R Baron
email: rbaron@lip.ens-lyon.fr

R Baron March

Knowledge Extraction From Neural Networks : A Survey

Keywords: Arti cial neural networks, knowledge extraction, expert systems R R eseaux de neurones arti ciels, extraction de connaissances, syst emes experts Knowledge Extraction From Neural Networks : A Survey

Arti cial neural networks may learn to solve arbitrary complex problems. But knowledge acquired is hard to exhibit. Thus neural networks appear as \black b o xes", the decisions of which can't be explained. In this survey, di erent techniques for knowledge extraction from neural networks are presented. Early works have s h o wn the interest of the study of internal representations, but these studies were domain speci c. Thus, authors tried to extract a more general form of knowledge, like rules of an expert system. In a more restricted eld, it is also possible to extract automata from neural networks, likely to recognize a formal language. Finally, n umerical information may be obtained in process modelling, and this may b e o f i n terest in industrial applications.

Introduction

Multilayer feedforward networks are universal approximators HSW89]. Thus, they may be used to realize a mapping between an input and an output. Several works have been done which use arti cial neural networks in real world applications. But one of their main drawbacks lies in the fact that they appear as \black-boxes". They are unable to explain their decisions, that is, how a given output is associated to a given input, which i s a d r a wback for real world applications. Moreover, since learning algorithms modify cells in the hidden layer, this may constitute interesting internal representations.

For these two reasons, a few authors studied internal representations, and tried to extract knowledge from arti cial neural networks. In this study, w e will show di erent w ays which h a ve been used. The rst section describes the rst works which s h o wed the interest of studying internal representations built during the learning phase. The second section presents di erent w ays for extracting rules from neural networks, which is the kind of knowledge used in traditional Arti cial Intelligence expert systems. In the third section, we d e s c r i b e w orks about the extraction of Finite State Automata, that recognize regular languages. Finally, in the fourth section, we present w orks on sensitivity analysis, which i s a w ay of extracting information about the function implemented by a neural network.

Study of Internal Representation

Research which focused on internal representations in arti cial neural networks began with the rst multilayer perceptrons. For that kind of architecture, weights in the hidden layers are modi ed during the learning phase to comply with the data to be learned. Thus a speci c internal representation is built, which depends on the problem to be solved. It was assumed that this representation may b e i n teresting: it is a kind of knowledge, acquired by the neural network. Moreover, acquiring knowledge on real word applications can still be a di cult task for human experts, when faced with a great amount of data. This is especially true for knowledge engineers who are supposed to extract knowledge from human beings. Then, the authors analyse the weights between the input layer coding the person and the rst hidden layer. This analysis shows that it is possible to extract semantic information from the neural network. For example, the rst hidden cell can be interpreted as representing the nationality o f the input person: the weights connecting this cell to two input cells coding two persons at the same place in the both trees are opposite. In the same way, the second hidden unit encodes the generation, and the sixth encodes the branch of the family.

Learning Signal Characteristics

The same kind of observations have b e e n m a d e b y Gorman & Sejnowski GS88], in a very di erent eld. They use a neural network for classifying sonar returns from metal cylinder and cylindrically shaped rock (g . 3). After preprocessing, the spectral envelope of the signal gives the power spectral density for each frequency. This constitutes the input signal for the neural network. This network is composed of 60 input units, several hidden units, and two output units coding the class of the input signal. The backpropagation algorithm is used during the learning phase, with several numbers of hidden cells. A network with three hidden cells is nally chosen because of its performance : 100 % correct classi cation on the training set and 93.7 % on the test set.

One of the purposes of this work is to study the internal representation of the neural network, and its link with the ability to classify correctly. This study is made through the observation of the weight state vector, which is the product of the input vector by the weights connecting the input to an hidden unit (See gure 4).

