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1 Introduction

1.1 Motivation and main contribution

The present work deals with the mathematical modeling of volumetric growth
in thermoelastic bodies. The mechanical models are based on the general idea
that growth can be taken into account by considering that deformations of a
growing solid body are due to both changes of mass and elastic deformation.
The most important statement of the theory from a kinematic viewpoint ([19])
is that the geometric deformation tensor is decomposed into the product of a
growth tensor describing the local addition of material and an elastic tensor
characterizing the reorganization of the body. The rigorous foundation of the
volumetric growth theory was given in [7], with the so-called transplant ten-
sor representing the growth transformation; our developments are based on
the equations formulated in this last work. In this paper, we investigate the
following questions:

Problem 1 In the framework of finite elasticity [27] we want to determine
the state variables of growing elastic body including the deformation vector
field u, the scalar temperature θ and the so-called transplant mapping K
satisfying respectively the momentum balance equation, the energy balance
equation, and the nonlinear evolutionary equation for the transplant field K
supplemented with initial and boundary conditions.

Note 1 There are local, classical solutions to the model of growing, elastic
body (3.5)-(3.6), when the initial transplant field has the form of the sum of
a rotation and a bounded mapping. The precise mathematical result with the
full proof is given by Theorem 1.

1.2 Short literature review

Growth (resp. atrophy) describes the physical processes by which a material
of solid body increases (resp. decreases) its size by addition (resp. removal) of
mass. A clear distinction is generally made between growth per se, remodel-
ing (change of properties), and morphogenesis (shape changes), a classification
suggested by [24] Taber (1995). The advantages and drawbacks of the existing
growth models are exposed in the recent contribution [14](Menzel and Kuhl,
2012). A first class of models is the kinematic models describing an evolu-
tion towards an homeostatic state rely on the kinematic decomposition of the
transformation gradient into a generally incompatible mapping and an elastic
mapping; they were historically introduced by [20] Rodriguez et al. (1994).
The growth transformation evolves in time as a function of the difference be-
tween a stress measure and a corresponding measure associated to the surmised
homeostatic state ([24] Taber, 1998 ; [21] Rodriguez et al., 2007; [1] Alford et
al., 2008 ; [28] Vignes et Papadopoulos, 2010). This first class of models is
criticized due to the absence of a rational mechanical framework. Approaches
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analogous to elastoplasticity have then been developed as a second class of
models in a rational framework basing on the writing of the second principle
of thermodynamics for open systems, in order to identify the evolution laws
of growth ([12] Kuhl et al., 2007 ; [13] Menzel, 2007 ; [16] Olsson et Klarbring,
2008). It is important to note the prominent role of Eshelby stress in relation
to the material driving forces for growth ([9], [10] Ganghoffer, 2010, 2011; [12]
Kuhl et al., 2007), relying on Eshelby pioneering approach ([8] Eshelby, 1957).
Central here is the idea to separate the shape variation due to the physical
motion from the microstructural evolutions due to growth and remodeling
phenomena occurring in the evolutive reference configuration.

2 Mechanical background

2.1 Finite elasticity

Constitution law. In this section we briefly discuss a basic facts from the finite
elasticity theory. Throughout of the paper we shall assume that Ω ⊂ R3 is a
bounded reference domain with the boundary ∂Ω of class C∞ in the space of
variable x. The state of an elastic material is characterized by a deformation
field u = (u1, u2, u3) : Ω × [0, T ] → R3 and the Kelvin temperature θ :
Ω × [0, T ]→ R+. The elastic distorsion tensor Du is the Jacobi matrix of the
mapping u with the entries

Duij(x, t) = ∂jui(x, t), (x, t) ∈ Ω × [0, T ]

Here the notation
∂i := ∂xi

= ∂/∂xi,

stands for the spatial derivatives. We will assume that the material is hy-
perelastic and it properties are described by the specific free energy density
Ψ(θ,Du). In particular, a stress tensor T(θ,Du) and internal energy e(θ,Du)
are defined by the formulae

T(θ,Du) =
∂Ψ(θ,Du)

∂(Du)
, e = Ψ(θ,Du)− θ∂Ψ(θ,Du)

∂θ
. (2.1)

Here ∂Ψ(θ, Φ)/∂Φ denotes the matrix with the entries(∂Ψ(θ, Φ)

∂Φ

)
ij

=
∂Ψ(θ, Φ)

∂Φij
.

In many applications, it is sufficient to take the specific free energy density in
the form

Ψ(θ,Du) = −cT θ log θ + θW (Du), (2.2)

where W is the stored elastic energy. The specific free energy density satisfies
the two following conditions

T(θ, Φ)Φ> = ΦT(θ, Φ)>, (2.3)

T(θ,RΦ) = RT(θ, Φ) (2.4)
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for θ, for all matrices Φ, and for all orthogonal matrices R. Relation (2.3)
expresses the angular momentum conservation law, and relation (2.4) expresses
the observer independence principle.

Unstressed state and its stability. We assume that the reference configuration
is unstressed, i.e.,

T(θ, I) = 0 for all θ. (2.5)

It follows from (2.4) that

T(θ,R) = 0 (2.6)

for all θ and all orthogonal matrices R. In order to characterize stability prop-
erties of the reference configuration, it is convenient to introduce the linear
matrix-valued form L(θ, Φ) defined on the linear space of 3× 3 matrices ξ by
the equalities

L(θ, Φ) ξ =
∂T(θ, Φ)

∂Φ
ξ =

∂T(θ, Φ)

∂Φpq
ξpq. (2.7)

Notice that L(θ, Φ) ξ is a matrix with the entries

(
L(θ, Φ) ξ

)
ij

= lijpq(θ, Φ)ξpq, where lijpq(θ, Φ) =
∂2Ψ(θ, Φ)

∂Φij∂Φpq
. (2.8)

The linear form L is associated with the bilinear form

L(θ, Φ) ξ · η = lijpq(θ, Φ) ξpq ηij . (2.9)

The following lemma will be used throughout the paper.

Lemma 1 For all θ, for all matrices ξ, η, for all orthogonal matrices R, and
for all skew-symmetric matrices ζ,

L(θ,R)(ξR) · (ηR) = L(θ, I)(R>ξR) · (R>ηR), (2.10)

L(θ,R)(ζR) = 0, (2.11)

lijpq(θ,R) = lαjσq(θ, I)RpσRiα (2.12)

Proof It follows from (2.4) that

T(θ,ZR) = RT(θ,R−1ZR) = RT(θ,R>ZR).

Choosing Z = I + tξ, we obtain

T(θ,R + tξR) = RT(θ, I + tR>ξR).

