N

N

RDV: An Alternative To Proof-of-Work And A Real
Decentralized Consensus For Blockchain

Siamak Solat

» To cite this version:

Siamak Solat. RDV: An Alternative To Proof-of~-Work And A Real Decentralized Consensus For
Blockchain. [Research Report] Independent. 2017. hal-01560617v7

HAL Id: hal-01560617
https://hal.science/hal-01560617v7
Submitted on 6 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01560617v7
https://hal.archives-ouvertes.fr

RDV: An Alternative To Proof-of-Work
And A Real Decentralized Consensus For
Blockchain

Siamak Solat

Abstract. A blockchain is a decentralized ledger where all transactions
are recorded. To achieve immutability of transactions history, we need
a real decentralized consensus and permission-less blockchain since in a
permissioned blockchain, although we can accelerate transactions vali-
dation throughput, however contrary to permission-less blockchains that
are open to everybody for participating in transactions validation pro-
cess, in a permissioned blockchain the fate of transactions is controlled
by a limited number of validators such that this fact can impair decen-
tralization of the system. Bitcoin as a permission-less blockchain uses
proof-of-work (PoW). PoW powered blockchains currently account for
more than 90% of the total market capitalization of existing digital cur-
rencies [I]. PoW is a cryptographic puzzle that is difficult to solve but
easy to verify. However, significant latency of proof-of-work for transac-
tions confirmation has negative effects on blockchain security such that
longer delays may increase the number of forks and the possibilities for
mounting double-spending attacks [2]. On the other hand, PoW con-
sumes a significant amount of energy that by growing the network, it
becomes a major problematic of this consensus mechanism. We intro-
duce an alternative to PoW, because of all its major problems and secu-
rity issues that may lead to collapsing decentralization of the blockchain,
while a full decentralized system is the main purpose of using blockchain
technology. The approach we introduce is based on a distributed voting
process and called “RDV: Register, Deposit, Vote” in which all partici-
pants by proceeding a registration step can participate in voting process
in a permission-less blockchain. Since in RDV algorithm, there is no min-
ing process, so it may be more appropriate for low-level energy devices
and Internet of Things (IoT).

Keywords: blockchain, consensus, proof-of-work, energy consumption
efficiency, decentralization

1 Introduction

Bitcoin blockchain [3] was introduced as a peer-to-peer system aims at fully
decentralization of transactions. For this purpose, we need a reliable and im-
mutable blockcahin. It is reachable by a secure and decentralized consensus
mechanism. One of the well-known consensus approaches is proof-of-work. It is
a cryptographic puzzle that is difficult to solve but easy to verify. A consider-
able latency in inter-block time increases possibility of double-spending attack



[2]. On the other side, a miner who controls a significant number of nodes in
a mining pool is able to increase the winning probability of their branch in a
fork by passing their own blocks and rejecting the others [4]. When a temporary
fork occurs, it is possible for an attacker to make a double-spending attack [5]
[6]. Despite belief that PoW has an acceptable scalability as a lottery-based al-
gorithm due to no need to exchange messages [7] ; however, if we define PoW
as one-cpu-one-vote, then with growing the network hashing power of the net-
work will be increased and as a result, we need to increase difficulty of PoW
that causes participating in transactions validation (aka mining process) would
be more difficult for miners who do not possess enough fast processors (CPU /
GPU / ASIC etc) and this situation continues till for participating in mining
process must be joined to a large mining pool. This process, in a long time,
causes the blockchain would be controlled by some large and limited mining
pools. This eventually affects negatively decentralization of the blockchain. On
the other hand, PoW consumes a significant amount of energy that by growing
the network, it becomes a major problematic of this consensus mechanism. This
causes also difficulties in order to use blockchain for low-level energy devices and
IoT. In RDV algorithm, there is no mining process and it does not consume
a considerable energy. This feature causes also the RDV consensus mechanism
would be appropriate for low-level energy devices and Internet of Things.

1.1 Definitions

Definition 1. voting process:

Every transaction for being inserted in a block needs to be participated in
a voting process in which if majority of current voters in the voteRbox vote for
this transaction, it will be inserted in a new block in the blockchain.

Definition 2. registered node:

Every node for participating in a voting process needs to register by pledging
a part of their coins, meaning that if the amount needed for registration is d coins
and the balance of candidate node is ¢ coins, then after registration their balance
becomes (¢ - d) coins.

Definition 3. ordinary node:

Once the voter node decides to leave registration mode to participate in the
network only as an ordinary node, then this part of his coins (i.e. d coins) will
be unblocked such as the node will be able to use it again. In this mode, the
node is not permitted to participate in voting process.

Definition 4. time A:

We consider the time A because we prefer to have the vote of all voters to
achieve better decentralized voting process and on the other hand, maybe some
voters do not participate in some voting processes. So, we choose a reasonable
duration for the time A, such that a registered node must participate at least in
a voting process in every A time unit if at least a transaction has been sent to



the network since A time unit. The duration of the time A depends on incoming
transaction rate in the network. If rate of incoming transactions is high, then
we choose a smaller value for A and vice versa. Because in case of arriving more
transactions, we expect that voters participate in more voting process. Also,
information propagation delay time affects duration of A time. For example,
information propagation time has been calculated for the Bitcoin network by
authors in [8], so this delay time is calculable for any other similar network.
Eventually, according to this delay time and incoming transaction rate we can
calculate duration of A time.

Definition 5. time II:

If there is a voter who has not participated in any voting process for A time
unit while a transaction is sent since A time unit, their identity is removed from
voteRbox for IT time unit. We choose duration of the time I neither very long
such that nodes lose their motivation to continue as a voter nor very short such
that nodes do not sense a penalty. We consider this penalty in order that if nodes
register as a voter, then they have to participate in voting process as much as
possible, otherwise if they do not intend to vote, they must leave registration
mode to become an ordinary node.