It shows that the weights at the extremes of the input layer (corresponding to higher and lower frequencies) are inhibitory. T h us they turn o the hidden units for wide band signals. Moreover there are alternating bands of positive and negative w eights. If the onset or the decay of the signal is gradual, positive and negative v alues cancel one another, thus shutting down hidden units. If the decay rating is rapid, the activation is not balanced and results in a positive response. For wide band signals, corresponding to cylinder returns, hidden units are poorly activated, while they respond to narrow band signals, corresponding to rock returns. If no hidden unit is activated, the bias drives the output layer to code for a cylinder. A weak response from any of the hidden units Weights Input layer Notice that hidden units are tuned to various central frequencies, such that the network can recognize signals centered on di erent peak frequencies. Even wide band rock signals are recognized, though they do not conform to general descriptions. This correct classi cation is achieved by coding for the precise location of peaks and nulls in the signal by positive and negative w eights between input and hidden layers. Thus internal representation built by the neural network is a kind of lter adapted to di erent features during learning. But, according to the authors, this kind of pattern coding is more suggestive of a model based approach rather than simple feature extraction.

Input signal

Extracting Semantic Information in Bridge Game

In the same way of studying internal representations, Bochereau & Bourgine BB89] take i n terest in a neural network which learns to play bridge game. Precisely, g i v en a \hand" of playing cards, the network is supposed to give the corresponding rst call. It is composed of an input layer of 52 units, representing the cards, a hidden layer, and an output layer of 11 units, corresponding to the call to be made (g. 5). After the learning phase, using the backpropagation algorithm, the authors found that the best results were obtained with 5 hidden units.

It also appears that these units get \specialized". First, four of these units are speci cally adapted to each color : for each one, the weights connecting it to cells of the input layer of one color are stronger (for example the second hidden unit is strongly connected to input cells representing cards of the diamond color). Second, the authors distinguish two kinds of hidden units, \hard neurons" and \soft neurons". For hard neurons, the majority of the input values lies in the interval -2,+2]. For soft neurons, the majority of the input values lies outside this interval (See gures 6 and 7).

This remark allows the authors to extract semantic information from the neural network, after a few manipulations on the weights. First, weights are clustered : weights which h a ve nearly equivalent v alues are replaced by their average value. If the output of a neuron j is given by the equation s j = f(w 0 + P j w ij x j), it will be replaced by s j = f(w 0 + P k w ik P jk x jk) (f is a standard sigmoidal function. x jk is the output of neuron j, which belongs to kth cluster of cells). Second, if x jk is the output of a hard neuron, as is the case for output neurons, x jk may h a ve t wo possible If a cell has to be activated at the value s, the relation f(w 0 + P k w ik P jk x jk) s must be veri ed, which g i v es P k w ik P jk x jk f ;1 (s) ; w 0 . Because x jk may h a ve t wo v alues, a simple algorithm can be used to enumerate all sets fx jk g satisfying the relation. Using these two heuristics, the authors extract semantic information from the neural network (See table 1). For example, the input from the rst hidden unit is linearly dependent on the number of points in a hand (see table 1), and the other hidden cells count the number of cards in each color.

There are relations between inputs of the hidden cells, and consequently between their output values. By constraint propagation, authors can thus extract rules concerning the rst call to be compared with rules for an expert system.

Neuron Type Interpretation of input Condition (Treshold = 0.5) N1 Soft

;0:2 P H + 3 :2 P H < 16 N2 Hard ;2 P H + 5 :4 N K N K > 0:37 P H Table 1: Example of information extracted at a threshold of 0.5. P H stands for the number of points in a hand, and N K the number of kings.

These experiments show t h e i n terest of the study of internal representations of neural networks which solve a speci c problem. It also appeared that extracting knowledge may be possible, as in the example of the bridge game. But no general solution is provided for extracting knowledge. Extracted knowledge is domain speci c. It would thus be of interest to have some general method of extraction, available for di erent problems. One way w ould be to extract rules from neural networks, in order to build Expert Systems.

Rules Extraction

One advantage of expert systems is that they provide a general way o f w orking out a problem. A knowledge base may be built for each domain, but the inference mechanism, which uses these knowledge, remains the same. It is usually admitted that the most di cult task is the knowledge base construction, which i s e n tirely domain speci c. Knowledge engineers encounter problems when acquiring knowledge from human experts, for both technical and psychological reasons. Thus, authors try to ease the knowledge-acquisition bottleneck, especially with the help of a connectionist model.