Differentiation both sides of this equality with respect to t at t = 0 gives

∂T

∂Φ
(θ,R)(ξR) = R

∂T

∂Φ
(θ, I)(R>ξR). (2.13)
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Hence

L(θ,R)(ξR) · (ηR) = (ηR) · ∂T

∂Φ
(θ,R)(ξR) = (ηR) ·

(
R
∂T

∂Φ
(θ, I)(R>ξR)

)
=

(R>ηR) ·
(∂T

∂Φ
(θ, I)(R>ξR)

)
= L(θ, I)(R>ξR) · (R>ηR),

which gives (2.10). In order to prove (2.11), take an arbitrary skew-symmetric
matrix ζ. Obviously, for every t ∈ R, the matrices exp(tζ) and exp(tζ)R are
orthogonal. From this and (2.6), we obtain T(θ, exp(tζ)R) = 0. Differentiating
both sides of this equality with respect to t at t = 0 leads to (2.11). Next notice
that relation (2.13) can be rewritten in the form

lijpβ(θ,R)Rµβξpµ = lαjσβ(θ, I)RiαRµβRpσξpµ,

which gives (
lijpβ(θ,R)− lαjσβ(θ, I)RiαRpσ

)
Rµβξpµ = 0

Since ξ is an arbitrary matrix, we obtain(
lijpβ(θ,R)− lαjσβ(θ, I)RiαRpσ

)
Rµβ = 0 for all µ, p

Now fix an arbitrary q and note that RµβRµq = δβ,q. It follows that

lijpq(θ,R)− lαjσq(θ, I)RiαRpσ = 0,

and the lemma follows.

We will assume throughout the paper that the specific energy satisfies the
following stability condition

L(ϑ, I)ξ · ξ ≥ c(θ)|ξ + ξ>|2, (2.14)

for all matrices ξ. Here the constant c(θ) is strongly positive and bounded for
positive and bounded θ.

Remark 1 It follows from stability condition (2.14) that for every orthogonal
R,

L(θ,R)(ξR) · (ξR) ≥ c(θ)|ξ + ξ>|2. (2.15)

Indeed, in view of Lemma 1 condition (2.14) and the identity

R>ξR + (R>ξR)> = R>(ξ + ξ>)R

we have

L(θ,R)(ξR) · (ξR) = L(θ, I)(R>ξR) · (R>ξR) ≥
c(θ)|R>(ξ + ξ>)R|2 = c(θ)|ξ + ξ>|2.

The following symmetry result is a well-known property of symmetry condi-
tions (2.3)-(2.4) and equality (2.6) , see [11], [27], [3] for the proofs.

Lemma 2 For every θ,

l(θ, I)ijpq = l(θ, I)pqij = l(θ, I)jipq = l(θ, I)ijqp.
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Fig. 1 Kinematics of volumetric growth: configurations and transplant mapping associated
to growth.

2.2 Growing material

The main hypothesis of the volumetric growth theory is that a material consists
of infinitesimally small particles O(x, t) labeled by the reference coordinate x
and t. The growth of each particle is determined by the transplant matrix
K(x, t) : O(x, t) → K(x, t)O(x, t). Thus the distorsion tensor has the form of
the product DuK of the elastic distorsion tensor Du and the transplant K.
The transplant tensor is responsible for material growth.

For growing materials, the specific free energy Ψg(θ,K, Du), the stress ten-
sor Tg(θ,K, Du), and the internal energy eg(θ,K, Du) are defined as follows.

Ψg(θ,K, Du) =
1

JK
Ψ(θ,DuK), (2.16a)

Tg(θ,K, Du) =
1

JK

∂Ψ(θ,DuK)

∂(Du)
, (2.16b)

eg(θ,K, Du) =
1

JK

(
Ψ(θ,DuK)− θ∂Φ(θ,DuK)

∂θ

)
. (2.16c)

Here JK = det K, Ψ is the specific free energy density of the basic elastic
material. It is easy to see that

Tg(θ,K, Du) =
1

JK

∂Ψ(θ, Φ)

∂Φ
K>, where Φ = DuK. (2.17)

If we take the specific free energy in the form

Ψg(θ,K, Du) =
1

JK

(
− cT θ log θ + θW (DuK)

)
, (2.18)
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then we get the following expression for the stress tensor an the internal energy

Tg =
θ

JK

∂W (Φ)

∂Φ
K>, where Φ = Du K, eg =

cT
JK

θ. (2.19)

The reference configuration is unstressed if and only if K = R(x, t), where R
is an orthogonal matrix. We stress that the tensor K is not potential, and R
is an arbitrary orthogonal matrix depending on (x, t). For given θ, K and Du,
define the linear matrix-valued form Lg(θ,K, Du) by the equality

Lg(θ,K, Du)ξ = lim
τ→0

1

τ

{
Tg(θ,K, Du + τξ)−Tg(θ,K, Du)

}
. (2.20)

Calculations shows that(
Lg(θ,K, Du)ξ

)
ij

= lg,ijpq(θ,K, Du) ξpq, (2.21)

where

lg,ijpq(θ,K, Du) =
1

JK

∂2Ψ(θ, Φ)

∂Φiα∂Φpβ
KjαKqβ , Φ = DuK. (2.22)

The associated bilinear form is defined by

Lg(θ,K, Du)ξ · η = lg,ijpq(θ,K, Du) ξpqηij (2.23)

It follows from (2.22) that the forms Lg and L are connected by the relations

Lg(θ,K, Du)ξ · η = L(θ,Φ)(ξK) · (ηK), Φ = DuK. (2.24)

The following lemma is the extension of Lemma 1 to the case of growing
materials.

Lemma 3 Let Ψ satisfies symmetry conditions (2.3)-(2.4), equilibrium con-
dition (2.6), and stability condition (2.14). Then, for all θ, for all matrices ξ,
for all orthogonal matrices R, and for all skew-symmetric matrices ζ,

Lg(θ,R, I)ξ · ξ ≥ c(θ)|ξ + ξ>|2, (2.25)

Lg(θ,R, I)ζ = 0, (2.26)

lg,ijpq(θ,R, I) = lαmσn(θ, I)RiαRjmRpσRqn. (2.27)

Proof Notice that JK = 1 for K = R. It follows from this and (2.24) that

Lg(θ,R, I)ξ · ξ = L(θ,R)(ξR) · (ξR).

