graph G = ( V E d w ), nd a legal retiming r such that the clock period r (G) of the retimed circuit G r = ( V E d w r ) is as small as possible.

Problem 3 Given a graph G = ( V E d w ) and a maximum allowable clock period c, nd the smallest nonnegative i n teger k such that when adding k registers to each input edge, there exists a legal retiming r such that r (G) c.

Problem 1 is the basic retiming problem, and can be solved in O(jV jjEj) in the most general instance (see 8]). We point out that Problem 1 is sometimes formulated as a register minimization problem: given c, w e ask to determine a legal retiming r such t h a t r (G) c and S r (G) is as small as possible. The complexity of this variant is dominated by the solution of a minimum cost-ow problem, see 8, 10] and the references therein for several bounds.

Problem 2 is a clock minimization problem, and can be solved in O(jV jjEj logjV j) in the most general formulation (see 8]). In fact, it turns out that a way t o s o l v e Problem 2 is to repeatedly solve several instances of Problem 1 using a dichotomic search f o r c. A particular case for Problem 2 supposes that the maximal delay of a node, D = m a x fd(v) v 2 V g, g r o ws subpolynomially with respect to the number of functional elements in the circuit, i.e. that there exists a polynomial function P such that D(G) P (jV j). In this case, the algorithm complexity becomes O(jV jjEj logD)

(see 9]).
Problem 3 is a circuit scheduling problem that can be solved by solving several instances of Problem 1, using a dichotomic search f o r k (upperly bounded by jV j), hence a complexity O(jV jjEj log 2 jV j). When the graph G is a DAG given with no registers at all (S(G) = 0 ) , Problem 3 is a formulation of the pipelining problem. In this particular case, Problem 3 has a complexity reduced to O(jE j logD) ( s e e 9 ]).

Review of related problems

Retiming techniques have been applied to several related problems. Retiming was rst introduced by Leiserson and Saxe, in 7], in order to solve Problem 1 for systolic circuits (unit-delay circuits with at least one register between two functional elements). Their solution, using the Bellman-Ford algorithm, requires O(jE jjV j) t i m e .

Wehn et al. linked high level synthesis and retiming in 3], using the correspondence between \wait until" statements and registers. Using the conditions de ned by Leiserson and Saxe, they stated di erent problems, like As-Soon-As-Possible scheduling or minimization of registers, as linear programming problems. They expressed these problems with various objective functions. However, they did not provide any solution that e ciently solves them.

Some researchers proposed interesting results for simpler problems, like C . P apaeftymiou in 9], who proposed an algorithm which gives the minimum clock period of a circuit with at most l levels of registers, where l is a given value (this problem is the dual of Problem 3). The algorithm runs in O(jE jlogjVj), but the initial circuit has to be empty of registers. Therefore it is only interesting when you need to pipeline a combinational circuit.

In the same idea of optimizing a combinational circuit, Munzer and Hemme proposed in 5]

an algorithm in O(jE j:jVj 2 ) to solve the register minimization problem. From a register-empty circuit, they apply an As-Soon-As-Possible and As-Last-As-Possible register locations, with the constraint of satisfying a given clock period. The two locations determine the parts of the circuit where registers are likely to be moved. Within these parts, they use a maximal ow algorithm to nd the minimal number of registers. Considering sequential circuits, Wei-Jeng Cheng et al. showed the relationship between retiming and loop folding ( 1]). They propose a solution to the Problem 2 using an As-Soon-As-Possible pipeline algorithm. However, they did not really explain the way they moved the registers within the circuit, which is the most important step in terms of complexity.

Finally, Leiserson and Saxe improved their technique [START_REF] Leiserson | Optimizing synchronous systems[END_REF]) and proposed several algorithms to solve Problem 2 by capturing it into a linear-programming problem, the best one running in O(jE jjVjlogjV j). They also have a solution to the register minimization problem in the case of sequential circuits. They express this problem as a minimum cost ow problem, after having augmented the graph representing the circuit with virtual vertices and edges, in order to have a good function of cost. The complexity i s O(jV j 3 logjV j).

New results

All these problems can be particularized to the case where G is a DAG (with a nonzero state for Problem 3). Our main results show that the complexity of the three problems can be signi cantly decreased for DAGs, as stated in the following theorems.