Gallant Gal88] uses a neural network as a connectionist expert system in medical diagnosis. This network is a three-layer network. Cells in the input, hidden and output layers respectively represent symptoms, diseases and treatments. There are connections between each successive l a yer and between input and output layers. A few cells are added for increasing the discriminating capacity of the network. The output of the cells are three-valued : +1, -1 and 0 corresponding respectively to logical values Tr u e Fa l s eand Unknown. The learning phase is performed using Pocket Algorithm Gal86]. Then, inferencing can be made given several input values : it is possible to deduce the activation for a cell u i without knowing the values of all its inputs. Let u j be the inputs to cell i, then, if X j:ujknown w ij u j > X j:ujunknown jw ij j then the conclusion is as follows:

u i = (+1 if P j:uj known w ij u j > 0 ;1 if P j:uj known w ij u j < 0
Backward chaining is also possible. It allows the network to ask for unknown values by questioning the user. The values to be asked for are selected using a heuristic. One interesting point is that the system can partly "explain" its decision, by producing if-then rules when a cell has a known value. For example, if u 7 has the value +1: This produces rules as follows :

IF u2 is False and u5 is True THEN Conclude that u7 is True In Gallant's article, this method is used to induce rules in medical diagnosis domain. These rules were judged \reasonable" by doctors. Other systems have been built in di erent domains, such as management decision, but no other results are reported. According to the author, the connectionist expert system described may be used as a tool for knowledge engineers, not as a replacement: a lot of rules can be extracted, but they are not always pertinent. Thus, the rule base may not be of interest for human experts. In fact, such a t e c hnique is supposed to make the knowledge base construction easier, and would be of use in elds requiring great amount of rules.

A non real world problem was treated in the Connectionist Scientist Game MMS91]. It deals with rules that map strings of symbols. The rules are composed of a condition part and an action part. The condition is a feature or a combination of features to be satis ed. The action part describes the mapping to be performed on the input string. Three types of conditions are allowed : presence of a symbol s at a speci c place (or slot) a conjunction of two conditions (^) a disjunction of two conditions (_) For example, the rule ^A G ! 32B] concerns the strings with a symbol A at the rst place, and a symbol G at the third one. If the rule is applied, the action part is used. Numbers in the action part denote the place of the symbol of the input string. The 3 at the rst slot of 32B, indicates that the rst symbol of the output string is the third of the input string (i.e. a G), and the 2 at the second slot indicates that the second symbol of the output string is the second of the input string. Finally, B is a constant s y m bol of the output string. Using this rule, the string AEG would be replaced by GEB.

In the article, strings have a length of n = 4 s y m bols, and the alphabet is composed of 8 symbols: fA,B,...,Hg. The input layer of the neural network, called Rule Net, codes the input string : it is made of n bit-strings of length k. In these bit-strings, one bit is 1, indicating which symbol of the alphabet is present, while the others are 0. The output layer uses the same code. Two subnets are between these layers: the condition subnet, and the action subnet. where x is the input vector and c i is the incoming weight t o condition unit i. The activity p i is then determined by normalization:

p i = net i P j net j
The action subnet is composed of m weight matrices A i . A s e t o f m ultiplicative connections between each condition unit i and A i determines to what extent A i will contribute to the output vector y, calculated as follows:

y = m X i=1 p i A i x
Ideally, only one condition unit is fully activated by a g i v en input. Weights are adapted using the backpropagation algorithm, with constraints on c i and A i to ke e p a v alid semantic. Only one bit of c i can be active in bit substrings of length k. A i is formed of k k submatrices, which m ust be either the identity or the zero matrix. During the learning phase, c i and A i are modi ed using a process called projection, which ensures that the network can be interpreted as a set of symbolic rules.

Simulations compare results obtained with di erent learning techniques, depending on whether the projection process is used or not, and on the number of rules in the rule base. The performance takes into account the percentage of patterns which are correctly classi ed, and the number of valid rules extracted. It shows that the use of the projection process gives the better results. The number of rules extracted is exactly the same as this of the rule base used to generate the strings. Compared with a multilayer network with 15 hidden units, Rule Net has better generalization results.

