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Knowledge Extraction From Neural Networks � A Survey

R� Baron

March ����

Abstract

Arti�cial neural networks may learn to solve arbitrary complex problems� But knowl�
edge acquired is hard to exhibit� Thus neural networks appear as �black boxes�� the
decisions of which can�t be explained� In this survey� di�erent techniques for knowledge
extraction from neural networks are presented� Early works have shown the interest of
the study of internal representations� but these studies were domain speci�c� Thus� au�
thors tried to extract a more general form of knowledge� like rules of an expert system�
In a more restricted �eld� it is also possible to extract automata from neural networks�
likely to recognize a formal language� Finally� numerical information may be obtained
in process modelling� and this may be of interest in industrial applications�

Keywords� Arti�cial neural networks� knowledge extraction� expert systems

R�esum�e

Les r�eseaux de neurones arti�ciels peuvent apprendre 	a r�esoudre des probl	emes com�
plexes� Mais les connaissances qu�ils peuvent acqu�erir sont di
cilement utilisables�
Aussi apparaissent�ils comme des �bo��tes noires� dont les d�ecisions ne peuvent �etre
expliqu�ees� Dans ce rapport� plusieurs techniques permettant l�extraction de connais�
sances sont pr�esent�ees� Les premiers travaux dans ce domaine ont montr�e l�inter�et de
l��etude des repr�esentations internes� mais ces travaux sont tr	es d�ependants du domaine
d��etude� Aussi� certains auteurs ont essay�e d�extraire des connaissances sous une forme
plus g�en�erale� comme des r	egles d�un syst	eme expert� Dans un autre domaine� il est
�egalement possible d�extraire� 	a partir de r�eseaux de neurones� des automates recon�
naissant un langage formel� En�n� des informations d�ordre num�erique peuvent �etre
obtenues dans la mod�elisation des syst	emes� ce qui peut pr�esenter un inter�et pour des
applications industrielles�

Mots�cl�es� R�eseaux de neurones arti�ciels� extraction de connaissances� syst	emes experts
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� Introduction

Multilayer feedforward networks are universal approximators 
HSW���� Thus� they may be used
to realize a mapping between an input and an output� Several works have been done which use
arti�cial neural networks in real world applications� But one of their main drawbacks lies in the fact
that they appear as �black�boxes�� They are unable to explain their decisions� that is� how a given
output is associated to a given input� which is a drawback for real world applications� Moreover�
since learning algorithms modify cells in the hidden layer� this may constitute interesting internal
representations�

For these two reasons� a few authors studied internal representations� and tried to extract
knowledge from arti�cial neural networks� In this study� we will show di�erent ways which have
been used� The �rst section describes the �rst works which showed the interest of studying internal
representations built during the learning phase� The second section presents di�erent ways for
extracting rules from neural networks� which is the kind of knowledge used in traditional Arti�cial
Intelligence expert systems� In the third section� we describe works about the extraction of Finite
State Automata� that recognize regular languages� Finally� in the fourth section� we present works
on sensitivity analysis� which is a way of extracting information about the function implemented
by a neural network�

� Study of Internal Representation

Research which focused on internal representations in arti�cial neural networks began with the �rst
multilayer perceptrons� For that kind of architecture� weights in the hidden layers are modi�ed
during the learning phase to comply with the data to be learned� Thus a speci�c internal represen�
tation is built� which depends on the problem to be solved� It was assumed that this representation
may be interesting� it is a kind of knowledge� acquired by the neural network� Moreover� acquiring
knowledge on real word applications can still be a di
cult task for human experts� when faced
with a great amount of data� This is especially true for knowledge engineers who are supposed to
extract knowledge from human beings�
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��� Interest of Internal Representations