Theorem 1 Given a DAG G = ( V E d w ) and a maximum allowable clock period c, a l e gal retiming r such that r (G) c can be found in O(jE j), if it exists.

Theorem 2 Given a DAG G = ( V E d w ), let D = m a x v2V d(v). A l e gal retiming r such that the clock period r (G) of the retimed c i r cuit G r = ( V E d w r ) is as small as possible can be found in O(jE j(logjV j + log D)). Theorem 3 Given a DAG G = ( V E d w) and a maximum allowable clock period c, l e t D = max v2V d(v). L et k be the smallest nonnegative integer k such that when adding k registers to each input edge, there exists a legal retiming r such that r (G) c. T h e n k (and the corresponding retimed circuit) can be found in O(jE j).

We prove these theorems in the following sections. [START_REF] Biesenack | Scheduling of behavioural VHDL by retiming techniques[END_REF] Clock period minimization for a DAG with unit delay operators In this section we present an algorithm which minimizes the period for a DAG whose operators have all the same delay. Without loss of generality w e l e t d(v) = 1 for all v 2 V nf v from host v to host g. I n subsection 4.1 we propose a lower bound on the period. In Subsection 4.2 we describe an algorithm which a c hieves this lower bound. In subsection 4.3 we prove the correctness of our algorithm and we give its complexity.

Circuit period

Period value Lemma 1 Let G = ( V E d w ) be a D AG. The minimum clock period opt (G) of G satis es to:

opt (G) max fd(v) : v 2 V g (1)
opt (G) max d(P ) w(P ) + 1 : P path of G t(P ) = v from host and h(P ) = v to host (2)

Proof of lemma 1: The rst bound is true by de nition: a path of P of length 0 satis es w(P ) = 0. Let us prove the second bound. Suppose that G has been retimed with respect to the period opt (G). Let P b e a p a t h o f G, from v from host to v to host . d(P ) is equal to the number of vertices in P (except the two extra vertices v from host and v to host ). Therefore, P contains l(P ) = d(P ) + 1 edges and w(P ) registers. Furthermore, between two consecutive registers of P there are at most opt (G) nodes, i.e. opt (G); 1 arcs without registers. For the same reason, between v from host (resp. v to host ) and the rst (resp. last) register, there are at most opt (G) arcs without registers, counting the input (resp. output) edge. Now, let us count the number of edges in P (i.e. the length l(P ) o f P ), counting separately edges with registers and edges between registers. This leads to: l(P ) opt (G) + w(P ) + ( w(P ) ; 1) ( opt (G) ; 1) + opt (G) i.e. l(P ) opt (G) (w(P) + 1 ) + 1 i.e. opt (G) l(P ) ; 1 w(P ) + 1 This proves the lemma since l(P ) and w(P ) are unchanged by retiming.

In Subsection 4.2 we present an algorithm which a c hieves this lower bound, thereby proving the following theorem:

Theorem 4 Let G be a D AG. The minimal period opt (G) of G is: opt (G) = m a x max v2V d(v) max d(P ) w(P ) + 1 : P path of G t(P ) = v from host h (P) = v to host (3)

Period computation

Let us build a graph G 0 , identical to G except that an edge e round : v to host ! v from host is added.

This edge carries a single register: w(e round ) = 1 .

Lemma 2 The value of the minimum cycle mean of G 0 is the inverse of the clock period o f t h e circuit G, i f opt (G) > max v2V d(v).

Proof of lemma 2: The minimum cycle mean of a directed graph is always reached on an elementary cycle.

Let C be an elementary cycle of G 0 . C can be decomposed as e round ,e 1 , : : : , e k . W e consider the path P of G equal to e 1 , : : : , e k . By construction, w(C ) = w(P ) + 1 and d(C ) = d(P ). The mean value on C is then equal to w(P)+1 d(P) . Thus, the cycle mean of an elementary cycle of G 0 is minimal if it is the inverse of the period of a path of G from an input node to an output one.