Another way of extracting knowledge has been developed by S a t o & N a k ano SN90] called the RN Method. It deals with rules of the form u 1 2 :2 : 8] & u 3 2 :3 : 7] . The idea of the algorithm described below i s t o g r o w a region containing a training example correctly classi ed as +1, by changing one dimension at a time, until the region bumps into a +1/-1 network boundary for the dimension. Then, the algorithm considers the hyperrectangle which has been built, and substracts out misclassi ed negative examples by the same method (see gure 9).

Negative Example

Positive e x a m p l e Rule 2 Rule 1 3. Intersect all such ranges (with And connector, as in the example of rule given above). This gives a new term T 4. For each negative example E l misclassi ed by T Find range for E l as in step 2, and substract ranges from T (thus modifying T)

5. If some positive example remain, goto 1 6. Join all terms by OR These works point out the possibility of extracting explicit rules from neural networks. Some rule bases produced were judged \reasonable" by experts of the domain, although measuring the quality of a rule base remains a di cult task. Recent w orks are studying the possibility of inferring fuzzy rules, likely to treat uncertainty, as neural techniques do Glo91, HG92].

Automaton extraction

Another original way of extracting knowledge from neural networks lies in the extraction of nite state automata, which recognize a language L. The problem is grammatical inference: nd a procedure to infer the syntactic rules of an unknown grammar G based on a nite set of strings I from L(G), the language generated by G, and possibly, on a nite set of strings from the complement of L(G). More precisely, inferring a Deterministic Finite Automaton (DFA) , is nding a DFA which accepts the positive strings and rejects the negative ones. Chen et al. GMC + 92] use a neural network to perform this task. First the network learns to classify the strings, and second, a procedure extracts a Deterministic Finite Automaton (DFA), likely to recognize positive a n d negative strings. The network is a second order recurrent neural network (see gure 10). The authors use the grammars on the alphabet f0,1g, and more speci cally, on the language of all strings not containing "000" as a substring. The neural network is composed of N recurrent hidden units S j , L nonrecurrent input neurons I k , and weights W ijk . A t a time t, o n e c haracter of a string is presented to the input neurons. Activity of the hidden neurons is then computed following the equation:

S (t+1) i = g(X jk W ijk S (t) j I (t) k)
where g is a sigmoidal function. The idea is that the neural network partitions its state space in di erent regions, corresponding to states in some nite state automaton. Consequently, e a c h neuron's range 0,1] is rst divided into q partitions. Since there are N hidden neurons this gives q N possible states. Then, the DFA i s generated by giving the symbol which m a k es the network changing from one state to another one. Finally, the extracted DFA is reduced, using a standard algorithm. It appears that second order reccurent neural networks are capable of learning small regular grammars, and of well generalizing on unseen grammatical strings (see also WK92]). It is even possible to extract the exact minimal DFA of the language. This DFA outperforms some of the trained neural networks in correct classi cation of unseen strings. Thus, neural networks may be considered as tools for extracting a D F A that would be representative o f a n u n k n o wn grammar. This would be a possible way for solving the problem of grammatical inference.

Sensitivity Analysis

Arti cial neural networks may be used for determining relationships between input and output variables. A successfully trained neural network maps input vectors X from a n-dimensional space to output vectors Ỹ in a m-dimensional space. It can be expressed as: Ỹ = f(X) where Ỹ = (y 1 y 2 : : : y m) T and X = (x 1 x 2 : : : x n) T . Then, @yi @xj measures the change in y j when x i is changing. Thus, it is representative o f h o w sensitive y i is with respect to x j . This is a kind of knowledge which m a y b e o f i n terest in complex systems. As an example, Uhrig & Guo GU92] use a neural network to determine important measures in a nuclear power plant system. They want to control the variation of the plant thermal performance. One measure, heat rate, frequently changes, and may c a u s e a l o s s o f e n e r g y .

