
HAL Id: hal-01924642
https://hal-lara.archives-ouvertes.fr/hal-01924642v1

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalisation of metamorph Reinforcement Learning
Iago Bonnici, Abdelkader Gouaich, Fabien Michel

To cite this version:
Iago Bonnici, Abdelkader Gouaich, Fabien Michel. Formalisation of metamorph Reinforcement Learn-
ing. [Technical Report] LIRMM (UM, CNRS). 2018. �hal-01924642�

https://hal-lara.archives-ouvertes.fr/hal-01924642v1
https://hal.archives-ouvertes.fr

LIRMM
M. Iago BONNICI November 22, 2018
Supervisors: Dr. Abdelkader GOUAICH

Dr. Fabien MICHEL Montpellier, FRANCE

Formalisation of metamorph Reinforcement Learning
technical report

This technical report describes the formalisation of a particular Reinforcement
Learning (RL) situation that we call “metamorph” (mRL). In this situation, the
signature of the learner agent, i.e. its set of inputs, outputs and feedback slots, can
change over the course of learning.

RL can be viewed as signal processing, because the learner agent transforms
the inputs/feedbacks signals it is continuously fed with into output signals. The
following formalisation is therefore concerned with signals description and the
transformation from one signal to another. Also, since the signature of the agent
is expected to change, we get concerned in the definition of what is a “signature”
and a “signature change”.

In the first part, we describe mRL learning context, or how the metamorph
agent is embedded into its environment and interacts with it. In the second part,
we describe one generic example of a metamorph learner agent: a dynamical
computational graph that could theoretically be used in controlling the agent. In
the last part, we reformulate the classical problem of RL, a.k.a. “maximizing
feedback” in terms of this formalised mRL.

1

Contents

Context 3
1 Values and their domains . 3
2 Flows . 3
3 Sequence approximation . 3
4 Flow determination . 4
5 Graphical aliases . 5
6 Flow determination determination 5
7 States and Multiple flows . 6
8 Subflows . 6
9 Partial flow determination . 7
10 Bit flows and Contiguous multiple flows 7
11 High-level agent representation 9

Computational graph 10
12 Abuse of notation . 10
13 Operations . 11
14 Fluxes and delays . 12
15 Embedding into environment: one example 13

Objective 17
16 Finite multiple flows . 17
17 Orderable objectives . 17
18 Increasing objectives . 17

2

Learning Context

1 Values and their domains
We call domain a tuple d = (d.i, d.σ), where:

• d.σ is a set

• i.σ is an index, so that d.σ = d′.σ 6=⇒ d = d′

Note: within this whole document, the dot notation a.b does not represent a
product between a and b, but the b attribute of object a.

Let D be the set of all domains.
Let D be its flattened version containing all values from all domains:

D =
⋃

d∈D
d.σ (1)

Let ⊥ be a joker, null value belonging to none of the domains:

⊥ /∈D (2)

2 Flows
A flow is a function associating a value to each real date t:

h :
{
R+→ D
t 7→ h(t) (3)

3 Sequence approximation
For any precision ε ∈R+∗, a flow h may be approximated by a sequence (εhn)n∈N
such that:

∀n ∈ N, εhn = h(nε) (4)

3

Note that the initial value is the same for all precisions:

∀ε ∈ R+∗, εh0 = h(0) = h0 (5)

In the next, we will often work with sequences and discrete time n ∈ N, with
the idea that they approximate continuous flows as ε → 0.

4 Flow determination
Let (un)n∈N be a sequence in D. For any n, its “past” values live in D[N] with:

D[N] =
⋃
i∈N

Di (6)

so that ∀n ∈ N, (u0, . . . , un) ∈ D[N] (7)

Let f be a function associating a value in D to each precision and each past.

f :
{

R+∗×D[N] → D
(ε, (u0, . . . , un)) 7→ fε(u0, . . . , un)

(8)

Let h,k be two flows in D,D′: we say that f determines k from h when all
sequences that f generates from approximations of h are approximations of k:

∀ε ∈ R+∗, ∀n ∈ N∗, εkn = fε(
εh0, . . . ,

εhn) (9)

This may be written another, graphical way:

h (f) k (10)

A slightly different case is needed to bootstrap circular situations: we say that
f initially determines k from h when the sequence determination is shifted towards
zero:

∀ε ∈ R+,

{
εk0 = fε(∅)

∀n ∈ N∗, εkn = fε

(
εh0, . . . ,

εhn−1
) (11)

Which is written:
h (f ∗) k (12)

4

5 Graphical aliases
Fleshing this graphical notation, we will use the following alias when k is deter-
mined by the past of h and h′ combined:

h

h′

(f) k (13)