From this and (2.10) we conclude that

Lg(θ,R, I)ξ · ξ = L(θ, I)(R>ξR) · (R>ξR) ≥
c(θ)|R>ξR + (R>ξR)>|2 = c(θ)|R>(ξ + ξ>)R|2 = c(θ)|ξ + ξ>|2,
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which leads to (2.25). Next, representation (2.21) implies

(
Lg(θ,K, Du)ξ

)
ij

=
1

JK

∂2Ψ(θ, Φ)

∂Φiα∂Φpβ
ξpqKqβKjα =

1

JK
liαpβ(θ, Φ)(ξK)pβKjα =

1

JK

(
L(θ, Φ)(ξK)

)
iα
Kjα,

where Φ = DuK. Setting K = R, Du = I, and ξ = ζ, we obtain(
Lg(θ,R, I)ζ

)
ij

=
(
L(θ,R)(ζR)

)
iα
Rjα,

which along with (2.11) yields (2.26). Next, it follows from representation
(2.22) that

lg,ijpq(θ,R, I) = liαpβ(θ,R)RjαRqβ .

Combining this result with (2.12), we obtain (2.27), which completes the proof.

Lemma 4 For every θ,

lg,ijpq(θ,R, I) = lg,pqij(θ,R, I) = lg,jipq(θ,R, I) = lg,ijqp(θ,R, I).

Proof The proof obviously follows from (2.27) and the symmetry relations in
Lemma 2.

3 Problem formulation. Assumptions. Results

Problem formulation. The problem consists of finding a deformation u, a tem-
perature θ and a transplant K satisfying the quasi-stationary momentum bal-
ance equation

div Tg(θ,K, Du) + f = 0, (3.1)

the energy balance equation

∂

∂t
eg(θ,K, Du) + div q = Tg(θ,K, Du) · ∂

∂t
(Du), (3.2)

and the evolutionary equation for K,

∂

∂t
K = g(θ,K,u). (3.3)

Here q = q(∇θ, θ,K, Du) is a given heat flux, g a given matrix-valued func-
tion, f a given exterior dead force; the stress tensor Tg and the internal energy
eg are defined by (2.16). Further, we assume that the free energy density is
in the form (2.18) and take the heat flux in the simplest thermodynamically
consistent form

q = ∇
(1

θ

)
. (3.4)

Thus, we obtain the following system of differential equations in the cylinder
Ω × (0, T )

div Tg(θ,K, Du) + f = 0 in Ω × (0, T ), (3.5a)
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∂

∂t

(cT θ
JK

)
+∆

(1

θ

)
= Tg(θ,K, Du) · ∂

∂t
(Du) in Ω × (0, T ), (3.5b)

∂

∂t
K = g(θ,K,u) in Ω × (0, T ). (3.5c)

Here

Tg =
θ

JK

∂W (Φ)

∂Φ
K>, Φ = Du K.

These equations should be supplemented with boundary and initial conditions.
For growing material, the problem of place with a fixed deformations of the
boundary is not natural and we will instead consider the traction problem for
the momentum equation

−Tg(θ,K, Du)n + h = 0 on ∂Ω × (0, T ) (3.6a)

For simplicity we assume that there is no heat flux through the boundary,
which leads to the following boundary condition for the temperature

∇θ · n = 0 on ∂Ω × (0, T ). (3.6b)

At the initial moment, the temperature and the transplant should be pre-
scribed

θ(x, 0) = Θ(x), K(x, 0) = K0(x) in Ω. (3.6c)

Here n is the unit outward normal vector to ∂Ω, h, Θ and K0 are given
functions.

Before the formulation of results, it is convenient to introduce necessary
notation and to formulate the assumptions on the boundary and initial data.

Definition 1 A couple (f ,h) ∈ C(Ω)× C(∂Ω) is said to be equilibrated if∫
Ω

f dx+

∫
∂Ω

h ds = 0,∫
Ω

(xifj − xjfi) dx+

∫
∂Ω

(xihj − xjhi) ds = 0

(3.7)

for all i, j.

Following [5], we introduce the astatic matrix C with the entries

Cij =

∫
Ω

xifj dx+

∫
∂Ω

xihj ds. (3.8)

If the couple (f ,h) ∈ C(Ω) × C(∂Ω) is equilibrated, then the astatic matrix
is symmetric.

Definition 2 An equilibrated couple (f ,h) ∈ C(Ω) × C(∂Ω) is said to be
non-degenerate if there is a positive c∗ such that

|µi + µj | ≥ c∗(‖f‖C(Ω) + ‖h‖C(∂Ω)) for all i 6= j, (3.9)

where µi are eigenvalues of the matrix C.
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Remark 2 An equilibrated couple (f ,h) ∈ C(Ω)×C(∂Ω) is non-degenerate if
and only if for every skew-symmetric matrix Y the equations

XC− (XC)> = Y, X = −X>

have a unique solution, which admits the estimate

|X| ≤ (c∗)−1(‖f‖C(Ω) + ‖h‖C(∂Ω))
−1|Y|

Indeed, we can rewrite the first equation in the form XC + CX = Y. Since
C is symmetric, there is an orthogonal matrix U such that UCU> = J,
where J = diag {µi}. Thus we get XU>JU + U>JUX = Y, which leads to
ZJ + JZ = H, with the skew symmetric matrices Z = UXU>, H = UYU>.
It remains to note that the latter equation can be written in the form

(µ1 + µ2)Z12 = H12, (µ1 + µ3)Z13 = H13, (µ2 + µ3)Z23 = H23.

Definition 3 For given constant c∗ > 0, denote by Fc ⊂ C(Ω × ∂Ω) the set
all equilibrated non-degenerate couples (f ,h) 6= 0 satisfying inequality (3.9).

It is easily seen that zero is a limiting point of Fc and the set F is star-shaped,
i.e., if (f ,h) ∈ Fc, then ε(f ,h) ∈ Fc for all ε 6= 0. Finally, denote by A the
annulus {1/2 ≤

∣∣|Φ|−1
∣∣ ≤ 2}. We assume that the specific free energy, function

g and the initial and boundary data satisfy the following conditions.

H.1 The specific free energy density Ψg has the form

Ψg(θ,K, Du) =
1

JK

(
− cT θ log θ + θW (DuK)

)
.

The elastic stored energy W ∈ C∞(A), and the matrix value function
g ∈ C∞(R×A×A).

H.2 Let T be an elastic energy tensor with the entries Tij = θ∂W (Φ)/∂Φij .
Then for all Φ ∈ A and all orthogonal matrices R,

T(θ, Φ)Φ> = ΦT(θ, Φ)>, T(θ,RΦ) = RT(θ, Φ), T(θ,R) = 0.

H.3 Let the bilinear form L(θ, Φ) be defined by (2.8)-(2.9). Then

L(θ, I)ξ · ξ ≥ cθ|ξ + ξ>|2 for all matrices ξ.

H.4 There is c∗ > 0 such that (f(t),h(t)) ∈ Fc for every t ∈ [0, T ]. The function
Θ ∈ C∞(Ω) satisfies the conditions

0 < c−1 < Θ < c <∞, ∂nΘ = 0 on ∂Ω.