Definition 6. Priority Point:

In RDV, the nodes do not decide which transaction must be participated
in voting process, but also there is a parameter, Priority Point, by which a
transaction among others will be selected to be participated in voting process.
This parameter is calculated as follows:

(tx — prp) = [curTi — (tx — tsp)] + (tx — CTR) (1)

Where, (tx — prp) is the priority point of transaction, (tx — tsp) is the time
at which transaction has been sent, curTi is the current time and (tx — CTR)
is a “Confirmation Time Reward” (as defined in below). Then, transaction with
most Priority Point will be selected to be participated in voting process (see

Table .

Definition 7. CTR Parameter (Confirmation Time Reward):

If the result of voting process equals to vote of a voter, then a unit will
be added to CTR parameter of transactions belong to this voter. So, CTR pa-
rameter helps voters to increase the Priority Point of their transactions as an
incentive. As a result, CTR parameter incentivizes voters to participate as much
as possible in voting processes and validating correctly transactions. Thus,
we do not need any resource such as transactions fee to provide the monetary
rewards, such that we can support fee-free transactions. Whereas, in a PoW-
based system, it is crucial to incentivize miners by monetary reward, because
mining process has considerable monetary cost (i.e. energy /electricity along
with providing hardware cost) and so participating in mining process must be
affordable and economic for miners. However, in RDV, participating in voting
process has not a considerable monetary/energy cost and so we can use other



incentives such as “Confirmation Time Reward” (as defined above). Although,
it is possible to exchange this CTR rewards with coins between users.
For example, assume user A possesses some CTRs and user B has some coins.
So they can exchange CTRs and coins between each other by a multi-signature
transaction, meaning that they are exchangeable after both users sign the ex-
change transaction.

2 RDYV Consensus Algorithm

RDYV algorithm has an incentive-punitive mechanism and is based on distributed
voting process. It includes three main steps as follows: (1) Register (2) Deposit
(3) Vote. We then describe the details of RDV algorithm in Section

— Register: Every node to be authorized to vote for a transaction has to reg-
ister. Otherwise, the node participates as an “ordinary node” which is only
able to send transactions. All registered nodes are stored in the blockchain.

— Deposit: It means pledging some coins as collateral to be able to finalise
successfully registration step. The necessary amount of coins for deposit step
is calculable regarding to the price of a coin. The registration process is
acceptable if and only if a part of the coins of the candidate node who
intends to participate in voting process has been deposited, meaning that
the registered nodes have no access to this part of their coins as long as the
node is a “voter”. For example, if the amount needed for registration is d
coins and the balance of candidate node is ¢ coins, then after registration,
their balance becomes (¢ - d) coins. Once the voter node decides to leave
registration mode to participate in the network only as an ordinary node,
then this part of their coins (i.e. d coins) will be unblocked such that the
node will be able to use it again.

— Vote: Every registered node is permitted to vote for transactions, either
positive (i.e. 1) or negative (i.e. 0). Then, voter signs the vote. In case the
result of voting process is not equal to a voter’s vote, then this voter will
lose a part of their deposited coins “for ever” as a penalty. We consider
this penalty to prevent malicious behaviours. The amount of this penalty is
also calculable (like Deposit step). On the other side, if the result of voting
process is equal to the voter’s vote, then this voter receives CTR reward that
is exchangeable with coins by a multi-signature transaction as described in

Section [IL11

2.1 RDV Algorithm Flowchart

In Figure [I] we show the circle of what a node does for every transaction. After
registration, voter starts an infinite loop. Then voter checks if there is a new
transaction. If so, voter inserts new ¢z in his txBox and sorts transactions by
“Priority Point” table (see Table [I]) such that the first transaction in the list
(i.e. txBox[0]) has more Priority Point to be participated in voting process.



Then voter selects a transaction with most Priority Point (i.e. txBox[0]). The
voter checks only transactions that have been sent after his registration, so voter
checks if this ¢tz is sent after his registration. If so, voter checks if this tz is
double-spent. Double-spending is checked using Table (see Section. If tx is
double-spent, voter rejects this tz as a double-spent and waits for another new
transaction. Otherwise, voter checks if ¢z is done properly (ex. sender balance
is sufficient). If everything is fine, voter votes for ¢tz (i.e. vote = 1). If there
is something wrong voter’s vote would be 0. Afterwards, voter broadcasts his
signed voteBox [txID] [voterID] [hash of previous block] including hash of
previous block to both registered and ordinary nodes.

Note that all registered and ordinary nodes have list of voters in voteRboz.
Then every voter and ordinary node updates list of voters (“voteRbox”) to know
who left registration mode. voter then checks his voteBox where they receive
and keep vote of other voters. Afterwards, voter starts a loop and exits from
loop when all voters have participated in voting process.

Then voter checks if there is a voter who has not participated in any voting
process for A time unit while a transaction is sent since A time unit. We consider
the time A because we prefer to have the vote of all voters to achieve better
decentralized voting process and on the other hand, maybe some voters do not
participate in some voting processes. So, we choose a reasonable duration for the
time A, such that a registered node must participate at least in a voting process
in every A time unit if at least a transaction has been sent to the network since
A time unit. The duration of the time A depends on incoming transaction
rate in the network. If rate of incoming transactions is high, then we choose a
smaller value for A and vice versa. Because in case of arriving more transactions,
we expect that voters participate in more voting process. Then if there is such
a voter, their identity is removed from wvoteRbox for II time unit. We choose
duration of the time IT neither very long such that nodes lose their motivation
to continue as a voter nor very short such that nodes do not sense a penalty.
We consider this penalty in order that if nodes register as a voter, then they
have to participate in voting process as much as possible, otherwise if they do
not intend to vote, they must leave registration mode to become an ordinary
node. Because we need vote of all existing registered nodes in currentvoteRboz.
Afterwards, voter updates voteRbox by removing such registered nodes. Then
voter checks if all voters have participated in voting process. If not, voter checks
if there is node(s) who left registration mode. If so, voter updates voteRboz. The
voter continue this loop till all registered nodes in current voteRbox participate
in voting process. Note that as we mentioned above, if a registered node does not
participate in any voting process for A time unit while at least a transaction has
been sent since A time unit, then related node will be removed from voteRbox
and so eventually we achieve a point at which all registered nodes in voteRbox
have participated in voting process (see Section . Then every voter signs
list of voters i.e. voteRbox including hash of previous block and broadcasts it
to all registered and ordinary nodes. Every voter and ordinary node then starts
to count votes. If number of “1” are greater than number of “0”, every voter