∀ε ∈ R+∗, ∀n ∈ N∗, εkn = fε

((
εh0,

εh′0
)
, . . . ,

(
εhn,

εh′n
))

(14)

And the following alias when f determines both k and k′ from h:

k

k′

(f)h (15)

∀ε ∈ R+∗, ∀n ∈ N∗,
(

εkn,
εk′n
)
= fε(

εh0, . . . ,
εhn) (16)

6 Flow determination determination
When the function f determining one flow from another is itself determined by
another flow, we will use this construct:

h′

h

(F)

(f) k

(17)

Meaning that there exists a flow of determining functions f :R+→F
(

D[N]→ D
)

,
approximated for each precision ε by a sequence (ε f n)n∈N so that:

∀ε ∈ R+∗, ∀n ∈ N,

{
ε f n = F

(
εh′0, . . . ,

εh′n
)

εkn =
ε f n(h0, . . . , hn)

(18)

5

7 States and Multiple flows
We call state a tuple s = (s.∆, s.ν), where:

• s.∆ is a subset of D that we call the state signature

• (s.νd)d∈s.∆ is a family of values indexed by s.∆, such that each value belongs
to the set of the corresponding domain:

∀d ∈ s.∆, s.νd ∈ d.σ (19)

Let S be the set of all states.

A flow of states h : R+→S is called a multiple flow. It carries two interesting
informations:

• a flow of domains that we call the signature of h. We write it h.∆:

h.∆ :
{
R+→ 2D

t 7→ h.∆(t) = h(t).∆
(20)

• a flow of values h.ν , at any time consistent with the signature:

h.ν :
{
R+→ D [N]

t 7→ h.ν(t) = h(t).ν
(21)

8 Subflows
A multiple flow h : R+ → S can also be seen as / is isomorphic to a family of
subflows (hd)d∈D , where each flow hd : R+ → d.σ ∪ {⊥} associates the value
taken by h in the domain d on each date, and ⊥ if d is not part of the signature of
h on this date:

∀d ∈D , ∀t ∈ R+, hd(t) =

{
h.ν(t)d if d ∈ h.∆(t)
⊥ if not

(22)

In other words, h can represents many flows and hd “selects” the subflow cor-
responding to one domain d.

6

9 Partial flow determination
Let k be a multiple flow, one such construct will be used:

h (f) k.∆ k.ν (f ′) h′
k

(23)

It states that the signature of k and its values are determined by two different
sources (h, f) and (h′, f ′):

∀ε ∈ R+∗, ∀n ∈ N,

{
εk.∆n = fε(

εh0, . . . ,
εhn)

εk.νn = f ′ε
(

εh′0, . . . ,
εh′n
) (24)

10 Bit flows and Contiguous multiple flows
Let hd : R+→ d.σ ∪{⊥} be a subflow in domain d.

hd is said to be a bit flow if and only if its value is always ⊥ except on one
contiguous window in R+. I.e., there exists t0, t1 ∈ R+ (t1 may be infinite) such
that:

∀t ∈ R+,

{
if t ∈]t0, t1[, hd(t) ∈ d.σ

else hd(t) =⊥
(25)

The domain d is said to be active at all dates t ∈]t0, t1[, regarding to the
subflow hd , or else it is inactive.

When approximated with precision ε , the activation window translates to the
corresponding discrete window Jεn0,

εn1J⊂ N, εn0 being the date of first non-⊥
value in εh, and εn1 the date after the last non-⊥ value or ∞.

Now let h : R+→S be a multiple flow.
h is said to be a contiguous multiple flow if and only if all its subflows hd are

bit flows.
A contigous multiple flow can be represented as figure 1.

7

[0, 1]

Z

r
g
b

R

ta

h.ν(ta)=(9.75, 14)

h.∆(ta)={d1, d3}

tb

h.ν(tb)=(−4.87, b, 12, 0.61)

h.∆(tb)={d1, d2, d3, d4}

tc

h.ν(tc)=(g)

h.∆(tc)={d2}

: hd4

: hd3

: hd2

: hd1

⊥

⊥

⊥

⊥

⊥

t∈R+

h :

s∈
S

subflows \ evaluated in ta tb tc
hd4 : R+→ [0, 1]∪{⊥} hd4(ta) =⊥ hd4(tb) = 0.61 hd4(tc) =⊥
hd3 : R+→ Z∪{⊥} hd3(ta) = 14 hd3(tb) = 12 hd3(tc) =⊥
hd2 : R+→{r, g, b}∪{⊥} hd2(ta) =⊥ hd2(tb) = r hd2(tc) = g
hd1 : R+→ R∪{⊥} hd1(ta) = 9.75 hd1(tb) =−4.87 hd1(tc) =⊥

Figure 1: An example contiguous multiple flow h and its bit subflows hd1, . . . , hd4 .
Notice how each bit subflow is only active on a contiguous window of R+. In this
example, the first four domains describe the following set of values for subflows:
d1.σ = R, d2.σ = {r, g, b} , d3.σ = Z, d4.σ = [0, 1]. The gray dotted lines
correspond to three samples ta, tb, tc where the multiple flow h and its subflows
are evaluated. Dashed areas mark the end of each bit subflow active window.