The period of a graph G can thus be computed in O(jV (G 0 )j jE(G 0 )j log jV (G 0 )j), i.e. O(jV (G)j jE(G)j logjV (G)j), by a dichotomic use of the Bellman-Ford algorithm, as the computation of max v2V d(v) can be done in O(jV (G)j). Note that we can also use Karp's mean weight cycle algorithm (see 6]) on a graph G 00 built from G: i n G 00 , w e collapse the input nodes, we collapse the output nodes, we link these new nodes with an edge with a single register and we cut out the two special nodes. The complexity of this second solution is O(jV (G)j j E (G)j).

We will see in Subsection 4.3 that this pre-computation of the period can be more e ciently replaced by a dichotomic search of the optimal period with the help of our \two pass algorithm".

Two pass Algorithm

The following algorithm operates through two p a s s e s o ver G to determine a legal retiming r such that r (G) T . In the rst pass, all registers are moved as close as possible to the node v from host , with respect to retiming rules: when processing a node, we can add (suppress) the same number of registers on each incoming (outcoming) edge, provided that the weight o n e a c h edge remains nonnegative. In the second pass, all registers are moved as far as possible from the node v from host , with respect to the same rules, and also with respect to the target period T .

Algorithm

Remember that V is the set of vertices of G with non zero in and out-degrees and that the set of all vertices of G is V 0 = V f v from host v to host g.

Consistency test

If T < max v2V n Leave a register case n then if (n = 0) then ERROR endif n n ; 1 (v) d(v) endif 8e 2 E j h(e) = v w(e) w(e) ; n 8e 2 E j t(e) = v w(e) w(e) + n enddo Lemma 3 Let v 2 V be a n o de of G. After the second pass of Algorithm 4.2 (if the ERROR case does not occur), (v) is the largest delay of a path without register that ends at v: (v) = maxfd(P) : P path of G w(P ) = 0 h (P) = vg [START_REF] Biesenack | Scheduling of behavioural VHDL by retiming techniques[END_REF] Proof of lemma 3: The proof is by induction on the length l of the longest path without register that ends at v. If l = 0, there is at least one register on each of the incoming edges of v, i . e . t h e leave a register case occurred during the process of v. T h us (v) = d(v). Now, suppose that the property has been proved for any v alue of l betwe e n 0 a n d l 0 . Let v be a node of G such that l = l 0 + 1 . l 1, then the leave a register case did not occurred and the value (v) w as set by the computation statement. Thus:

(v) = d(v) + max f (t(e)) : e 2 E h (e) = v and w(e) = 0 g Then, because of the induction hypothesis, (v) = d(v) +m a xfmaxfd(P) : P path of G w(P ) = 0 h (P) = t(e)g : e 2 E h (e) = v w(e) = 0 g which is equivalent to equation 4.

We illustrate the execution of the \two-pass algorithm" on an example. The original graph to be retimed is given in Figure 4, and as a period of 6. The graph obtained after the rst pass is shown in Figure 5. Finally, the graph obtained after the second pass is shown in Figure 6. 

Proof and Complexity

Proof of the correctness of the algorithm Theorem 5 Let M = m a x n max v2V d(v) max n d(P) w(P)+1 : P path of G t(P ) = v from host h (P) = v to host oo . If the tested p eriod T is greater than or equal to M then the \two-pass algorithm" on G succeeds to nd a new register distribution with period l e s s t h a n o r e qual to T .

Before establishing the proof of this theorem, we demonstrate two lemmas.

Lemma 4 Let v be a n o de of G, v 6 = v from host . We suppose T max v2V d(v). Then, after the rst pass of algorithm 4.2, there i s a p ath without any register from v to v to host .

Proof of lemma 4: Each n o d e v 2 V is processed by the rst pass of algorithm 4.2. Registers are moved so that at least one of its outcoming edges has no register. To build recursively the path announced in the lemma, choose one of these edges as the rst edge of the path and do the same operation on the edge head. Lemma 5 Let v 2 V . W e s u p p ose that no ERROR occurred b efore or during the process of v by the second pass of algorithm 4.2. Then after this second pass, there i s a p ath from an input node to v which begins by repeating several times the pattern T ; 1 edges without any register followed by an edge with a single register, plus (v) ; 1 edges with no register. Proof of lemma 5: We prove the property b y induction, considering all v 2 V in the same order as processed by the second pass.