The following theorem is the main result of this paper
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Theorem 1 Let p > 3. Let conditions (H.1)-(H.4) be satisfied. Furthermore
assume that

K0(x) = R(x) + k0(x), (3.10)

where R ∈ C∞(Ω) is an arbitrary orthogonal matrix and k0 ∈ C∞(Ω) is an
arbitrary perturbation of R. Then, there are λ0 > 0, ε0 > 0, and T0 > 0 with
the following property. For all λ ∈ (0, λ0], for all ε ∈ (0, ε0], for all (f ,h) ∈ Fc,
and for all matrix-valued functions k0 satisfying

‖f‖C1(0,T ;C(Ω)) + ‖h‖C1(0,T ;C(∂Ω)) ≤ ε, ‖k0‖Wp,2(Ω) ≤ λ, (3.11)

problem (3.5)-(3.6) has a locally unique solution

u ∈ L∞(0, T0;W 2,p(Ω)), K ∈ L∞(0, T0;W 1,p(Ω)),

θ ∈ Lp(0, T0;W 2,p(Ω))
(3.12)

with

∂tu ∈ Lp(0, T0;W 1,p(Ω)), ∂tK ∈ Lp(0, T0;W 1,p(Ω)),

∂tθ ∈ Lp(0, T0;W 1,p(Ω)).
(3.13)

The rest of the paper is devoted to the proof of this theorem. As will appear in
the subsequent modified problem, the transplant field at any time (so not only
tits initial value) shall be decomposed into a rotation and a deformation; this
decomposition is in line with the fact that growth is defined up to a rotation,
which can be accounted for in the accommodation mapping require to restore
overall kinematic compatibility. We shall show that the decomposition holds
only for bounded (small enough) transplant fields, so that it becomes additive.

Our strategy is the following. We are looking for a solution to problem
(3.5)-(3.6) in the form u(x, t) = x + S(t)x + v(x, t), where S(t) is a skew-
symmetric matrix and v is a vector field, which is orthogonal to rigid motions.
Next, we exploit the method developed in [5] and replace problem (3.5)-(3.6)
by the extended problem for S, v and K, θ. Then we use the Implicit function
Theorem in order to represent S and v as functions of θ and K. Next, we
substitute the result in the equations for θ and K in order to obtain the evolu-
tionary system of operator equations for these functions. Finally, we solve the
obtained evolutionary equations by using the method of successive approxi-
mations.

4 Modified problem

In this section, we formulate the extension of the basic equations (3.5)-(3.6).
To this end, we introduce some auxiliary constructions. Following [5], we define
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the special nonlinear projection of the stress tensor on the space of equilibrated
vector fields. Let choose an arbitrary vector field ϕ ∈ C∞(Ω) such that∫

Ω

ϕ dx = 0,

∫
Ω

xiϕj(x) = 0 for all i 6= j,∫
Ω

(xiϕi(x) + xjϕj(x)) dx 6= 0 for all i, j.

(4.1)

Next we define the integral matrix-valued integral operator E(θ,K, Du) with
the entries

Eij =
(∫

Ω

(xiϕi + xjϕj) dx
)−1 ∫

Ω

(Tg,ij
(
θ,K, Du)− Tg,ji(θ,K, Du)

)
dx.

(4.2)
Finally set

E(θ,K, Du) = E(θ,K, Du)ϕ. (4.3)

Recall that the temperature θ coincides with the given smooth strictly
positive function Θ(x) at the initial moment. We set

θ(x, t) = Θ(x) + ϑ(x, t),

where ϑ is a new unknown function. Finally, for every positive T0, we set

χ(t) = 1 for t ≤ T0, χ(t) = 0 for t > T0. (4.4)

We are now in a position to formulate the modified system of equations and
boundary and initial conditions. Since θ(x, 0) = Θ(x) and K(x, 0) = R(x) +
k0(x) it is convenient to formulate the problem in terms of the perturbations

ϑ(x, t) := θ(x, t)−Θ(x), k(x, t) = K(x, t)−R(x)

The functions ϑ and k are considered as new unknowns and should be defined
along with a solution to the problem We are now in a position to formulate
the modified problem.

Problem M. For given T ≥ T0 > 0, (f ,h), Θ(x), R(x), and k0(x), find
a deformation field u, a temperature θ, and a transplant K which admit the
representation

u(x, t) = x+ S(t)x+ v(x, t) in Ω × (0, T ),

θ(x, t) = Θ(x) + ϑ(x, t), K(x, t) = R(x) + k(x, t) in Ω × (0, T ),
(4.5a)

where S(t) is an unknown skew-symmetric matrix and v satisfies the conditions∫
Ω

v(x, t) dx = 0,

∫
Ω

(∂ivj(x, t)− ∂jvi(x, t)) dx = 0 (4.5b)

for all ij and t ∈ [0, T ]. The functions ϑ, k, v, and the matrix S should satisfy
the static equations

div Tg(θ,K, Du) + E(θ,K, Du) + f = 0 in Ω × (0, T ), (4.5c)
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−Tg(θ,K, Du)n + h = 0 on ∂Ω × (0, T ), (4.5d)

SC− (SC)> + H(v)−H>(v) = 0 in (0, T ), (4.5e)

and the evolutionary equations

cT
∂ϑ

∂t
−∆

( ϑ

Θ2

)
= χ(t)

{
cT
∂ϑ

∂t
−∆

( ϑ

Θ2

)
− cT

∂

∂t

( θ

JK

)
−

∆
(1

θ

)
+ T(ϑ,K, Du) ·D∂u

∂t

}
in Ω × (0, T ),

(4.5f)

∇ϑ · n = 0 on ∂Ω × (0, T ), ϑ(x, 0) = 0 in Ω (4.5g)

∂k

∂t
= χ(t)g(θ,R + k, Du) in Ω × (0, T ), k(x, 0) = k0(x) in Ω. (4.5h)

Here C(t) and H are matrices with the entries

Cij =

∫
Ω

xifj dx+

∫
∂Ω

xihj ds, Hij =

∫
Ω

vifj dx+

∫
∂Ω

vihj ds. (4.5i)

Our next task is to prove the local solvability of problem (4.5) and to show
that this solution satisfies equations (3.5)-(3.6). We start with the analysis of
the static problem.