8

11 High-level agent representation
At the highest level, our learner agent can be represented by 4 contiguous multiple
flows (i, o, ϕ, P), with the following determination scheme:

(E∗)

o.∆

ϕ

(A)

o.ν(P)i

o

(26)

Here:

• E represents the environment in which the agent is immersed

• i represents the agent’s inputs or sensors: their nature may change in time
as the signature i.∆ evolves.

• o represents the agent’s outputs or actuators: their nature may also change
in time as o.∆ evolves.

• ϕ represents the agent’s objectives, a continuously fed evaluation of the
actions it undertakes. They also may change in nature as ϕ.∆ evolves.

Note that the environment determines i, ϕ and o.∆, so the agent cannot decide
the data it is fed with or its output signature.

• P represents the agent instant behaviour. It is an inner computational proce-
dure determining the output values based on all input history.

• A is the abstract agent strategy, constantly adapting its behaviour based on
environmental information.

Only two objects are not depending on time here: the environment E and the
inner agent strategy A. E will be defined by user, and it is our job to design A (see
objectives later).

9

Computational graph: an example
of metamorph agent

In this chapter, we describe a graph process that can be translated into the inner
reaction P of our learner agent.

Computational graphs are elements of Γ, that we will progressively describe
hereafter.

12 Abuse of notation
In the next, three objects will essentially represent the same thing: the inner be-
haviour of the agent:

• One flow P : R+→ Γ, assigning one computational graph to each date.

• One flow P : R+→F
(
S [N]→D [N]

)
of determining functions, determin-

ing output values o.ν from input pasts.

• One contiguous multiple flow P :R+→S describing the evolution of every
intermediate value in the flowing computational graph.

Since they are conceptually related but still different in nature, we think that
using the same symbol for all of them will cause less confusion than using one
different symbol for each. As such, we will refer to each of them with the same
letter P, and let the reader rely on the context to figure them out.

Also, considering P as a multiple flow and Pd its subflow in domain d, we
will refer to the sequence approximation (εPdn)n∈N with the simpler expression
(dn)n∈N so that double subscript is avoided.

As a consequence, in such a context, the symbol d refers both to the domain
d ∈D and to the corresponding subflow sequence approximation d = εPd .

10

13 Operations
A computational graph in Γ is a structure that typically contains “operations”.

We call operation an object of the form:(
a,
(
(a1, ρ

1), (a2, ρ
2), . . . , (ap, ρ

p)
)
, (aI, aII, . . . , aq)

)
(27)

Where:

• All ai ∈D are domains, and a Pai subflow corresponds to each of them.

•
(
(a1, ρ1), . . . , (ap, ρ p)

)
are called the operation inputs

•
(
aI, . . . , aq) are called the operation outputs.

• All ρ i ∈ ai.σ are called rest values, and belong to their corresponding input
domain.

• a : D p[N] → Dq is a determining function called the operation formula. Its
exact signature is a : (a1.σ ×·· ·×ap.σ)

[N]→ aI.σ ×·· ·×aq.σ .

The computational graph process P, like any flow, can be approximated by a
sequence εP. At any date n ∈ N, the instant computational graph εPn ∈ Γ may
contain such an operation, so it may read somewhere:

a2:ρ2 (a)

a1:ρ1

a3:ρ3

aI

aII

∈ εPn = P(nε) (28)

This means that all domains ai are being active within the multiple flow P at
this date. In other words: the bit subflows Pai are in their non-⊥ window:

∀n ∈ N, operation “a” present in εPn ⇐⇒
∀i ∈ {1, . . . , p, I, . . . , q} , ai

n 6=⊥ =⇒ ai
n ∈ ai.σ

(29)

Also, the outputs of the operation are determined by its inputs histories:(
aI

n, . . . , aq
n
)
= a
(
(a1

0, . . . , ap
0), . . . , (a

1
n, . . . , ap

n)
)

(30)

11

Operations are solid in that no input (a1, ρ1), . . . , (ap, ρ p), no output
aI, . . . , aq and no formula a can be present in the graph if not all other elements
of the operation are present.