1 2 2 1 1 3 1 1 1 2 1 1 2 1 1 2 v from_host v to_host
Obviously, this is true for any input node v: a v oid pattern plus (v) ; 1 = 1 ; 1 = 0 edge. Now, let v 2 V be a vertex of G which is not an input node and suppose that lemma 5 holds for all vertices processed before v. Consider the situation during the process of v and just after the computation statement: Let e 1 be an edge such that, at this step of the algorithm, w(e 1 ) = n, h(e 1 ) = v, a n d ( v) = d(v) + ( t(e 1 )). Let v 1 = t(e 1 ). Since v 1 has already been processed, by induction hypothesis, there is a path P 1 from an input node to v 1 consisting of T ; 1 edges with no register followed by an edge with a single register (this pattern being repeated say r times -actually r = w(P 1 )-), plus (v 1 ) ; 1 edges with no register.

We h a ve n o w to consider two cases, depending whether the leave a register case occurs or not, i.e. whether (v) > T or not.

Case (v) T : In this case, n and (v) are not modi ed and n registers are moved to the outcoming edges of v. Therefore the weight o f e 1 is modi ed to 0. Now, by adding e 1 to P 1 , we get a path from an input node to v with the desired pattern repeated r times, followed by (v 1 ) + 1 ; 1 = ( v) ; 1 edges with no register. Case (v) > T (Leave a register case): Since (v) > T , ( v 1 ) = T . n is changed to n ;1 a n d (v) t o d(v) = 1. One register is left on edge e 1 . Therefore, by adding e 1 to P 1 , w e get a path from an input node to v with the desired pattern repeated r times, plus (v 1 ) ; 1 = T ; 1 edges without registers, plus one edge with a single register, i.e. r + 1 times the desired pattern, followed by ( v) ; 1 = 0 e d g e .

Proof of theorem 5: To p r o ve theorem 5 we m ust prove rst that the ERROR case cannot occur. Then we show that the register distribution satis es the period T .

As T is greater than or equal to M , T is greater than max v2V d(v).

The rst pass always ends correctly. Let us suppose that the second pass does not end correctly, i.e. that the ERROR case occurs during the treatment of a node v. This means that there exists a node v 1 such that (v 1 ) = T and an edge e from v 1 to v which carries no register. v 1 was treated by the second pass, we conclude from lemma 5 that there exists a path P 1 from an input node to v 1 which is composed by w(P 1 ) times the motif T ; 1 edges without any register followed by a n edge with a single register, plus T ; 1 edges without any register.

The vertex v was treated by the rst pass but not by the second pass, thus the result of lemma 4 is still valid (none of the successors of v have been touched since the rst pass). Thus there exists a p a t h P 2 from v to v to host which carries no register. l(P 2 ) 1 since v 6 = v to host . Now, we build a path P from v from host to v to host as the concatenation of an input edge, P 1 , e, and P 2 . w(P ) = w(P 1 ) a n d l(P ) = 1 + l(P 1 ) + 1 + l(P 2 ) = 1 + ( w(P 1 ) T + T ;1) + 1 + l(P 2 ). Now, replacing w(P 1 ) b y w(P ), and l(P ) b y d(P ) + 1 g i v es T d(P ) ; 1 w(P ) + 1 which c o n tradicts the fact that:

T M d(P ) w(P ) + 1 (see lemma 1).

We h a ve t h us proved that the second pass ends without the ERROR case. We just have t o check that the period of G is now smaller than T .

For all v 2 V , either the leave a register case does not occur (and

(v) T ) o r ( v) = d(v) T .
Furthermore, by lemma 3, (v) is the largest delay of a path with no register that ends at v. Therefore, the period of G is one of the (v) and is smaller or equal to T .

Corollary 1 Theorem 4. Proof: Theorem 5 gives an upper bound on opt which is exactly the lower bound of lemma 1.

Complexity

The topological sort on G can be done in O(jE j + jV j) = O(jE j) (recall that G is connected). The rst and second passes of the algorithm process all nodes of G once. For each node, all its input and output edges are processed. The complexity of these passes is therefore O(jE j). The complexity o f the two-pass algorithm alone is then O(jE j).