The authors use sensitivity analysis method applied to a neural network, for determining the in uence of several variables on heat rate. The network is a combination of self-organizing and backpropagation neural networks. There are 24 inputs and 2 outputs. The self-organizing network works as an organizer, and rearranges the original training patterns in clusters. Then, the centroids of these clusters are used as inputs for the multilayer perceptron. This network has 24 input units, 10 hidden units, and 2 outputs. Once a reasonable error rate is reached, the derivatives are computed. It appears, that for that kind of network, these derivatives are functions of the weights in the network, and of the input pattern. Thus, it must be averaged over all input patterns. These values may be ranked in the order of sensitivity. The greater the derivative, the more important the input variable. This implies that a small change in this input variable is likely to a ect the output variable. The authors applied the method to the heat rate, and tried to apply the method further to secure information. There is no comparison with classical methods such as Principal Component Analysis.

Another study of Hashem used higher order derivatives, with a very simple sinusoidal function Has92]. It showed that the rst and second order derivatives approximations are less precise, than the function approximation itself. But according to the author, such a method would be of interest in process modeling.

Conclusion

In this survey, w e relate di erent t e c hniques aiming at extracting knowledges from arti cial neural networks. Initial research in this eld have been initiated after the backpropagation algorithm has been developed, which allows neural networks to build internal representations. Studying these internal representations showed the interest of knowledge extraction. But such a method is entirely domain speci c. Thus, authors studied the way to extract rules, as rules used by expert systems. It has been proven to be possible. Still the capacity of a neural network to treat numerical information is lost in a traditional expert system: modelling uncertainty or using incomplete information is di cult in classical expert systems. Consequently, research are now focusing on the extraction of fuzzy rules. Numerical informations may also be extracted, using sensitivity analysis. This method can be used in complex process modeling, when knowledge extraction is di cult because of the amount of data. Finally, the problem of grammatical inference could be solved, using connectionist techniques. Arti cial neural networks can learn to recognize positive and negative strings of a formal language. Then, an automaton can be extracted from this network. All these ways of extracting informations from neural networks seem to be promising. Successful experiments have been reported. Thus, arti cial neural networks may not be \black b o xes" anymore. And they can provide a way to learn informations about complex problems.

12. 1 Figure 1 :Figure 2 :

 112 Figure 1: Two isomorphic family trees The network architecture is composed of one input layer, three hidden layers, and one output layer (g. 2). The input layer is divided in two parts: 24 cells represent the rst person, 12 cells represent the relation. The output layer is composed of 24 cells representing the second person. The learning phase uses the backpropagation algorithm, with 100 relations as training examples.

Figure 3 :

 3 Figure 3: Neural network architecture for sonar signal

Figure 4 :

 4 Figure4: A weight-state vector. White and black rectangles represent positive and negative w eights, respectively. The area of a rectangle is proportional to the absolute value of the weight.

Figure 5 :

 5 Figure5: A neural network for playing bridge values, 0 or 1. If a cell has to be activated at the value s, the relation f(w 0 + P k w ik P jk x jk) s must be veri ed, which g i v es P k w ik P jk x jk f ;1 (s) ; w 0 . Because x jk may h a ve t wo v alues, a

Figure 6 :

 6 Figure6: Output of a soft neuron, as a function of its input value. Each diamond corresponds to one value of the output when one input is presented to the neural network.

Figure 7 :

 7 Figure 7: Output of a hard neuron, as a function of its input value

Figure 8 :

 8 Figure 8: The RuleNet architecture In the condition subnet, the net input to each condition unit i is computed net i =

Figure 9 :

 9 Figure 9: Example of rule generated by the RN Algorithm for a 2-D problem. Positive examples are picked in the triangle. Rectangles indicate domains generated by extracted rules. RN Algorithm: Given a neural network N and a set of positive examples fE k g 1. Pick a positive training example E k not yet covered by a n y term of the rules 2. For each input variable j : Find a range around E k that N classi es as positive (other variables unchanged)

Figure 10 :

 10 Figure 10: Neural second order recurrent a r c hitecture. Weight W ijk connects cells j and k to cell i. The output neuron S 0 is either set on (S 0 > 1 ;) if an input string is accepted, or set o (S 0 <) if the string is rejected. During the training phase, weights are updated using a gradient descent technique, after each string presentation. The network is said to converge when all training samples are well classi ed. The extraction process may occur during or after training. It includes the following steps: 1. Clustering of the DFA states 2. Construction of the transition diagram 3. Construction of the full di-graph 4. Reduction to minimal representation