Note: since the multiple flow P is contiguous, Pai are bit subflows. Thus, as
a consequence of operation solidity, every operation can only appear once in the
graph process P during a]t0, t1[activity window. And this activity window is the
same for all its related Pai bit subflows.

As a consequence, for each operation, there exists one maximal “arrival date”
in the graph process, t0 ∈R

+, and a corresponding maximal “approximated arrival
date” εn0 ∈ N, such that:

∀t < t0, Pai(t) =⊥ (31)

∀n < εn0, ai
n = Pai(nε) =⊥ (32)

Operations are autonomous (in the sense of dynamical systems) in that their
determining function a ignores the arrival date of the operation. In other words,
their result is independent on the number of initial ⊥ values, so ∀n > εn0:

a
(
(⊥, . . . , ⊥), . . . , (⊥, . . . , ⊥), (a1

n0
, . . . , ap

n0
), . . . , (a1

n, . . . , ap
n)
)

= a
(
(a1

n0
, . . . , ap

n0
), . . . , (a1

n, . . . , ap
n)
) (33)

This makes the operation capable of processing flowing information, gifted
with a memory, but unaware of the absolute date.

14 Fluxes and delays
Operations in a computational graph in Γ are typically connected together via
“fluxes”. Operation formulae determine outputs subflows, and fluxes determine
input subflows.

We call flux an object of the form:

ω = (δ , o, (ι , ρ)) (34)

Where

• δ ∈ R+∗ is a delay value

• o is an output

• (ι , ρ) is an input

12

At any date, the computational graph may contain such a flux, so it reads:

o ι :ρ
δ ∈ εPn or ω ∈ εPn (35)

This means that the subflow Pι copies the subflow Po with a delay δ as long
as ω is part of the graph. However, it cannot copy values of Po anterior to the
apparition of ω in the graph, and will use its rest value ρ instead.

More formally, let t0 ∈ R+ be the arrival date of ω into the graph:

∀t > t0, Pι(t) =

{
if t−δ 6 t0 : ρ

else : Po(t−δ)
(36)

Inputs cannot have more that one flux attached at any given date.

For any other input (ι , ρ) present in the graph, but with no flux attached, their
corresponding subflow has the rest value ρ: ∀t ∈ R+,

∅ ι :ρ ∈ P(t) =⇒ Pι(t) = ρ (37)

With fluxes, operations can be connected to each other so that information gets
processed by their formulae from one subflow to another.

Since each flux transfers information with a positive delay δ , no circular con-
figuration of operations yields undefined subflows, and we can always find a pre-
cision ε < δ yielding approximated subflows εPd that are defined for all n ∈ N
(see example section 15).

15 Embedding into environment: one example
At any time, the computational graph is connected to the agent input and output
flows.

Each active subflow in the agent inputs corresponds to one free output in the
graph, so that operations inputs can feed from them.

Each active subflow in the agent outputs corresponds to one free input in the
graph, so that operations outputs can feed them.

For instance consider the following initial situation:
(i0, ϕ0, o.∆0) = E(∅)

i.∆0 = {A, B, C} ⊂D

i.ν0 = (A0, B0, C0) ∈ A.σ ×B.σ ×C.σ

o.∆0 = {D, E, F} ⊂D

(38)

13

Then, the minimal computational graph P0 ∈ Γ would be:

P0 =

A

B

C

D:ρD

E :ρE

F :ρF

∅ (39)

With no operations, only one free output per agent input, one free input per
agent output and one rest value for each free input.

In this situation, only the rest values would be used, so there would be, D0 =
ρD, E0 = ρE , F0 = ρF . So, with any precision ε ∈ R+∗, the first outputs values
would be determined as:

εo.ν0 = (ρD, ρE , ρF) ∈ D.σ ×E.σ ×F.σ (40)

However, the initial computational graph could also be more fleshed. In the
following example, it contains three operations with their inner formulae a, b, c,
connected to each other and to the agent environment via 8 fluxes:

P0 =

A

B

C

D:ρD

E :ρE

F :ρF

(a)

a1:ρa1

a2:ρa2

a3:ρa3

aI

aII

b1:ρb1

(b)
bI

c1:ρc1

cI

(c)
cII

c2:ρc2

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

(41)

Then, assuming that the input signature stays constant (i.∆0 =
ε i.∆1 =

ε i.∆2)
then evolves into ε i.∆3 = {B, H}, and the output signature stays constant (o.∆0 =
εo.∆1 =

εo.∆2) then evolves into εo.∆3 = {F, K}, the graph could also stay con-

14

stant (P0 =
εP1 =

εP2) then become, for example:

εP3 =

B

H

F :ρF

K:ρK

(a)

a1:ρa1

a2:ρa2

a3:ρa3

aI

aII

e1:ρe1

e2:ρe2

(e)

eI

c1:ρc1

cI :ρcI

(c)
cII

c2:ρc2

δ2
δ11

δ9
δ10

δ12

(42)

Let’s assume that the ε-approximation of continuous time yields that the de-
lays above correspond to these discrete delays:

delay (R+∗) δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12
ε-delay(N∗) 2 1 1 2 2 3 1 1 1 2 2 3

(43)

Then, the approximated multiple flows ε i, εP, εo can be computed like in the
following tables:

n A B C H

0 A0 B0 C0 ⊥
1 A1 B1 C1 ⊥
2 A2 B2 C2 ⊥

3 ⊥ B3 ⊥ H3

4 ⊥ B4 ⊥ H4

5 ⊥ B5 ⊥ H5

n D E F K

0 ρD ρE ρF ⊥
1 ρD ρE cI

0 ⊥
2 bI

0 ρE cI
1 ⊥

3 ⊥ ⊥ ρF ρK

4 ⊥ ⊥ ρF ρK

5 ⊥ ⊥ ρF eI
3

inputs outputs

Table 1: First few values of the example run: each column represents the ε-
approximation of one input or output domain. The global agent signature has
changed between approximation steps 2 and 3.

15

n a1 a2 a3 aI aII b1 bI c1 c2 cI cII e1 e2 eI

0 ρa1 ρa2 ρa3 aI
0 aII

0 ρb1 bI
0 ρc1 ρc2 cI

0 cII
0 ⊥ ⊥ ⊥

1 ρa1 B0 cII
0 aI

1 aII
1 ρb1 bI

1 ρc1 C0 cI
1 cII

1 ⊥ ⊥ ⊥
2 A0 B1 cII

1 aI
2 aII

2 aII
0 bI

2 ρc1 C1 cI
2 cII

2 ⊥ ⊥ ⊥

3 ρa1 B2 ρa3 aI
3 aII

3 ⊥ ⊥ ρc1 ρc2 cI
3 cII

3 ρe1 ρe2 eI
3

4 ρa1 B3 ρa3 aI
4 aII

4 ⊥ ⊥ ρc1 ρc2 cI
4 cII

4 H3 ρe2 eI
4

5 ρa1 B4 ρa3 aI
5 aII

5 ⊥ ⊥ aII
3 ρc2 cI

5 cII
5 H4 ρe2 eI

5

inner graph subflows

Table 2: First few values of the example inner multiple flow P. Each column
represents the evolution of an operation input or output. The structure of the
computational graph has changed between approximation steps 2 and 3.

Notice how input subflows are either constant rest flows or delayed copies of other
subflows. For instance, a1 contains a copy of B, while c1, whose delays δ6 then
δ11 are long, is mostly resting to its rest value ρc1 .

16

Objective

In this chapter, we state the last constraints on the system so it can be simulated
with ε-approximations and our objective can be expressed.

16 Finite multiple flows
A multiple flow h : R+ → S is finite if and only if its signature is finite at any
date:

h finite ⇐⇒ ∀t ∈ R+, |h.∆(t)| ∈ N (44)

All constitutive multiple flows (i, o, ϕ, P) of the agents we are interested in are
finite.

17 Orderable objectives
In the agents we are interested in, all sets visited by the objective multiple flow ϕ

are numerical, i.e. subsets of R.

∀t ∈ R+, ∀d ∈ ϕ.∆(t), d.σ numerical (45)

18 Increasing objectives
A collection of Ei is given as problem data (it may be reduced to only one E).
Our goal is to design the inner agent strategy A such that all objective subflows
ϕd are maximal.

More formally, for any bit subflow ϕd , in any environment Ei, let]t0, t1[be its
activation window. Then, we want:∫ t1

t0
ϕd(t)dt maximal (46)

17

In other words, no matter the experienced environment or the current signature,
we want the agent A to be able to find which output signals will make all feedback
maximal.
When this is achieved, we say that our agent keeps “learning”, even though its
objectives, inputs and outputs change over time.

18

	Context
	Values and their domains
	Flows
	Sequence approximation
	Flow determination
	Graphical aliases
	Flow determination determination
	States and Multiple flows
	Subflows
	Partial flow determination
	Bit flows and Contiguous multiple flows
	High-level agent representation

	Computational graph
	Abuse of notation
	Operations
	Fluxes and delays
	Embedding into environment: one example

	Objective
	Finite multiple flows
	Orderable objectives
	Increasing objectives