and ordinary node creates a new block including this ¢z, signed voteBozes and
voteRboz signed by all voters and inserts new block in the blockchain and puts
deposited coins of voters whose votes was “0” in list of “blocked coins”, meaning
that they are unacceptable to be sent for next transactions by those nodes. If
number of “0” are greater than number of “1”, every voter and ordinary node
puts deposited coins of voters whose votes was “1” in list of “blocked coins” to
be unacceptable for the next transactions. Finally, voter cleans NotParticipate
array includes registered nodes that have not participated in any voting process
for A time unit while at least a ¢tz has been sent since A time unit. Then, voter
waits for receiving another new transaction.

2.2 Correctness of RDV Consensus

We divide the nodes into two sets: ordinary and registered. Then we define a set
of registered nodes as follows:

RNset =rny,rng,...,rn,
Where, rn is a register node and RNset is set of all current registered nodes.

statey: If all registered nodes participate in voting process within A time
unit and all of votes are equal, then we achieve consensus, otherwise we define
states as follows:

states: All registered nodes participate in voting process within A time unit,
however all of votes are not equal. Then, the majority vote value (1 or 0) will be
considered as dominant vote. Additionally, voters who their vote is not equal to
this dominant vote will lose a part of their deposited coins as a penalty and the
rest of voters receive a CTR reward to be motivated (see CTR in section [L.)).

states: If one registered node doesn’t participate in voting process within A
time unit, then, this node will be removed from RNset for I time unit as a
penalty (see section [2.1)). As a result, (n-1) rn will achieve a consensus.

statey: If two registered nodes do not participate in voting process within A
time unit, then, these two rn will be removed from RN set for IT time unit as a
penalty. As a result, (n-2) rn will achieve a consensus.

‘We continue this process till state,,_1 as follows:

staten—1: (n-1) registered nodes do not participate in voting process within
A time unit. Then, (n-1) rn will be removed from RNset for I time unit as a
penalty. As a result, one rn determines the result.

And finally state,:

state,: All of registered nodes do not participate in voting process within
A time unit. Then, all of them will be removed from RNset and after joining
new registered nodes we will have another new set of registered nodes (RN set).
Then, we go to state;. Thus eventually we achieve a consensus.

What happens when a user attempts to cheat and presents an old time-stamp to
increase the Priority Point of his transaction? Since the information propagation



/—‘ﬁ

voter inserts new tx
in "txBox" and sorts
tx list according to
"priority point" table
@

voter starts an infinite
loop

voter rejects tx as a

voter selects a tx with
most "priority point"

tx is sent after
his register

double-

double-spent
-

voter broadcasts his
signed "voteBox"
including hash of
previous block to

both registered and

ordinary nodes )
A

Y
every voter / ordinary
node updates list of
voters ("voterBox") to

know who left
registration mode

voter votes for tx
(vote = 1)

voter starts a loop

and exits from loop
when all voters have
participated

voter checks
"voteBox" of other
voters to know other

votes

voting

Checks if there s
node(s) who left
egistration mode

Checks if all voters
have participated,

voter updates
"voterBox"

voter's vote is 0

Checks if there is @
voter who has not
participated in any

process

for 4 minutes while a
tx is done since
4 minutes

spending
Qccurred

voter reads tx and
verifies if it is done
properly (ex. sender
balance is sufficient)

related voter identity /
public key is removed
from "voterBox" for 1
minutes

voter updates his
"voterBox"

every voter and
ordinary node

creates a new block
including this tx,

signed

every voter and

If number of ones are
greater than number of

to count votes

ordinary node starts

every voter signs list
of voters i.e.
"voterBox" including

voteBoxes and
voterBox signed by
all voters and inserts
new block in the
blockchain

zeros

Insert deposited coins of
voters whose votes was 1 in
list of blocked coins, meaning
that they are unacceptable to
be sent for next transactions.

Insert deposited coins of voters
whose votes was 0 in list of blocked

hash of previous
block and broadcasts
it to all registered and
ordinary nodes

coins, meaning that they are W
unacceptable to be sent for next ’
transactions.

L

array including voters who have not

voter cleans
"NotParticipatedSinceDeltaList"

participated in any
voting process
for 4 minutes while a
txis done since

J

4 minutes
migute

Fig.1. RDV Algorithm Flowchart.