5 Static problem

In this section, we consider the following stationary traction problem for a
skew symmetric matrix S and the vector field v(x).

div Tg(θ,K, Du) + E(θ,K, Du) + f = 0 in Ω × (0, T ), (5.1a)

−Tg(θ,K, Du)n + h = 0 on ∂Ω × (0, T ), (5.1b)

SC− (SC)> + H(v)−H>(v) = 0 in (0, T ), (5.1c)

u(x) = x+ Sx+ v(x) in Ω × (0, T ),∫
Ω

v(x, t) dx = 0,

∫
Ω

(∂ivj(x, t)− ∂jvi(x, t)) dx = 0
(5.1d)

Here the load (f ,h), the transplant K, and the temperature θ are considered
as given functions of variable x. We employ the Implicit function theorem in
order to show that problem (5.1) has a strong solution which is locally unique
and continuously depends on θ and K. Before doing so, we define the special
Banach spaces of functions of the variable x ∈ Ω.
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Definition 4 For every p ∈ (1,∞), let denote by Xp the closed subspace of
W 2,p(Ω) which consists of all functions v : Ω → R3 satisfying the conditions∫

Ω

v dx = 0,

∫
Ω

(∂ivj − ∂jvi) dx = 0 for all ij. (5.2)

Definition 5 For every p ∈ (1,∞), we denote by Yp the Banach space which
consists of all couples (f ,h) which are equilibrated and have the finite norm

‖f ,h‖Yp
= ‖f‖Lp(Ω) + ‖h‖W 1−1/p,p(Ω).

Definition 6 Denote by S3 the Banach space of all skew-symmetric matrices.
The space S3 is topologically and algebraically isomorphic to R3.

Fix p > 3 and denote by B(r),W (r), V (r), and Σ(r) the balls

B(r) = {θ : ‖θ‖W 1,p(Ω) ≤ r},
V (r) = {v ∈ Xp : ‖v‖Xp

≤ r},
Σ(r) = {S ∈ S3 : |S| ≤ r}.

(5.3)

The following theorem on solvability of problem (5.1) is the main result of this
section

Theorem 2 Let p > 3. Let conditions (H.1)-(H.4) be satisfied. Furthermore,
assume that

K(x) = R(x) + k(x), θ(x) = Θ(x) + ϑ(x). (5.4)

Then there are positive ε0, λ0 and µ > 0 with the following properties. For
every λ ∈ (0, λ0] and ε ∈ (0, ε0] there is µ(ε, λ) > 0 such that for all k ∈ B(λ),
ϑ ∈ B(λ) and for every (f ,h) ∈ Fc with

0 < ‖f‖C(Ω) + ‖h‖C(∂Ω) ≤ ε,

problem (5.1) has a unique solution

v = V(ϑ,k), S = S(ϑ,k) (5.5)

in the ball V (µ)×Σ(µ). The operators V : B(λ)× B(λ)→ V (µ), S : B(λ)×
B(λ) → Σ(µ) are infinitely differentiable and µ = µ(ε, λ) → 0 as (ε, λ) →
(0, 0). This solution admits the estimates

‖V(0, 0)‖Xp
+ |S(0, 0)| ≤ cε, (5.6)

‖V(ϑ′,k′)− V(ϑ′′,k′′)‖Xp
+ |S(ϑ′,k′)− S(ϑ′′,k′′)| ≤

c
(
‖ϑ′ − ϑ′′‖W 1,p(Ω) + ‖k′ − k′′‖W 1,p(Ω)

)
,

(5.7)

for all ϑ′, ϑ′′ ∈ B(λ) and k′,k′′ ∈ B(λ). Here the constant c is independent of
ε and λ. Moreover, the identity

E
(
Θ + ϑ,R + k, I + S(ϑ,k) +DV(ϑ,k)

)
= 0 (5.8)

holds for all (ϑ,k) ∈ B(λ)×B(λ).
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As a corollary, we obtain the following result on the solvability of the
quasistatic problem.

Theorem 3 Let p > 3. Let conditions (H.1)-(H.4) be satisfied. Furthermore
assume that

K(x, t) = R(x) + k(x, t), θ(x, t) = Θ(x) + ϑ(x, t), (5.9)

k(·, t) ∈ B(λ), ϑ(·, t) ∈ B(λ),

∂tϑ ∈ Lp(0, T ;W 1,p(Ω)), ∂tk ∈ Lp(0, T ;W 1,p(Ω)),

where B(λ) is defined in Theorem 2. We also assume that for every t ∈ (0, T )
the couple (f ,h) ∈ C1(0, T ;C(Ω)× C(∂Ω)) satisfies the conditions

(f(t),h(t)) ∈ Fc, ‖f(t)‖C(Ω) + ‖h(t)‖C(∂Ω) ≤ ε ≤ ε0, (5.10)

‖∂tf(t)‖C(Ω) + ‖∂th(t)‖C(∂Ω) ≤ c(‖f(t)‖C(Ω) + ‖h(t)‖C(∂Ω)), (5.11)

where ε0 is defined by Theorem 2. Then, for every t ∈ (0, T ) problem (5.1) has
a unique solution (v(t),S(t)) ∈ V (µ)×Σ(µ). This solution has the represen-
tation

v = V(ϑ,k, t), S = S(ϑ,k, t), (5.12)

in which the operators V(·, t) : B(λ)× B(λ)→ V (µ), S(·, t) : B(λ)× B(λ)→
Σ(µ) are infinitely differentiable, admit the estimates (5.6), and satisfy identity
(5.8). Moreover the function

u(x, t) = x+ S(ϑ,k, t)x+ V(ϑ,k, t) (5.13)

has the time derivative

∂tu = P(ϑ,k, t) +Q1(ϑ,k, t)∂tϑ+Q2(ϑ,k, t)∂tk. (5.14)

The operators P,Qi satisfy the inequalities

‖P(ϑ1,k1, t)− P(ϑ2,k2, t)‖W 2,p(Ω) ≤
c
(
‖ϑ1 − ϑ2‖W 1,p(Ω) + ‖k1 − k2‖W 1,p(Ω)

)
,

(5.15)

‖Qi(ϑ1,k1, t)f −Qi(ϑ2,k2, t)f‖W 2,p(Ω) ≤
c
(
‖ϑ1 − ϑ2‖W 1,p(Ω) + ‖k1 − k2‖W 1,p(Ω)

)
‖f‖W 1,p(Ω),

(5.16)

‖P(ϑ1,k1, t)‖W 2,p(Ω) ≤ c(ε+ λ), (5.17)

for all t ∈ (0, T ), ϑj ∈ B(λ), kj ∈ B(λ), and f ∈ Lp(Ω).