Rumelhart et al� 
RHW��� �rst took interest in the study of internal representations while devel�
oping the back�propagation algorithm� In their paper� they use a multilayer feedforward network
to store family ties between persons of a same family� The neural network stores the ties for two
families� an English one and an Italian one� The two family trees are isomorphic ��g� ��� The
network learns relations by learning triples of the form � person� �� relation �� person� ��
The relations are learned once the neural network can �nd the third argument when given the �rst
two�

Christopher � Penelope

Margaret � Arthur

Colin Charlotte

Jennifer � Charles

Andrew � Christine

Pierro � Francesca

Lucia � Marco Angela � Tomaso

Alfonso Sophia

Roberto � Maria

Gina � Emilio

Victoria � James

Figure �� Two isomorphic family trees

The network architecture is composed of one input layer� three hidden layers� and one output
layer ��g� ��� The input layer is divided in two parts� �� cells represent the �rst person� �� cells
represent the relation� The output layer is composed of �� cells representing the second person�
The learning phase uses the backpropagation algorithm� with ��� relations as training examples�

Output layer

Layer �

Layer �

Layer �

Input layer Relation � �� neurons

� neurons � neurons

�� neurons

� neurons

Person � � �� neurons

Person � � �� neurons

Figure �� Neural network for storing family ties

Then� the authors analyse the weights between the input layer coding the person and the �rst
hidden layer� This analysis shows that it is possible to extract semantic information from the neural
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network� For example� the �rst hidden cell can be interpreted as representing the nationality of
the input person� the weights connecting this cell to two input cells coding two persons at the
same place in the both trees are opposite� In the same way� the second hidden unit encodes the
generation� and the sixth encodes the branch of the family�

��� Learning Signal Characteristics

The same kind of observations have been made by Gorman � Sejnowski 
GS���� in a very di�erent
�eld� They use a neural network for classifying sonar returns from metal cylinder and cylindrically
shaped rock ��g� ��� After preprocessing� the spectral envelope of the signal gives the power
spectral density for each frequency� This constitutes the input signal for the neural network�

����	 Cylinder

Input layer

Output layer

����	 Rock

Figure �� Neural network architecture for sonar signal

This network is composed of �� input units� several hidden units� and two output units coding
the class of the input signal� The backpropagation algorithm is used during the learning phase�
with several numbers of hidden cells� A network with three hidden cells is �nally chosen because
of its performance � ��� � correct classi�cation on the training set and ���� � on the test set�

One of the purposes of this work is to study the internal representation of the neural network�
and its link with the ability to classify correctly� This study is made through the observation of the
weight state vector� which is the product of the input vector by the weights connecting the input
to an hidden unit �See �gure ���

It shows that the weights at the extremes of the input layer �corresponding to higher and lower
frequencies� are inhibitory� Thus they turn o� the hidden units for wide band signals� Moreover
there are alternating bands of positive and negative weights� If the onset or the decay of the signal
is gradual� positive and negative values cancel one another� thus shutting down hidden units� If
the decay rating is rapid� the activation is not balanced and results in a positive response� For
wide band signals� corresponding to cylinder returns� hidden units are poorly activated� while they
respond to narrow band signals� corresponding to rock returns� If no hidden unit is activated� the
bias drives the output layer to code for a cylinder� A weak response from any of the hidden units
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Weights

Input layer

Input signal

Weight State Vector

Figure �� A weight�state vector� White and black rectangles represent positive and negative weights�
respectively� The area of a rectangle is proportional to the absolute value of the weight�

is su
cient to code for a rock�
Notice that hidden units are tuned to various central frequencies� such that the network can

recognize signals centered on di�erent peak frequencies� Even wide band rock signals are recognized�
though they do not conform to general descriptions� This correct classi�cation is achieved by coding
for the precise location of peaks and nulls in the signal by positive and negative weights between
input and hidden layers� Thus internal representation built by the neural network is a kind of �lter
adapted to di�erent features during learning� But� according to the authors� this kind of pattern
coding is more suggestive of a model based approach rather than simple feature extraction�

��� Extracting Semantic Information in Bridge Game

In the same way of studying internal representations� Bochereau � Bourgine 
BB��� take interest
in a neural network which learns to play bridge game� Precisely� given a �hand� of playing cards�
the network is supposed to give the corresponding �rst call� It is composed of an input layer of
�� units� representing the cards� a hidden layer� and an output layer of �� units� corresponding to
the call to be made ��g� ��� After the learning phase� using the backpropagation algorithm� the
authors found that the best results were obtained with � hidden units�

It also appears that these units get �specialized�� First� four of these units are speci�cally
adapted to each color � for each one� the weights connecting it to cells of the input layer of one color
are stronger �for example the second hidden unit is strongly connected to input cells representing
cards of the diamond color�� Second� the authors distinguish two kinds of hidden units� �hard
neurons� and �soft neurons�� For hard neurons� the majority of the input values lies in the interval

������� For soft neurons� the majority of the input values lies outside this interval �See �gures �
and ���

This remark allows the authors to extract semantic information from the neural network� after
a few manipulations on the weights� First� weights are clustered � weights which have nearly
equivalent values are replaced by their average value� If the output of a neuron j is given by the
equation sj � f�w��

P
j wij �xj�� it will be replaced by sj � f�w��

P
k wik �

P
jk
xjk� �f is a standard

sigmoidal function� xjk is the output of neuron j� which belongs to kth cluster of cells�� Second�
if xjk is the output of a hard neuron� as is the case for output neurons� xjk may have two possible
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Queen
Jack

Pass

� Clubs
� Diamond

� No Trumps

Output layer � call

Figure �� A neural network for playing bridge

values� � or �� If a cell has to be activated at the value s� the relation f�w��
P

k wik �
P

jk
xjk� � s

must be veri�ed� which gives
P

k wik �
P

jk
xjk � f���s�� w�� Because xjk may have two values� a

simple algorithm can be used to enumerate all sets fxjkg satisfying the relation�
Using these two heuristics� the authors extract semantic information from the neural network �See
table ��� For example� the input from the �rst hidden unit is linearly dependent on the number of
points in a hand �see table ��� and the other hidden cells count the number of cards in each color�
There are relations between inputs of the hidden cells� and consequently between their output
values� By constraint propagation� authors can thus extract rules concerning the �rst call to be
compared with rules for an expert system�

Neuron Type Interpretation of input Condition �Treshold � ����

N� Soft ���� � PH � ��� PH � ��

N� Hard �� � PH � ��� �NK NK � ���� � PH

Table �� Example of information extracted at a threshold of ���� PH stands for the number of
points in a hand� and NK the number of kings�

These experiments show the interest of the study of internal representations of neural networks
which solve a speci�c problem� It also appeared that extracting knowledge may be possible� as
in the example of the bridge game� But no general solution is provided for extracting knowledge�
Extracted knowledge is domain speci�c� It would thus be of interest to have some general method
of extraction� available for di�erent problems� One way would be to extract rules from neural
networks� in order to build Expert Systems�

� Rules Extraction

One advantage of expert systems is that they provide a general way of working out a problem�
A knowledge base may be built for each domain� but the inference mechanism� which uses these
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Figure �� Output of a soft neuron� as a function of its input value� Each diamond corresponds to
one value of the output when one input is presented to the neural network�

knowledge� remains the same� It is usually admitted that the most di
cult task is the knowledge
base construction� which is entirely domain speci�c� Knowledge engineers encounter problems
when acquiring knowledge from human experts� for both technical and psychological reasons� Thus�
authors try to ease the knowledge�acquisition bottleneck� especially with the help of a connectionist
model�

Gallant 
Gal��� uses a neural network as a connectionist expert system in medical diagnosis�
This network is a three�layer network� Cells in the input� hidden and output layers respectively
represent symptoms� diseases and treatments� There are connections between each successive layer
and between input and output layers� A few cells are added for increasing the discriminating
capacity of the network� The output of the cells are three�valued � ��� �� and � corresponding
respectively to logical values True� False and Unknown� The learning phase is performed using
Pocket Algorithm 
Gal���� Then� inferencing can be made given several input values � it is possible
to deduce the activation for a cell ui without knowing the values of all its inputs� Let uj be the
inputs to cell i� then� if

X
j�ujknown

wij � uj �
X

j�ujunknown

jwijj

then the conclusion is as follows�

ui �

�
�� if

P
j�uj knownwij � uj � �

�� if
P

j�uj knownwij � uj � �

Backward chaining is also possible� It allows the network to ask for unknown values by ques�
tioning the user� The values to be asked for are selected using a heuristic� One interesting point
is that the system can partly �explain� its decision� by producing if�then rules when a cell has a
known value� For example� if u� has the value ���

�� List all units which contribute to positivity
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Figure �� Output of a hard neuron� as a function of its input value

�� Arrange the list by decreasing order of weights

�� Generate if�then rules until f
P

ui used in clause jwijg � f
P

ui unused jwijg

This produces rules as follows �

IF u� is False

and u� is True

THEN Conclude that u� is True

In Gallant�s article� this method is used to induce rules in medical diagnosis domain� These
rules were judged �reasonable� by doctors� Other systems have been built in di�erent domains�
such as management decision� but no other results are reported� According to the author� the
connectionist expert system described may be used as a tool for knowledge engineers� not as a
replacement� a lot of rules can be extracted� but they are not always pertinent� Thus� the rule
base may not be of interest for human experts� In fact� such a technique is supposed to make the
knowledge base construction easier� and would be of use in �elds requiring great amount of rules�

A non real world problem was treated in the Connectionist Scientist Game 
MMS���� It deals
with rules that map strings of symbols� The rules are composed of a condition part and an action

part� The condition is a feature or a combination of features to be satis�ed� The action part
describes the mapping to be performed on the input string� Three types of conditions are allowed �

� presence of a symbol s at a speci�c place �or slot�

� a conjunction of two conditions ���

� a disjunction of two conditions ���

�



For example� the rule 
�A G � ��B� concerns the strings with a symbol A at the �rst place�
and a symbol G at the third one� If the rule is applied� the action part is used� Numbers in the
action part denote the place of the symbol of the input string� The � at the �rst slot of ��B�
indicates that the �rst symbol of the output string is the third of the input string �i�e� a G�� and
the � at the second slot indicates that the second symbol of the output string is the second of the
input string� Finally� B is a constant symbol of the output string� Using this rule� the string AEG
would be replaced by GEB�

In the article� strings have a length of n � � symbols� and the alphabet is composed of �
symbols� fA�B�����Hg� The input layer of the neural network� called Rule Net� codes the input
string � it is made of n bit�strings of length k� In these bit�strings� one bit is �� indicating which
symbol of the alphabet is present� while the others are �� The output layer uses the same code�
Two subnets are between these layers� the condition subnet� and the action subnet�

Output

Input

m condition units

Figure �� The RuleNet architecture

In the condition subnet� the net input to each condition unit i is computed

neti �
�

� � e�c
T

i
�x

where x is the input vector and ci is the incoming weight to condition unit i� The activity pi
is then determined by normalization�

pi �
netiP
j netj

The action subnet is composed of m weight matrices Ai� A set of multiplicative connections
between each condition unit i and Ai determines to what extent Ai will contribute to the output
vector y� calculated as follows�

y �
mX
i��

piAix

Ideally� only one condition unit is fully activated by a given input� Weights are adapted using
the backpropagation algorithm� with constraints on ci and Ai to keep a valid semantic� Only one
bit of ci can be active in bit substrings of length k� Ai is formed of k� k submatrices� which must
be either the identity or the zero matrix� During the learning phase� ci and Ai are modi�ed using
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a process called projection� which ensures that the network can be interpreted as a set of symbolic
rules�

Simulations compare results obtained with di�erent learning techniques� depending on whether
the projection process is used or not� and on the number of rules in the rule base� The performance
takes into account the percentage of patterns which are correctly classi�ed� and the number of valid
rules extracted� It shows that the use of the projection process gives the better results� The number
of rules extracted is exactly the same as this of the rule base used to generate the strings� Compared
with a multilayer network with �� hidden units� Rule Net has better generalization results�

Another way of extracting knowledge has been developed by Sa �to � Nakano 
SN��� called the
RN Method� It deals with rules of the form u� 	 
��� ��� � u� 	 
��� ��� � � �� The idea of the algorithm
described below is to grow a region containing a training example correctly classi�ed as ��� by
changing one dimension at a time� until the region bumps into a ��!�� network boundary for the
dimension� Then� the algorithm considers the hyperrectangle which has been built� and substracts
out misclassi�ed negative examples by the same method �see �gure ���

Negative Example

Positive exampleRule �

Rule �

Figure �� Example of rule generated by the RN Algorithm for a ��D problem� Positive examples
are picked in the triangle� Rectangles indicate domains generated by extracted rules�

RN Algorithm� Given a neural network N and a set of positive examples fEkg

�� Pick a positive training example Ek not yet covered by any term of the rules

�� For each input variable j �

� Find a range around Ek that N classi�es as positive �other variables unchanged�

�� Intersect all such ranges �with And connector� as in the example of rule given above�� This
gives a new term T

�� For each negative example El misclassi�ed by T

� Find range for El as in step �� and substract ranges from T �thus modifying T �

�� If some positive example remain� goto �

�� Join all terms by OR
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These works point out the possibility of extracting explicit rules from neural networks� Some
rule bases produced were judged �reasonable� by experts of the domain� although measuring the
quality of a rule base remains a di
cult task� Recent works are studying the possibility of inferring
fuzzy rules� likely to treat uncertainty� as neural techniques do 
Glo��� HG����

� Automaton extraction

Another original way of extracting knowledge from neural networks lies in the extraction of �nite
state automata� which recognize a language L� The problem is grammatical inference� �nd a
procedure to infer the syntactic rules of an unknown grammar G based on a �nite set of strings I
from L�G�� the language generated by G� and possibly� on a �nite set of strings from the complement
of L�G�� More precisely� inferring a Deterministic Finite Automaton �DFA� � is �nding a DFA
which accepts the positive strings and rejects the negative ones� Chen et al� 
GMC���� use a
neural network to perform this task� First the network learns to classify the strings� and second�
a procedure extracts a Deterministic Finite Automaton �DFA�� likely to recognize positive and
negative strings� The network is a second order recurrent neural network �see �gure ���� The
authors use the grammars on the alphabet f���g� and more speci�cally� on the language of all
strings not containing ����� as a substring� The neural network is composed of N recurrent hidden
units Sj� L nonrecurrent input neurons Ik� and weights Wijk� At a time t� one character of a string
is presented to the input neurons� Activity of the hidden neurons is then computed following the
equation�

S
�t���
i � g�

X
jk

Wijk � S
�t�
j � I

�t�
k �

where g is a sigmoidal function�

i j k

Wijk

L input unitsN recurent hidden units

Figure ��� Neural second order recurrent architecture� Weight Wijk connects cells j and k to cell i�

The output neuron S� is either set on �S� � � � �� if an input string is accepted� or set o�
�S� � �� if the string is rejected� During the training phase� weights are updated using a gradient
descent technique� after each string presentation� The network is said to converge when all training
samples are well classi�ed� The extraction process may occur during or after training� It includes
the following steps�

�� Clustering of the DFA states

�� Construction of the transition diagram

�� Construction of the full di�graph

�� Reduction to minimal representation
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The idea is that the neural network partitions its state space in di�erent regions� corresponding
to states in some �nite state automaton� Consequently� each neuron�s range 
���� is �rst divided
into q partitions� Since there are N hidden neurons this gives qN possible states� Then� the DFA is
generated by giving the symbol which makes the network changing from one state to another one�
Finally� the extracted DFA is reduced� using a standard algorithm� It appears that second order
reccurent neural networks are capable of learning small regular grammars� and of well generalizing
on unseen grammatical strings �see also 
WK����� It is even possible to extract the exact minimal
DFA of the language� This DFA outperforms some of the trained neural networks in correct
classi�cation of unseen strings� Thus� neural networks may be considered as tools for extracting
a DFA that would be representative of an unknown grammar� This would be a possible way for
solving the problem of grammatical inference�

� Sensitivity Analysis

Arti�cial neural networks may be used for determining relationships between input and output
variables� A successfully trained neural network maps input vectors �X from a n�dimensional space
to output vectors �Y in a m�dimensional space� It can be expressed as�

�Y � f� �X�

where �Y � �y�y	 � � �ym�T and �X � �x�x	 � � � xn�T � Then� �yi
�xj

measures the change in yj when
xi is changing� Thus� it is representative of how sensitive yi is with respect to xj � This is a kind
of knowledge which may be of interest in complex systems� As an example� Uhrig � Guo 
GU���
use a neural network to determine important measures in a nuclear power plant system� They
want to control the variation of the plant thermal performance� One measure� heat rate� frequently
changes� and may cause a loss of energy�

The authors use sensitivity analysis method applied to a neural network� for determining the
in"uence of several variables on heat rate� The network is a combination of self�organizing and
backpropagation neural networks� There are �� inputs and � outputs� The self�organizing network
works as an organizer� and rearranges the original training patterns in clusters� Then� the centroids
of these clusters are used as inputs for the multilayer perceptron� This network has �� input units�
�� hidden units� and � outputs� Once a reasonable error rate is reached� the derivatives are
computed� It appears� that for that kind of network� these derivatives are functions of the weights
in the network� and of the input pattern� Thus� it must be averaged over all input patterns� These
values may be ranked in the order of sensitivity� The greater the derivative� the more important
the input variable� This implies that a small change in this input variable is likely to a�ect the
output variable� The authors applied the method to the heat rate� and tried to apply the method
further to secure information� There is no comparison with classical methods such as Principal
Component Analysis�

Another study of Hashem used higher order derivatives� with a very simple sinusoidal function

Has���� It showed that the �rst and second order derivatives approximations are less precise� than
the function approximation itself� But according to the author� such a method would be of interest
in process modeling�
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� Conclusion

In this survey� we relate di�erent techniques aiming at extracting knowledges from arti�cial neural
networks� Initial research in this �eld have been initiated after the backpropagation algorithm has
been developed� which allows neural networks to build internal representations� Studying these
internal representations showed the interest of knowledge extraction� But such a method is entirely
domain speci�c� Thus� authors studied the way to extract rules� as rules used by expert systems� It
has been proven to be possible� Still the capacity of a neural network to treat numerical information
is lost in a traditional expert system� modelling uncertainty or using incomplete information is
di
cult in classical expert systems� Consequently� research are now focusing on the extraction of
fuzzy rules� Numerical informations may also be extracted� using sensitivity analysis� This method
can be used in complex process modeling� when knowledge extraction is di
cult because of the
amount of data� Finally� the problem of grammatical inference could be solved� using connectionist
techniques� Arti�cial neural networks can learn to recognize positive and negative strings of a
formal language� Then� an automaton can be extracted from this network� All these ways of
extracting informations from neural networks seem to be promising� Successful experiments have
been reported� Thus� arti�cial neural networks may not be �black boxes� anymore� And they can
provide a way to learn informations about complex problems�
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