Algorithm 1 RDV Algorithm - Voting Process

Require:
txBox[tx list] > keeps list of transactions a voter receives from the network.
voteBox[tx.ID][voterID][hash of previous block] > keeps votes value.
voteRbox[tx.ID][list of voters|[hash of previous block] > keeps list of voters ID.
1: while () do
2: tx < isThereNeWtx()
3: if (tx # null) then
4: txBox|[tx list] - SorTtxList(tx.time-stamp , txBox[tx list])
5: end if
6: tx + txBox|0]
7 if (tx.time-stamp > voterRegisterTime) then
8: if (Result of checking for douple-spending = true) then
9: remark tx as a double-spent and goto line 2.
10: else if (verify(tx) = true) then
11: Sign(voteBox[tx.ID][voterID][hash of previous block] < 1)
12: else
13: Sign(voteBox|[tx.ID][voterID][hash of previous block] + 0)
14: end if
15: broadcast signed voteBox
16: update voteRbox to know who left registration mode
17: check voteBox of other voters to know other votes
18: while (AllVoterHaveParticipated(voteRbox)# true) do
19: NotParticipatedSinceDeltaList <— NotParticipatedSinceDelta()
20: if (NotParticipatedSinceDeltaList # null) then
21: Remove voters exist in this list from voteRbox for IT time unit.
22: update voteRbox
23: end if
24: if (AllVoterHaveParticipated(voteRbox)# true) then
25: if (there is node(s) who left registration mode) then
26: update “voteRbox”
27: end if
28: end if
29: end while
30: Sign(voteRbox[tx.ID][list of voters]|[hash of previous block])
31: broadcast Sign(voteRbox)
32: Start to count votes
33: if (tx.ID.Ones > tx.ID.Zeros then
34: Create block includes voteBoxes and voteRbox signed by all voters
35: Insert new block in the blockchain
36: Insert deposited coins of voters whose votes was 0 in list of blocked coins
meaning that they are unacceptable to be sent for next transactions.
37: else
38: Insert deposited coins of voters whose votes was 1 in list of blocked coins
meaning that they are unacceptable to be sent for next transactions.
39: end if
40: Cleans NotParticipatedSinceDeltaList
41: end if

42:

end while




is calculable (e.g. m time unit) so, if an adversary node intends to forge the time-
stamp to e.g. (m + 10) time unit ago, then the question of honest nodes is why
this transaction has not been broadcast 10 time units ago (i.e. immediately after
doing transaction)? Thus, there is some issues in this transaction. Moreover,
rational node is able to forge the time-stamp, if the other side of transaction
(i.e. receiver or sender) is adversary as well.

How to bootstrap such a system? The initial deposit has a negative value. It
means that initially a voter deposits -d coins. Then, in case of winning, they get
some rewards and so they have enough coins for the next time. And if they have
to pay some penalty, the first time they receive some coins (e.g. r coins), then
they will have (7 - d) coins.

’ transaction ‘ coin ‘sender address‘Priority Point‘
tx; — timestamp , CTR | coin; address; max
tx; — timestamp , CTR | coin; address;

txx — timestamp , CTR |coinyk addressy

tXm — timestamp , CTR|coiny, addressm min
Table 1. The Priority Point Table.

2.3 Preventing Double-Spending Attack by RDV

In fact, a rational user performs a race attack to be winner in double-spending [9].
This attack is easier to perform in proof-of-work based blockchain compared with
other type of blockchains [9] and the reason is latency of this type of consensus
mechanism [2] and thus the attacker has enough time for double-spending.

Authors in [6] analysed this type of attack in fast payment transactions in
Bitcoin. They proposed an attack in which if three conditions are met, then
rational node can receive the expected item (i.e. the vendor’s service) without
spending any coin:

1. If tx, (transaction sent to vendor) is added to the vendor’s wallet.

2. tx, (transaction sent to a colluding mining pool) is inserted into blockchain.

3. rational node receives expected item from vendor before double-spending
is detected. In such a situation, rational user without spending any coins
receives his item from a vendor.

In RDV, double-spending is impossible or very difficult. Because every trans-
action has need for vote of all current registered nodes, where the list of voters
is updated periodically by A time unit (see section [1.1)). As a result, as long as



stale block

f—lﬁ

|::> ______ txy.coin,

|
i
vendor i
|
|
I
|
| confirmed block
]
]
|
|
i
I
1

f—lﬁ

|::> ,,,,,, tx,.coin, }> _____ txg.coin,

b : \ J
|

longest chain

Fig. 2. a double-spending attack.

majority of voters are honest, every coin that is spent more than one time is
recognised by the priority table, Table [T} and equation

if to; — [coin + address| == tz; — [coin + address] then (2)

a double-spending occurred

where tz is transaction, address is sender’s address and '+’ is concatenation
operation.

2.4 Preventing Blockchain Fork and Block-withholding by RDV

Block-withholding attack was introduced as “Selfish mining attack” in [I0] and
also as “Block Discarding Attack” in [I1]. This attack relies on “block conceal-
ing” and revealing only at a specific time selected by selfish miners or selfish
mining pool. According to [I0], these selfish miners can earn revenues superior
to a fair situation [I2]. That is, the main purpose of block-withholding by selfish
mining pool is achieving more rewards in comparison with its hashing power in
the network. Thus, selfish mining pool’s reward oversteps its mining power in
the network and it can increase its expected mining reward. This attack leads
to blockchain fork.

Although, some solutions are proposed to prevent this attacks [I3I14], how-
ever, in RDV, unlike Bitcoin, the new state of blockchain is not broadcast,
but also list of voters signed by all voters (voteRbox) and list of signed votes
(voteBoz) are broadcast to the network. So, there is no possibility for block-
withholding and forking blockchain intentionally by adversary.

On the other hand, since proof-of-work is a Poisson process, two blocks may
be discovered by two mining pools, almost at the same time. We removed the



Poisson nature of proof-of-work that causes accidental fork in Bitcoin. Instead,
the next transaction for being participated in voting process is selected by Prior-
ity Point table, i.e. Table[I] Transactions in this table are selected sequentially
according to their Priority Point.

2.5 Removing Some Parameters And Criteria

In Pow consensus mechanism, miners try to adjust their strategy to participate
in a “speed game” (i.e. solving PoW puzzle) in which they must produce a new
block with most difficulty (i.e. longest chain) as soon as possible. The “longest
chain” parameter leads to a motivation for “rational” miners to perform a block-
withholding attack [I0] and forking the blockchain.