The rest of the section is devoted to the proof of Theorems 2 and 3.
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5.1 Proof of Theorem 2

We reduce the static boundary value problem (5.1) to an operator equation.
To this end, we introduce the operators

Ξ0(v,S, ϑ,k) = div Tg(Θ + ϑ,R + k, I + S +Dv)+ (5.18a)

E(Θ + ϑ,R + k, I + S +Dv) + f ,

Ξb(v,S, ϑ,k) = −Tg

(
Θ + ϑ,R + k, I + S +Dv

)
n + h

∣∣∣
∂Ω
, (5.18b)

Ξe(v,S) =
1

‖f‖C(Ω) + ‖h‖C(∂Ω)

{
SC− (SC)> + H(v)−H(v)>

}
, (5.18c)

Ξ =
(
Ξ0, Ξb, Ξe

)
. (5.18d)

Thus we rewrite (5.1) in the form of the operator equation

Ξ(v,S, ϑ,k) = 0. (5.19)

We apply the Implicit function Theorem in order to resolve this equation with
respect to v and S. To this end, we have to check that the operator Ξ is
smooth and meets all requirements of the Implicit function Theorem. We split
the proof of these facts into a sequence of lemmas. Recall Definitions 4-6 for
spaces Xp, Yp, S3 and definition (5.3) of balls B(r) ⊂ W 1,p(Ω), V (r) ⊂ Yp,
and Σr ⊂ S3.

Lemma 5 Under the assumptions of Theorem 2, there is r > 0 such that the
operator

Ξ : V (r)×Σ(r)×B(r)×B(r)→ Yp × S3

is infinitely differentiable.

Proof Since p > 3, the embedding Yp ↪→ C1(Ω), W 1,p(Ω) ↪→ C(Ω) is contin-
uous. Hence we can choose r so small that

|(R + k)±1| ≤ 2, 1/2 ≤ |(I + S +Dv)(R + k)| ≤ 2

for all k ∈ B(r), v ∈ V (r), and S ∈ Σ(r). Next notice that

Tg(θ,K, Du) =
Θ + ϑ

det (R + k)

∂W

∂Φ

(
(I + S +Dv)(R + k)

)
(R + k)>.

The right hand side can be regarded as a function of the entries of matrices
R, k, S, Dv. It follows from Condition (H.1) that this function is infinitely
differentiable on the range of matrices k ∈ B(r), v ∈ V (r), and S ∈ Σ(r).
The classical results of the finite elasticity theory, see [3], [27] impliy that the
operator

V (r)×Σ(r)×B(r)×B(r) 3 (v,S, ϑ,k) 7→ Tg(θ,K, Du) ∈W 1,p(Ω),
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is infinitely differentiable. Since the embedding W 1,p(Ω) ↪→ W 1−1/p,p(∂Ω) is
continuous, the operator

(Ξ0, Ξb) : V (r)×Σ(r)×B(r)×B(r)→ Lp(Ω)×W 1−1/p,p(∂Ω)

is infinitely differentiable. The operator Ξe : V (r) × Σ(r) → S3 is linear and
continuous. Hence it is obviously infinitely differentiable. It remains to prove
that the operator (Ξ0, Ξb) takes its values in the space of Yp, which is a sub-
space of Lp(Ω)×W 1−1/p,p(∂Ω), see Definition 5. This fact is a straightforward
consequence of the choice of the projection E . It is suffices to prove that the
couple (Ξ0, Ξb) is equilibrated. We begin with the observation that in view of
(4.1)-(4.3),∫

Ω

Ξ0 dx+

∫
∂Ω

Ξb ds =

∫
Ω

div Tg dx−
∫
∂Ω

Tgn ds+ E

∫
Ω

ϕ dx ≡ 0. (5.20)

Next we have ∫
Ω

(xjΞ0,i − xiΞ0, j) dx+

∫
∂Ω

(xjΞb,i − xiΞbj) ds =∫
Ω

(
xj∂p(Tg,ip)− xi∂q(Tg,jq)

)
dx−

∫
∂Ω

(
xjTg,ipnp − xiTg,jqnq

)
ds+∫

Ω

(
Eipxjϕp − Ejqxiϕq

)
dx.

Integrating by part the right hand side, we obtain∫
Ω

(xjΞ0,i − xiΞ0, j) dx+

∫
∂Ω

(xjΞb,i − xiΞbj) ds =

−
∫
Ω

(Tg,ij − Tg,ji) dx+

∫
Ω

(
Eipxjϕp − Ejqxiϕq

)
dx

(5.21)

Since the matrix E is independent of x, it follows from (4.1) and (4.2) that∫
Ω

(
Eipxjϕp − Ejqxiϕq

)
dx =

∫
Ω

(
Eijxjϕj − Ejixiϕi

)
dx =

∫
Ω

(Tg,ij − Tg,ji) dx.

Substituting this equality into (5.21) we obtain∫
Ω

(xjΞ0,i − xiΞ0, j) dx+

∫
∂Ω

(xjΞb,i − xiΞbj) ds = 0.

Combining this result with (5.20), we conclude that the couple (Ξ0, Ξb) is
equilibrated; this completes the proof.

In order to apply the Implicit function theorem we have to prove that the
partial derivative D(v,S)Ξ is invertible at the zero point; hence our next task
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is to calculate this derivative. Recall that the derivative D(v,S)Ξ(v,S, ϑ,k) is
a linear operator which acts on couples (w, ξ) ∈ Xp × S3 by the formula

D(v,S)Ξ(v,S, ϑ,k)[w, ξ] = lim
τ→0

1

τ

{
Ξ(v + τw,S + τξ, ϑ,k)−Ξ(v,S, ϑ,k)

}
(5.22)

Now recall definition (2.20) of the linear form Lg. It follows from (2.21) that(
Lg(Θ,R, I)Dw

)
ij

= lg,ijpq(Θ,R, I) ∂qwp, (5.23)

where the coefficients lg,ijpq are given by (2.22).

Lemma 6 Under the assumptions of Theorem 2,

D(v,S)Ξ(0, 0, 0, 0)[w, ξ] =(
div

(
Lg(Θ,R, I)Dw),−Lg(Θ,R, I)Dwn

∣∣∣
∂Ω
, Ξe(w, ξ)

)
. (5.24)

Proof We begin with calculation of the derivatives of operators Tg and E . We
have

D(v,S)Tg(Θ,R, I)[w, ξ] = lim
τ→0

1

τ

{
Tg(Θ,R, I + τξ + τDw)−Tg(Θ,R, I)

}
≡

Lg(Θ,R, I)(ξ +Dw) = Lg(Θ,R, I)Dw (5.25)

since Lg(Θ,R, I)ξ = 0 for any skew-symmetric matrix ξ. It follows from this
and expression (4.2) for the entries of the matrix E that

D(v,S)Eij(Θ,R, I)[w, ξ] = lim
τ→0

1

τ

{
Eij(Θ,R, I + τξ + τDw)− Eij(Θ,R, I)

}
={∫

Ω

(xiϕi + xjϕj) dx
}−1 ∫

Ω

(
(Lg(Θ,R, I)Dw)ij − (Lg(Θ,R, I)Dw)ji

)
dx.