If we try to determine the minimal possible clock, we c a n u s e a d i c hotomic search. Indeed, as each n o d e v has unit delay d(v) = 1, opt (G) is upperly bounded by jV j. T h us we can use the \two pass algorithm" for a dichotomic search o f opt (G) in the range 1 jV j]: for each t e s t e d v alue we try to process G by the \two-pass algorithm", if the process succeeds then opt (G) is smaller than or equal to the tested value, else opt (G) is strictly greater. The complexity of this dichotomic search is therefore O(jE j logjV j) a s opt (G) is upperly bounded by jV j. T h us, pre-computing opt (G) i s less e cient than this strategy.

Clock period minimization for a DAG with operators of any delay

Let G = ( V E d w ) b e a D AG. In this section the function d : V ! N is no longer constant.

However, we still consider that d(v to host ) = d(v fromhost ) = 0 in all cases.

Some bounds on opt

Let D = max v2V d(v) be the largest operator delay and min v2V d(v) the smallest one. Let G 0 be a graph obtained by replacing d with d 0 : v 2 V 7 ! min v2V d(v) and compute the minimum clock period (G 0 ) (as in 4) for this graph. Similarly, l e t G 00 be a graph obtained by replacing d with d 00 : v 2 V 7 ! max v2V d(v) and let (G 00 ) be its period. So we h a ve:

(G 0 ) opt (G) (G 00 ) Furthermore we h a ve t h e o b vious following bounds:

max v2V d(v) opt (G) (G) Then: max( (G 0 ) max v2V d(v)) opt (G) min( (G 00 ) (G))
5.2 From a register distribution w and a clock period T Theorem 6 Let G = ( V E d w ) be a D AG, and let T test be an integer. If there exists a register distribution w r on G whose clock period is less than or equal to T test then the \two-pass algorithm" called with T set to T test succeeds to nd such a register distribution.

Remark: If there exists a register distribution w r on G whose clock period is less than or equal to T test , then T test is certainly greater than max v2V d(v). This property will implicitly be used in the rest of this section.

To establish the proof of this theorem, we need to prove rst the two lemmas below.

Lemma 6 Let G = ( V E d w ) be a line graph, G : v 0 e0 ;! : : : ei;1 ;! v i ei ;! : : : ek;1 ;! v k . I f G = (V E d w ) admits at least one valid register distribution whose clock period is less than or equal to T test , then the \two-pass algorithm" succeeds to nd one.

Proof: Let w 0 be any register distribution on G whose clock period is less than or equal to T test . When applying the \two-pass algorithm" on (V E d w 0 ) with the period T set to T test , w e obtain a new register distribution w 00 . A s G is a line graph, a retiming does not change the total amount, n, of registers of G. L e t i 1 : : : i n (resp. j 1 : : : j n ) be the indices of the edges of G = ( V E d w 0 ) (resp. G = ( V E d w 00 )) which carry the n registers.

We prove b y induction on l that j l i l , for all l 2 f 1 : : : n g. This is true for l = 1: indeed, i 1 (resp. j 1 is the position of the register which is the closest to v 0 in G = ( V E d w 0 ) ( r e s p . G = ( V E d w 00 )). By de nition of the \two-pass algorithm", this register is as far as possible from v 0 in G = ( V E d w 00 ). Therefore, j 1 i 1 . Actually, j 1 is de ned by: j1

X m=0 d(v m ) T test < j1 X m=0 d(v m ) + d(v jl+1
) Now, we suppose that j 0 i 0 , : : : , j l i l and we prove that j l+1 i l+1 . By de nition of the \two-pass algorithm", j l+1 indicates at which v ertex the leave a register case occurred for the (l + 1)-th register. We t h us have:

jl+1 X m=1+jl d(v m ) T test < d (v 1+jl+1 ) + jl+1 X m=1+jl d(v m )
To s h o w that j l+1 i l+1 , w e just have t o p r o ve that P il+1 m=1+jl d(v m ) T test . But: P il+1 m=1+jl d(v m ) P il+1 m=1+il d(v m ) (since j l i l by induction hypothesis) and P il+1 m=1+il d(v m ) T test as G = ( V E d w 0 ) has a register of clock period smaller than or equal to T test by h ypothesis.

We build for u the path P u de ned in lemma 7.