In RDV, we remove these parameters and benchmarks to avoid these existing
problems of the PoW based blockchains, such that in RDV, there is no mining
process and as a result the difficulty of a chain is not a parameter by which a
new block can be judged or decided.

2.6 Immutability of Transactions History

In RDV consensus, transactions history is immutable because of following rea-
sons.

First of all, note that according to the RDV algorithm (Figure, unlike Bit-
coin, the new state of blockchain is not broadcast, but also list of voters signed
by all voters (voteRbox) and list of signed votes (voteBoxes) are broadcast to
the network.

On the other hand, each block By includes voteRbox and voteBozes as follows
(see also Figure [4):

(voteBox[tx.ID][voterID][Hash(By—_1)])Signed by voter private key
(voteRbox[tx.ID][list of voters][Hash(By_1)])Signed by all voters

Where, Hash(By,—1) contains hash of block By,_;.

So, if adversaries make any changes in block Bp_1 then all blocks after B,
including block By, will become invalid since it includes hash of block Bj_1
signed by all voters of voteRboz.

On the other side, because voteRboz is signed by all voters who are included
in it, so adversaries need to forge signatures of other voters who are not included
in their cartel to make any changes in the list of voters and values of the votes.



tx; in Priority Point table

No

tx; remains in table with
rejected remark

Yes

tx; insetred into blockchain

Fig. 3. A voter can check multiple transactions validation in parallel.

2.7 Increasing Transactions Confirmation Throughput

While in PoW a miner needs very fast processors to do mining process, in RDV, a
voter can participate in voting process by a very ordinary computer. On the other
hand, while mining process to solve PoW puzzle takes significant time (since be-
cause of security issues we need to keep difficulty of PoW high enough), in RDV
there is no mining process and it causes increasing transactions confirmation
throughput. As Figures [3] and [I] show, a voter can check multiple transactions
validation in parallel.

2.8 Block Structure in RDV Algorithm

In this section, we show the structure of blocks in RDV consensus mechanism in
which each block consists of the list of all voters for that transaction signed by
all of them (i.e. voteRbox) along with their signed votes (i.e. voteBox). Both of
these lists include hash of previous block. This feature causes that if adversaries
make any changes in block Bj_; then all blocks after B,_; including block By
will become invalid, because it includes hash of block B;_; that is signed by all
voters of voteRbox. On the other side, because voteRbozx is signed by all voters
who are included in it, so adversaries need to forge signatures of other voters
who are not included in their cartel to make any changes in the list of voters
and values of the votes.

2.9 Main Problems of Proof-of-Work

Here we explain our motivation to propose an alternative to PoW. We mention
most important vulnerabilities and security problems of proof-of-work as follows.
At the same time, we explain how RDV improves these weaknesses and resists
these problems better than proof-of-work.



Block B.b+1l i\\\

tx information : (tx hash, time stamp, amount, sender info, recipient info)

(voteRbox[tx.b+1.ID] [voter.1l, voter.2, ..., voter.m] [hash of bleock B.b])Signed by all voters
(voteBox[tx.b+1.ID] [voter.1] [hash of block B.b])Signed by voter.1l

(voteBox[tx.b+1.ID] [voter.2] [hash of block B.b])Signed by voter.2

(voteBox[tx.b+1.ID] [voter.m] [hash of block B.b]l)Signed by voter.m

/

Elock B.b \

tx information : (tx hash, time stamp, amount, sender info, recipient info)
(voteRbox[tx.b.ID] [voter.1l, voter.2, ..., voter.n][hash of block B.b-1])Signed by all voters
(voteBox[tx.b.ID] [voter.1l] [hash of block B.b-1])Signed by voter.1l

(voteBox[tx.b.ID] [voter.2] [hash of block B.b-1])Signed by voter.2

(voteBox[tx.b.ID] [voter.n] [hash of block B.bfl])signed by voter.n J///

N Y

Block B.b-1 i\\\

tx information : (tx hash, time stamp, amount, sender info, recipient info)
(voteRbox [tx.b-1.ID] [voter.l, voter.2, ..., voter.k][hash of block B.b—2])5iqned by all voters
(voteBox [tx.b-1.ID] [voter.1l] [hash of block B.b-2])Signed by voter.l

(voteBox [tx.b-1.ID] [voter.2] [hash of block B.b-2])Signed by voter.2

——

(voteBox [tx.b-1.ID] [voter.k] [hash of block B.b-2])Signed by voter.k 4///

Fig. 4. Block structure in RDV consensus.



— Energy Consumption: Bitcoin uses significant amount of energy because
of nature of PoW mechanism. This can lead to a considerable problem in
long term. The expected electricity for Bitcoin mining has been debated over
the past few years. The mining process makes Bitcoin very energy-hungry
system where it needs a significant amount of hash computations. The main
resource of these process is electricity. It has been estimated the Bitcoin net-
work currently consumes 2.55 GW of electricity at the least and potentially
7.67 GW in the future. These amounts are comparable to countries like Ire-
land (3.1 GW) and Austria (8.2 GW) [15].