Next notice that in view of (5.23) and Lemma 4,

(Lg(Θ,R, I)Dw)ij − (Lg(Θ,R, I)Dw)ji =

= (lg,ijpq(Θ,R, I)− lg,jipq(Θ,R, I))∂qwp = 0.

Hence D(v,S)Eij(Θ,R, I) = 0. It follows from this that D(v,S)E(Θ,R, I) = 0.
Combining this result with (5.25) and (5.18a)-(5.18b), we obtain

D(v,S)(Ξ0(0, 0, 0, 0), Ξb(0, 0, 0, 0)[w, ξ] =(
div

(
Lg(Θ,R, I)Dw),−Lg(Θ,R, I)Dwn

∣∣∣
∂Ω

)
. (5.26)

It remains to note that the operator Ξe is linear and coincides with its deriva-
tive. This completes the proof.
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Lemma 7 . Let Θ ∈ C∞(Ω), 0 < c−1 ≤ Θ ≤ c, and R ∈ C∞(Ω) be a field of
orthogonal matrices. Then there is c > 0 such that for every (F,H) ∈ Yp the
boundary value problem

div
(
Lg(Θ,R, I)Dw

)
+ F = 0 in Ω,

−Lg(Θ,R, I)Dwn + H = 0 on ∂Ω
(5.27)

has a unique solution w ∈ Xp. This solution admits the estimate

‖w‖Xp
≤ c‖(F,H)‖Yp

. (5.28)

Proof It follows from (5.23) that equations (5.28) form a second order system
of partial differential equations with the Neumann type boundary condition

∂j
(
lg,ijpq(Θ,R, I)∂qwp

)
+ Fi = 0 in Ω,

−
(
lg,ijpq(Θ,R, I)∂qwp

)
nj +Hi = 0 on ∂Ω

(5.29)

In view of the conditions of the lemma, the coefficients of these equations are
smooth in Ω. The problems of this type were thoroughly investigated in [26]
and we simply recall the corresponding result. Along with problem (5.29) we
will consider the homogeneous boundary problem

∂j
(
lg,ijpq(Θ,R, I)∂qwp

)
= 0 in Ω,

−
(
lg,ijpq(Θ,R, I)∂q.wp

)
nj = 0 on ∂Ω

(5.30)

Let us show that problem (5.27) define the nonnegative quadratic form. To
this end notice that in view of (2.25) the inequality∫

Ω

div
(
Lg(Θ,R, I)Dψ

)
·ψ dx−

∫
Ω

(
Lg(Θ,R, I)Dψ]

)
n ·ψ ds =∫

Ω

Lg(Θ,R, I)Dψ ·Dψ dx ≥ c(Θ)

∫
Ω

|Dψ + (Dψ)>|2 dx.
(5.31)

holds for all smooth functions ψ. From this and Korn inequality, we obtain
that for every smooth ψ,∫

Ω

div
(
Lg(Θ,R, I)Dψ

)
·ψ dx−

∫
Ω

(
Lg(Θ,R, I)Dψ

)
n ·ψ ds+∫

Ω

|ψ|2 dx ≥ c‖ψ‖2W 1,2(Ω).

From this and Theorem 12, [26], we conclude that boundary problem (5.29)
is elliptic and the boundary condition satisfies the completing conditions. The
general theory of elliptic boundary value problems implies that in this case
any weak solution w ∈W 1,2(Ω) to problem (5.29) satisfies the estimate

‖w‖W 2,p(Ω) ≤ c
(
‖F‖Lp(Ω) + ‖H‖W 1−1/p,p(∂Ω) + ‖w‖W 1,2(Ω)

)
, (5.32)
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where c is independent of w, F, and H. Moreover, see [26], problem (5.29) has a
weak solution w ∈W 1,2(Ω) for every couple (F,H) ∈W 1,2(Ω)′×W−1/2,2(Ω)
satisfying the solvability condition

〈F,w∗〉+ 〈H,w∗〉 = 0, (5.33)

for all solutions w∗ ∈ W 1,2(Ω) of the transposed homogeneous problem.
Since the transposed problem to (5.29) is elliptic and satisfies the complet-
ing condition, we have w∗ ∈ C∞(Ω). On the other hand, problem (5.29) is
symmetric and hence w∗ satisfies equations and boundary conditions (5.30).
From this and estimate (5.31), we conclude that Dw∗ + (Dw∗)> = 0. Hence
w∗ = const. + S∗x, where S∗ is an arbitrary skew symmetric matrix. On the
other hand, in view of Lemma 3, we have Lg(Θ,R, I)S∗ = 0.Hence all solutions
to the homogeneous transposed problem are in the form w∗ = const.+S∗x. In
this case, the solvability condition (5.33) simply means that the couple (F,H)
is equilibrated. From this and Definition 5 of the Banach space Yp, we con-
clude that for every (F,H) ∈ Yp, problem (5.29) has a solution w ∈W 2,p(Ω)
satisfying (5.32). This solution is not unique. However, we can choose w∗ =
const. + S∗x in such a way that after change of variable w → w − w∗, the
function w will satisfy the conditions∫

Ω

w dx = 0,

∫
Ω

Dw dx is symmetric,

i.e. w ∈ Xp. Because of Korn inequality, such a solution is unique and hence

‖w‖Xp
= ‖w‖W 2,p(Ω) ≤ c‖(F,H)‖Yp

.

This completes the proof.

Lemma 8 Under the assumptions of Theorem 2, the operator D(v,S)Ξ(0, 0, 0, 0)
has a continuous inverse

D(v,S)Ξ(0, 0, 0, 0)−1 : Yp × S3 → Xp × S3,

which norm is bounded by the constant independent of f and h.

Proof Choose an arbitrary (F,H) ∈ Yp and G ∈ S3. It suffices to prove that
the equation

D(v,S)Ξ(0, 0, 0, 0)[w, ζ] = (F,H,G) (5.34)

has a unique solution (w, ζ) ∈ Xp × S3, and this solution admits the estimate

‖w‖Xp
+ |ζ| ≤ c( ‖(F,H)‖Yp

+ |G| ). (5.35)

In view of Lemma equation (5.34) and formula (5.18c), equation (5.34) can be
written in the form

div
(
Lg(Θ,R, I)Dw

)
− F = 0 in Ω,

−Lg(Θ,R, I)Dwn−H = 0 on ∂Ω
(5.36)
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ζC− (ζC)> = −H(w) + H(w)> + (‖f‖C(Ω) + ‖h‖C(∂Ω))G (5.37)

It follows from Lemma 7 that the boundary value problem (5.36) has a unique
solution w ∈ Xp such that

‖w‖Xp
≤ c‖(F,H)‖Yp

. (5.38)

Next, it follows from Remark 2 that the matrix equation (5.37) has a unique
solution which satisfies the inequalities

|ζ| ≤ c|G|+ c(‖f‖C(Ω) + ‖h‖C(∂Ω))
−1|H(w)|.