There is a path P 0 with no register from v to v to host as stated in lemma 4. Let P be the concatenation of P u , e, and P 0 . By construction w(P ) is equal to w(P u ). By de nition of P u (see lemma 7) no register of the line graph P u can be moved further from v from host , and there is no register on e + P 0 . T h us, the \two-pass algorithm" is not able to nd a register distribution valid for T test on the line graph P . This means that such a register distribution does not exist (see lemma 6).

However, this contradicts the fact that there exists a retiming r on the whole graph G with clock period less than or equal to T test (theorem hypothesis). Indeed, the restriction of r to the vertices of P (path from v from host to v to host ) gives a distribution of the w(P ) registers of P considered as a line graph, with clock period less than or equal to the clock p e r i o d o f G. 

Algorithm and complexity Algorithm

The algorithm below nds the minimum achievable period for a DAG a n d a v alid retiming for this period. This algorithm uses the \two-pass algorithm" as a kernel in a dichotomic search of the minimum clock period: if there exists a valid retiming for the tested period value c then the \two-pass algorithm" succeeds to nd one, else it fails, and in both cases the set of possible period values is re ned. G r is the resulting graph (G r = ( V E d w r )). [START_REF] Unzer | Converting combinational circuits into pipelined data paths[END_REF] Clock period minimization for a DAG with operators of nonuniform delay

During the conception of a circuit, the designer knows the di erent t ypes of operators that he will use, independently of the technology on which the design will be implemented. Symbolic operator delays are available, which could be seen as worst case delays.

Once the design technology has been chosen, more accurate delays are available. An operator delay is no longer symbolic: in fact, there is a delay for each i n ternal path (or internal edge) between an input and an output. Usually, the delay o f a n i n ternal edge e i is equal to d(e i ) = ei + ei f ei where ei is the intrinsic delay, ei is the extrinsic delay (depending on the output capacitance) and f ei is the output fanout.

This section aims at giving a new form of the two-pass algorithm taking into account this more accurate delay model.

Some De nitions

Let G = ( V E d w ) b e a D AG. In this section we consider vertices in which the delays through individual elements are non-uniform. Let I (v) a n d O(v) be the inputs and outputs of v. F or each pair (i o) 2 I (v) O(v) o f v ertex v, w e c a l l d v (i o) the delay from input i to output o of vertex v. W e shall now consider the tail t(e) of edge e as the pair (v o ), e coming out of node v from output o. In the same way, the head becomes the pair (i v), where i is an input of node v. A s i n the previous sections, we a d d t wo new vertices v from host and v to host with a single output (resp. input). In the two-pass algorithm, we will need to compute a new value called out . 

(v) = max s2O(v) out (v s ) if ( (v) > T ) then if ( n = 0 ) then ERROR endif n n ; 1 8o 2 O(v) out (v o ) = max i2I(v) d v (i o) (v) = m a x o2O(v) out (v o )
endif 8e 2 E j t(e) = v w(e) w(e) ; n 8e 2 E j h(e) = v w(e) w(e) + n enddo

We denote by o v m and i v m one of the output and input for which ( v) i s r e a c hed ( (v) = d v (i v m o v m ) + out (t(e)) where e 2 E h (e) = ( i v m v ) w (e) = n).

Equivalence with the previous case

We will prove that theorem 6, Lemma 6 and Lemma 7 still apply to our new graph model and to our new two pass algorithm.

De nition of nwp(v): out (v o ) can be considered as the arrival time of a signal s on the output o of vertex v. That is, the longest time it will take to the signal coming out from a register to arrive on the output o of vertex v. It means that there is a null weight path, that we w i l l c a l l nwp(v), ending at v and of delay out (v o ).

De nition of pr(v): If every incoming edge of v has at least one register, it means that the rst computation of (v), during the second pass, was greater than T (in such a c a s e , nwp(v) has only one vertexv -since a register has been left):

9o v m 2 O(v) : ( v) = out (v o v m ) > T
(we consider here the rst computation of out ). Besides We denote by ( pr(v) o 0 ) the tail of edge e and we call pr(v) the \predecessor of v" . W e then can simplify the previous inequality:

(v) = d v (i v m o v m ) + out (pr(v) o 0 ) > T
Remark that, after the second pass, there is exactly one register on the edge between v and its predecessor pr(v). If registers had been pushed from the inputs to the outputs, it would have revealed a null weight path P such that d(P ) = ( v) > T . The last vertex of P would have been v, and the pen-ultimate one would have b e e n pr(v).