— Monopoly Problem and Decentralization of the Network: If a miner
can take majority of transactions verification resources (i.e. mining calcula-
tion power), then this miner is able to impose the conditions on the rest of the
network. This problem is known as “monopoly” and this miner is called as
“monopolist”. The monopolist can be malevolent or benevolent. The malevo-
lent monopolist performs malicious strategies such as double-spending (race
attack) or DoS attack. If monopolist entity can keep this situation for a
long term, then cryptocurrency reputation will be undermined. Even in case
of benevolent monopolist, cryptocurrency and network reputation is hyper-
dependent on this entity’s decision. At this point, decentralization of the
network is collapsed. Trying for being monopolist increases progressively
over time, because of the concept of the Tragedy of the Commons. De-
centralization of the Bitcoin network is currently under a risk. Since finding
the correct answer of PoW and as a result block generation is (and must be)
very difficult (because of security issues), so only mining pools with signif-
icant hashing power are able to determine the fate of transactions. On the
other side, if a mining pool achieves more than 51 percentage of total hash-
ing power of the network, then according to 51% attack, this mining pool is
able to control the network, where the network cannot control the cost
of requirements for mining operation (such as the cost of GPUs,
ASIC etc) and this means that the network is not able to control
the cost of attack for an adversary. An organization already achieved
more than 51% hashing power of the network [16] and so it may happen
again in the future. And in this case, “we will be forced to trust” this mining
pool with such a hashing power. At this point, we can say that “decentral-
ization of the network is collapsed”. This might mean we have nothing,
when the main purpose of using blockchain technology is maintaining the
system with a real “decentralized” approach.

On the other hand, in Bitcoin consensus mechanism, because of difficulty
in solving the PoW cryptographic puzzle, there is a significant latency in
block generation.This causes inserting several transactions in one block that
affects negatively decentralization of the network. However, in RDV, each
block consists of only one transaction, so this can lead to increasing network
decentralization.



Despite belief that PoW has an acceptable scalability as a lottery-based al-
gorithm due to no need to exchange messages [7] ; however, if we define PoW
as one-cpu-one-vote, then with growing the network hashing power of the
network will be increased and as a result, we need to increase difficulty of
PoW that causes participating in transactions validation (aka mining pro-
cess) would be more difficult for miners who do not possess enough fast
processors and this situation continues till for participating in mining pro-
cess must be joined to a large mining pool. This process, in a long time,
causes the blockchain would be controlled by some large and limited mining
pools. This eventually affects negatively decentralization of the blockchain.

— Latency: The PoW is based on a cryptographic puzzle that is difficult to
solve but easy to verify. The security of PoW is relied on the difficulty of
PoW, meaning that if we decrease the difficulty to accelerate the transac-
tion validation, then it affects negatively the security and consistency. Apart
from delay in transactions validation, this latency causes also vulnerability
against double-spending [2]. While mining process to solve PoW puzzle takes
significant time, in RDV there is no mining process and it causes increasing
transactions confirmation throughput.

2.10 Comparing with Proof-of-Stake

Consensus may be designed in different approaches: The first category is lottery-
based algorithms such as Proof of Work (PoW) and Proof-of-Stake (PoS) in
which the winner of the lottery proposes a block and transmits it to the rest of the
network for validation [7]. On the other side, we have voting-based approaches
such as Redundant Byzantine Fault Tolerance (RBFT) [I7], Practical Byzantine
fault tolerance (PBFT) [I8] and Paxos [I9]. The lottery-based consensuses may
lead to forking when two winners propose a block almost at the same time. Each
fork must be fixed that causes a longer time to finality [7]. The main difference
between RDV and PoS is that while PoS is a lottery based algorithm, RDV
is based on distributed voting process and as we explained before there is no
fork in RDV based blockchain. So, one of the main security problems of PoS
i.e. “nothing at stake problem” that is occurred because PoS is lottery based
consensus and there is possibility of forking blockchain, in RDV there is not
such type of attacks since as we mentioned RDV is a voting based algorithm
and there is no fork in RDV based blockchain. We will explain in more details
the PoS and related problems such as “nothing at stake problem” as follows.

nothing at stake problem The first versions of proof-of-stake did not need a
security deposit such that the users only required owning tokens in order to be
permitted for being a validator, such that having tokens in the wallet was as the
user’s stake. In the case these validators attacked the network, it did not affect
their coins (as their stake). However, in the upgraded version the stake referred to
as the deposited tokens that validators had to send before they were permitted to



propose blocks. The idea behind PoS was that stakeholders with more coins are
less likely to destroy the system since if the blockchain was effectively attacked,
then the value of stakeholders tokens was probable to considerably drop. The
nothing at stake problem is based on the assumption that, every stakeholder
will build on every fork whenever a fork occurs. This assumption is based on two
following reasons:

— Contrary to PoW, it costs nothing for a stakeholder to confirm transactions
on several forks, because they no longer require solving PoW puzzle to create
a block.

— Stakeholders likely build on every fork since if they expand several chains,
then they’ll gain more fees on whichever fork winds up winning. This be-
haviour affects negatively consensus and may lead to make the system more
vulnerable to double-spending. However, in PoW based blockchains, the in-
centive to mine on several chains at the same time causes miners split their
calculation power among several chains such that it does not enhance their
chance to be winner.

As a result, Ethereum (Casper version) intends to prevent this problem by
adding a penalty for validators, meaning that losing a part or all of their de-
posited tokens. However, as we explained, the functionality of RDV is essentially
different since it is a voting based consensus algorithm and there not possibility
of forking RDV based blockchain.

3 Discussion and Future Works: Enhancing Security of
the System by Combination of Interior and Exterior
Resources

We proposed a new consensus mechanism, RDV, as a more decentralized alter-
native to PoW because of its major vulnerabilities, security problems, energy
consumption, latency etc. We proved the correctness of RDV consensus. We
showed that RDV is more democratic, fairer and more decentralized than PoW
and it can resist major problems such as double-spending, forking blockchain,
immutability of transactions history and transactions confirmation throughput
better than PoW by achieving a more decentralized system. RDV algorithm has
an incentive-punitive mechanism since for achieving an ideal crypto-currency,
we need to design an appropriate incentive-punitive system such that according
to the Nash equilibrium, diverging from the protocol does not lead to a net profit
for the adversary [20].

RDYV is based on distributed voting process and since in RDV algorithm, there is
no mining process, so it is appropriate for low-level energy devices and Internet
of Things (ToT).



In general, security of a system must not be depended on only ezterior re-
sources. For example, in Bitcoin, if a miner has access to a cheap or free elec-
tricity resources, then the network faces significant security risks. Since the cost
of necessary electricity for mining process is not controllable via inside of the
system, so we are not able to control security of the system as it should be. On
the other hand, if miners have access to free or cheap electricity resources, they
do not spend an adequate penalty for their malicious behaviour such as forking
blockchain. In other words, forking blockchain has no considerable cost for the
adversary. Thus, the security parameters must be controllable via the inside
of the system.

However, exterior resources can be very useful as a “complementary” pa-
rameter, meaning that exterior resources can be employed as a complementary,
but the main resources for ensuring security of the system must be chosen from
inside of the system (ex. coins in a crypto-currency network). Consequently, in
this way, we intend to extend the RDV algorithm by adding an external cost
for participating in transactions confirmation. Regarding the fact that relying
on mining process is very energy-hungry mechanism, so we focus on using ap-
proaches such as Proof-of-Space-Time (PoST) [21], such that every node before
vote for a transaction has to prive spending a space-time resource, meaning that
the storage over a period of time (based on the approach described in [21I]). We
try to keep supporting fee-free transactions and at the same time avoiding spam
transactions by adding an external cost for adversary, but contrary to PoW that
is CPU / processor based, we focus to use memory based approached. We also
keep voting based approach (instead of lottery based) since they have voting-
based algorithms are advantageous in that they provide low latency finality and
better avoiding blockchain fork [7]. So, we use memory as an complementary
external cost to prevent and control the attacks more efficiency by imposing
more cost on the adversary. The approach based on spending “space-time”
is more flexible by having two parameters: spending (1) storage and (2) time,
such that we can adjust its parameters more efficiency for the low level energy
devices by ex. relying more on the time parameter than the memory depending
on the equipments.

So, this approach will increase the cost of attacks for an adversary by using
both internal cost (i.e. the coins pledged as collateral by voter at time of regis-
tration) and external cost (i.e. spending a space-time resource), whereas PoW
relies only on external cost (i.e. processor and electricity cost for mining process)
while the cost of an external resource is not controllable by the network.

4 Other Blockchain Consensuses And Their
Vulnerabilities

— Practical Byzantine Fault Tolerance: PBFT is a replication algorithm that
is able to tolerate Byzantine faults [I8] up to 1/3 malicious byzantine repli-



cas. One of blockchain platforms that employs PBFT is Hyperledger Fabric
[22]. In this approach a new block is created in a round in which a pri-
mary will be selected based on several rules. Then, it will be responsible for
ordering transactions. The process is divided into three phases as follows:
pre-prepared, prepared and commit, such that each node is permitted to
enter the next phase if it has gotten 2/3 votes of all nodes. As a result, the
nodes in PBFT must be known to the network. One of the PBFT problems is
its scalability, because every node must send messages to every other node,
such that for n nodes, the number of required messages are n(n-1) (with
complexity of O(n?)). So, it is not scalable to large networks and as a result,
it is used in a permissioned blockchain where number of permitted validators
is limited.

Delegated-Proof-of-Stake: DPoS [23] is a specific type of PoS in which stake-
holders choose their delegates to validate transactions and create new block
such that the number of nodes who validate transactions considerably is de-
creased and so the new block can be confirmed faster. Also, block size and
block interval time can be adjusted by selected delegates. Those delegates
might be deselected by stakeholders. The main security problems of PoS
remain with DPoS.

Ripple: This consensus approach [24] uses collectively-trusted sub-networks
within the larger network. It divides the nodes into two types: server and
client. While the servers participate in consensus, the clients are only permit-
ted to send funds. every server owns a unique list, named UNL (Unique Node
List). At time of deciding if a transaction must be inserted into the ledger,
the server sends a query to its UNL such that if the received agreements
have reached 80%, transaction will be put into the ledger. In this protocol,
till the number of faulty nodes in UNL is less than 20%, the ledger will be
accepted as a correct one.

The ripple consensus algorithm (RPCA) is a round based mechanism in
which in every round:

1. Servers take valid transactions which have not been previously applied.
Then, they publish them in a form a list, “candidate set”.

2. Then,every server combine all servers candidate sets on his Unique Node
List. Then, they vote on accuracy of transactions.

3. Transactions which get more than a minimum percentage of “positive
votes”, are authorized to pass to next round. The rest of transactions
will be discarded, or inserted in candidate set to be waited for the next
ledger.

4. Last round needs for a minimum percentage of 80% of a server’s Unique
Node List agreeing on a transaction.

5. The eligible transactions are inserted to the ledger. the ledger then is
closed to become a new Last Closed Ledger.

Ripple Protocol Components: The Ripple protocol consists of following com-
ponents:



1. Server: There are two types of Ripple software: Ripple Server software
which runs by an entity, called as Server that participates in consensus
protocol. And Ripple Client software that only permits a user to send
and receive the funds.

2. Ledger: It holds the amount of currency in every account in the net-
work and is updated periodically with transactions after via a consensus
mechanism.

3. Last Closed Ledger: It is the most recent ledger which has been approved
after a consensus. It represents the current state of the network.

4. Open Ledger: Every node holds its local open ledger. Transactions in
the open ledger are not considered till they have been approved via a
consensus mechanism when the open ledger becomes last closed ledger.

5. Unique Node List (UNL): Every server s holds a UNL which consists of
a set of other servers that are queried by s at the time of determining
consensus.

6. Proposer: Every server is able to broadcast the transactions to be in-
cluded in consensus mechanism. They also try to include a valid trans-
action at the time a new consensus round.

Mining in Ripple Protocol: Ripple is based on a blockchain-similar mech-
anism. However, unlike Bitcoin network, it does not need for an energy-
consumer mining process and it is only based on a consensus mechanism.
This technology is employed by large organizations e.g. banks.