As Lemma 6 only deals with line-graphs, "internal edges" have no meaning as there is only one input and one output. Thus, Lemma 6 still can be applied to our new two-pass algorithm.

New proof of lemma 7: We shall now construct a path P as a list of null weight paths (P i ), the head of a \sub-path" being the predecessor of the tail of the next \sub-path": P = ( P n = nwp(pr(t(P n;1 ))) P n;1 = nwp(pr(t(P n;2 ))) : : : P 1 = nwp(pr(t(P 0 ))) P 0 = nwp(v))

Every P i i s a n ull weight path, by de nition of nwp. P 0 = nwp(v) is the longest null weight p a t h ending at v. Let us call its tail v 0 t . Let us now call v 1 h the predecessor of v 0 t . P 1 is then the longest null weight path ending at v 1 h . W e construct the rest of P by induction, until we nd v from host as a path tail.

There is exactly one register between the path tails and their predecessor, as, by de nition of out , the edge between the two v ertices was of minimal weight.

Assume now that r 1 is a register of P carried by the edge v 1 e ;! v 2 . v 2 is a tail of one of the null weight path P i . v 1 is its predecessor (pr(v 2 )). By de nition of the predecessor, we h a ve (v 2 ) = d v2 (i v2 m o v2 m ) + out (v 1 o 0 ) > T As (v 1 ) out (v 1 o 0 ), we can conclude that (v 1 ) > T ; d v2 (i v2 m o v2 m ) which s h o ws that if r 1 was pushed further from the tail of P , i t w ould reveal a null weight path, ending at v2, of delay ( v 1 ) + d v2 (i v2 m o v2 m ) > T .

Finally, the proof of theorem 6 can be directly applied to our new graph model.

Algorithm and complexity

In conclusion, the two-pass algorithm can be generalized to our new delay model, conditionally to the described modi cation in the computation of . The complexity remains the same.

Conclusion

We h a ve dealt with various instances of the retiming problem. Our initial motivation was dictated by our target application: on-line computer arithmetic circuits are naturally pipelined circuits without cycles, hence the search for more e cient retiming algorithms applicable to DAGs. We h a ve succeeded in improving the known complexity of clock minimization problems. Further work could be aimed at improving the complexity of the register minimization problem. It is not clear that a more e cient solution can be found for DAGs than for arbitrary graphs with cycles. However, computer arithmetic circuits usually involve regular computational elements, and this characteristic may prove helpful. For instance, the \Borrow S a ve" adder of Figure 1 only involves identical devices of input degree 3 and output degree 2. Thus, in this case, our two-pass algorithm also minimizes the total register number, as registers are pushed, in the second pass, from inputs to outputs.

Finally, there remain many i n teresting open problems in the area. For instance, computational devices are usually selected from a cell library, and we c a n h a ve the freedom to select, say, among several adders with di erent d e l a ys and input/output degrees. For example, if a \Borrow S a ve" adder has a very interesting delay, it is due to the redundant n umber representation used, which means twice more registers to memorize a number. This could be yet another parameter of the fundamental design optimization problem to be solved: match a c l o c k period constraint while minimizing the total register number.
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 2 Figure 2: A latency-2 borrow-save serial adder, working most signi cant digit rst. The square cells are registers.
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 3 Figure 3: Adding and moving registers to decrease the period.
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 45 Figure 4: Initial register distribution with a period equal to 6.
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 6 Figure 6: Resulting distribution after the second pass of the algorithm, when operators have same unit delay. T = opt (G) = 4 .
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  min e2Ejh(e)=v w(e) (v) d(v) + max f (t(e)) : e 2 E h (e) = v and w(e) = ng
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 7 Figure 7: Initial register distribution.
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 8 Figure 8: Resulting distribution after the rst pass of the algorithm. Operators have di erent delays.