The main purpose of this idea is to permit financial institutions to transfer
any type of asset (e.g. currencies, gold, etc).

— Tendermint: This approach [25] is a Byzantine and round based consensus
algorithm in which a new block will be created in a round, such that in
a round a proposer is selected to broadcast a new block that is not yet
confirmed. In the first step, validators decide about broadcasting a “Prevote”
for a proposed block. Then, If a node receives more than 2/3 of “Prevotes”
for the proposed block, it will broadcast a “Precommit” for proposed block.
Then, If the node receives over 2/3 of “Precommits”, then node confirms the
block and broadcasts a commit confirmation for proposed block. Eventually,
if the node receives 2/3 of the commits, then it accepts the new block.
Contrary to PBFT, the nodes need to lock their coins to be a validators.

References

1. Gervais, Arthur, et al. “On the security and performance of proof of work
blockchains.” Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016.

2. Karame, Ghassan O., et al. “Misbehavior in bitcoin: A study of double-spending and
accountability.” ACM Transactions on Information and System Security (TISSEC)
18.1 (2015): 2.

3. Nakamoto, Satoshi. “Bitcoin: A peer-to-peer electronic cash system.” Consulted
1.2012 (2008): 28



4. Bonneau, Joseph, et al. “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies.” 2015 IEEE Symposium on Security and Privacy. IEEE, 2015

5. Bamert, Tobias, et al. “Have a snack, pay with Bitcoins.” Peer-to-Peer Computing
(P2P), 2013 IEEE Thirteenth International Conference on. IEEE, 2013

6. G. O. Karame, E. Androulaki, S. Capkun, Double-spending fast payments in bitcoin,
in: Proceedings of the ACM conference on Computer and communications security,
2012, pp. 906-917.

7. Hyperledger Architecture, Volume 1 Introduction to Hyperledger Business
Blockchain Design Philosophy and Consensus https://www.hyperledger.org/
wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

8. Decker, Christian, and Roger Wattenhofer. “Information propagation in the bit-
coin network.” Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on. IEEE, 2013

9. Li, Xiaodqi, et al. “A Survey on the security of blockchain systems.” Future Gener-
ation Computer Systems (2017)

10. Eyal, Ittay, and Emin Giin Sirer. “Majority is not enough: Bitcoin mining is vul-
nerable.” Financial Cryptography and Data Security. Springer Berlin Heidelberg,
2014. 436-454

11. Bahack, Lear. “Theoretical Bitcoin Attacks with less than Half of the Computa-
tional Power (draft).” arXiv preprint arXiv:1312.7013 (2013)

12. Luu, Loi, et al. “On power splitting games in distributed computation: The case of
bitcoin pooled mining.” Computer Security Foundations Symposium (CSF), 2015
IEEE 28th. IEEE, 2015

13. Solat, Siamak, and Maria Potop-Butucaru. “ZeroBlock: Preventing Selfish Mining
in Bitcoin.” arXiv preprint arXiv:1605.02435 (2016)

14. Heilman, Ethan. “One weird trick to stop selfish miners: Fresh bitcoins, a solution
for the honest miner.” (2014)

15. de Vries, Alex. “Bitcoin’s Growing Energy Problem.” Joule 2.5 (2018): 801-805.

16. Eyal, Ittay. “The miner’s dilemma.” Security and Privacy (SP), 2015 IEEE Sym-
posium on. IEEE, 2015.

17. Aublin, Pierre-Louis, Sonia Ben Mokhtar, and Vivien Quéma. “Rbft: Redundant
byzantine fault tolerance.” Distributed Computing Systems (ICDCS), 2013 IEEE
33rd International Conference on. IEEE, 2013.

18. Castro, Miguel, and Barbara Liskov. “Practical Byzantine fault tolerance.” OSDI.
Vol. 99. 1999.

19. Lamport, Leslie. “The part-time parliament.” ACM Transactions on Computer
Systems (TOCS) 16.2 (1998): 133-169.

20. Kroll, Joshua A., Ian C. Davey, and Edward W. Felten. “The economics of Bitcoin
mining, or Bitcoin in the presence of adversaries.” Proceedings of WEIS. Vol. 2013.
2013

21. Moran, Tal, and Ilan Orlov. “Proofs of Space-Time and Rational Proofs of Stor-
age.” IACR Cryptology ePrint Archive 2016 (2016): 35.

22. Cachin, Christian. “Architecture of the hyperledger blockchain fabric.” Workshop
on Distributed Cryptocurrencies and Consensus Ledgers. Vol. 310. 2016.

23. Larimer, Daniel. “Delegated proof-of-stake (dpos).” Bitshare whitepaper (2014).

24. Schwartz, David, Noah Youngs, and Arthur Britto. “The Ripple protocol consensus
algorithm.” Ripple Labs Inc White Paper 5 (2014)

25. Kwon, Jae. “Tendermint: Consensus without mining.” URL http://tendermint.
com/docs/tendermint-v04. pdf (2014)


https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

	: An Alternative To Proof-of-Work
	Introduction
	Definitions

	RDV Consensus Algorithm
	RDV Algorithm Flowchart
	Correctness of RDV Consensus
	Preventing Double-Spending Attack by RDV
	Preventing Blockchain Fork and Block-withholding by RDV
	Removing Some Parameters And Criteria
	Immutability of Transactions History
	Increasing Transactions Confirmation Throughput
	Block Structure in RDV Algorithm
	Main Problems of Proof-of-Work
	Comparing with Proof-of-Stake
	nothing at stake problem


	Discussion and Future Works: Enhancing Security of the System by Combination of Interior and Exterior Resources
	Other Blockchain Consensuses And Their Vulnerabilities