  out (v o v m ) = d v (i v m o v m ) + out (t(e)) with e 2 E h (e) = ( i v m v ) w (e) = n
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Now, it remains to show that after e jn , the ERROR case can not occur. Indeed, if the process of G = ( V E d w ) b y the \two-pass algorithm" fails, we h a ve P k m=jn d(v m ) > T test , but since j n i n , w e also have P k m=in d(v m ) > T test and the register distribution w 0 does not have a c l o c k period smaller than or equal to T test , which c o n tradicts the hypothesis. Thus, the processing of G = ( V E d w ) b y t h e \ t wo-pass algorithm" succeeds. Lemma 7 Let G = ( V E d w) be a D AG, and let T test be an integer. Process G = ( V E d w ) by the \two-pass algorithm" with the period T set to T test . Then, for any node v of V which has been successfully processed b y t h e s e cond pass of the algorithm, there exists a path P starting from v from host , ending at v and satisfying the following properties:

The weight of every edge of P is equal to zero o r o n e .

if r 1 is a register of P , i n P alone considered a s a l i n e g r aph, this register cannot be pushed further from the input nodes without violating the period ( v a l u e ) T test .

Proof of lemma 7: P is built from the head to the tail by induction: if v is the current t a i l of P and if v is not an input vertex, we c hoose the predecessor u of v and the edge e from u to v such that:

w(e) = min f2E fw(f) : 9 x f ;! vg and (u

Then w(e) is equal to 0 or 1, as the number of registers removed from the incoming edges of a v ertex is equal to the minimal number of registers on these edges or is equal to this minimal number of register minus 1.

We prove n o w that on P considered as a line graph a register cannot be moved further from the input node.

Let r be a register of P , and let e be the edge that carries r. Let respectively u and v be the tail and head of e: u e ;! v. w(e) = 1 t h us, by de nition of e (see equation 5), every incoming edge of v carries a register. Thus, as by h ypothesis the node v has been successfully processed by the second pass of the algorithm, there was during the process of v at least one predecessor u 0 of v linked to v by an edge e 0 such that w(e 0 ) w as minimal among the input edges of v and such that (u 0 ) T test ; d(v) + 1 (conditions of occurrence of the leave a register case in algorithm 4.2).

Then, by de nition of u (see equation 5), (u) (u 0 ) T test ;d(v) + 1 and the register r cannot be pushed further from the input node of P without violating the period T test .

Remark: The result of lemma 7 can be applied to any n o d e o f G which had successfully been processed by the second pass even if the whole processing of G failed.

Proof of theorem 6: If the \two-pass algorithm" ends correctly, i.e. if the ERROR case does not occur, then the register distribution found satis es the period T test : for each n o d e v of G, (v) T = T test and then lemma 3 allows us to conclude that the register distribution satis es T test .

We suppose now that the ERROR case occurred during the process of G. As there exists a register distribution valid for T test , T test is greater than or equal to max v2V d(v). Thus, the ERROR case occurred during the process of a node v: there is in G a n o d e u and an edge e such that: if the \two-pass algorithm" succeeds with T = t then t max (G r ) else t min t + 1

We illustrate the execution of the algorithm on an example. The original graph to be retimed is given in Figure 7. We assume that the optimal period opt (G) = 18 has been found and we apply the two passes. The graph obtained after the rst pass is shown in Figure 8. Finally, Figure 9 represents the graph obtained after the second pass of our algorithm.

Complexity

The complexity of the \two-pass algorithm" is O(jE j), thus the complexity of this algorithm is O(jE j(logjV j + l o g D)), where D = m a x v2V d(v)): indeed, opt (G) is upperly bounded by jV jD.

The stated complexities of the \two-pass algorithm" and of the \general algorithm" directly prove Theorem 1 and Theorem 2. As for Theorem 3, we use a dichotomic search f o r k, using the \two-pass algorithm" once for each instantiation. The value of k is clearly upperly bounded by the diameter of G, hence by jV j (note that we could slightly re ne the given complexity using the diameter). This would lead to a complexity o f O(jE j logjV j) f o r Problem 3. H o wever, a much better solution is to add jV j registers to each input edge, and run the \two-pass algorithm" once. At the end of the second pass, simply suppress the useless registers left on the output edges. Let k 0 be the minimum number of useless registers on the output edges. Then k = jV j ; k 0 is the desired value and the process we described gives the retimed circuit. Then, the complexity of the algorithm is reduced to O(jE j).