On the other hand, expression (4.5i) for H gives

|H(w)| ≤
∫
Ω

|f ||w| dx+

∫
∂Ω

|h||w| ds ≤

c(‖f‖C(Ω) + ‖h‖C(∂Ω))‖w‖C(Ω)) ≤ c(‖f‖C(Ω) + ‖h‖C(∂Ω))‖w‖Xp
.

Thus we get

|ζ| ≤ c|G|+ c‖w‖Xp
.

Combining this estimate with (5.38) we arrive at (5.35), and the lemma follows.

Proof of Theorem 2 We are now in a position to complete the proof of Theorem
2. By Lemma 5, the operator

Ξ : V (r)×Σ(r)×B(r)×B(r)→ Yp × S3.

is infinitely differentiable, and the norms of its derivatives depend only on
Θ, R, Ω, p and r. Next, by Lemma 8, the operator D(v,S)Ξ(0, 0, 0, 0) has a
bounded inverse

D(v,S)Ξ(0, 0, 0, 0)−1 : Yp × S3 → Xp × S3.

Finally,

‖Ξ(0, 0, 0, 0)‖Yp×S3 = ‖(f ,h, 0)‖Yp×S3 ≤ ε.

Hence, Ξ satisfies all conditions of the Implicit function Theorem. Applying
this theorem, we conclude that there are positive ε0, λ0 with the following
properties. For every λ ∈ (0, λ0] and ε ∈ (0, ε0] there is µ(ε, λ) > 0 such that
for all k ∈ B(λ), ϑ ∈ B(λ) the operator equation

Ξ(v,S, ϑ,k) = 0

has the only solution v = V(ϑ,k), S = S(ϑ,k), in the ball V (µ)×Σ(µ). The
operators V : B(λ) × B(λ) → V (µ), S : B(λ) × B(λ) → Σ(µ) are infinitely
differentiable and µ = µ(ε, λ) → 0 as (ε, λ) → (0, 0). The norm of derivatives
of the mappings V and S are bounded by constants depending only on Θ,
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R, Ω, p and r. It follows from this that this mappings satisfy inequalities
(5.6)-(5.7). It remains to prove identity (5.8). We have for all i = 1, 2, 3

∂pTg,ip(θ,K, Du) + Ei(θ,K, Du) + fi = 0 in Ω,

where

θ = Θ + ϑ, K = R + k, Du = I + S(ϑ,k) +DV(ϑ,k).

Multiplying both the sides of this equality by uj and integrating the result by
parts we obtain∫

Ω

fiuj dx+

∫
∂Ω

hiuj ds+

∫
Ω

Eiuj dx =

∫
Ω

Tg,ip∂puj dx.

After the transmutation (i, j)→ (j, i), we obtain∫
Ω

(Eiuj − Ejui) dx+

∫
Ω

(fiuj − fjui) dx+

∫
∂Ω

(hiuj − hjui) ds =∫
Ω

(
Tg,ip∂puj − Tg,jp∂pui

)
dx ≡ Jij .

(5.39)

Notice that

Jij =

∫
Ω

(
Tg(θ,K, Du)(Du)>

)
ij
dx−

∫
Ω

(
Tg(θ,K, Du)(Du)>

)
ji
dx

Recalling expression (2.19) for Tg, we obtain

Tg(θ,K, Du)(Du)> =
1

JK
T(θ, Φ)K>(Du)> =

1

JK
T(θ, Φ)Φ>,

where Φ = DuK. From this and Condition (H.2), we conclude that the matrix
Tg(θ,K, Du)(Du)> is symmetric. Hence Jij = 0. Combining this result with
(5.39), we obtain∫

Ω

(Eiuj − Ejui) dx+

∫
Ω

(fiuj − fjui) dx+

∫
∂Ω

(hiuj − hjui) ds = 0. (5.40)

Recalling that ui = xi + Sipxp + vi and noting that the couple (f ,h) is equili-
brated, we obtain ∫

Ω

(fjui − fiuj) dx+

∫
∂Ω

(hjuj − hiuj) ds =

Sip

(∫
Ω

xpfj dx+

∫
∂Ω

xphj ds
)
− Sjp

(∫
Ω

xpfi dx+

∫
∂Ω

xphi ds
)

+∫
Ω

(fjvi − fivj) dx+

∫
∂Ω

(hjvj − hivj) ds = SipCpj − SjpCpi +Hij(v)−Hji(v) =

(SC)ij − (SC)>ij +Hij(v)−H>ij (v) = 0
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because of (5.18d) and (5.19). From this and (5.40) we obtain∫
Ω

(Eiuj − Ejui) dx = 0

Recalling formulae (4.1)-(4.3) for E and noting that the matrix E is skew-
symmetric, we can rewrite this equality in the form

Eij

∫
Ω

(ϕjxj + ϕjxi) dx+ Υij − Υji = 0,

where

Υij = Eip

∫
Ω

ϕp(S + v)j dx

admits the estimate

|Υij | ≤ |E|(|S|+ ‖v‖C(Ω)) ≤ c|E|µ(ε, λ). (5.41)

From this and (4.1) we obtain |E|(1 − cµ(ε, λ)) ≤ 0. Choosing ε and λ suf-
ficiently small and noting that µ → 0 as (ε, λ) → 0 we finally obtain E = 0
which along with (4.3) yields E = 0.

Corollary 1 Let all assumptions of Theorem 2 be satisfied. Then we can
choose ε0, λ0 in such a way that for every λ ∈ (0, λ0], ε ∈ (0, ε0] and for
all k ∈ B(λ), ϑ ∈ B(λ) and for every (f ,h) ∈ Fc with

0 < ‖f‖C(Ω) + ‖h‖C(∂Ω) ≤ ε,

the operator

Λ(ϑ,k) ≡ Dv,SΞ(V(ϑ,k),S(ϑ,k), ϑ,k) : Xp × S→ Yp × S3

has a continuous inverse

Λ(ϑ,k)−1 : Yp × S3 → Xp × S3,

which norm is bounded by a constant independent of ϑ, k. The mapping

B(λ)×B(λ) 3 (ϑ,k)→ Λ(ϑ,k)−1 ∈ L(Yp × S→ Xp × S3)

is differentiable, and the norm of its derivative is bounded by a constant inde-
pendent of ϑ, k, and t.

Proof In view of Lemma 5, the operator-valued function

V (r)×Σ(r)×B(r)×B(r) 3 (v,S, ϑ,k)→
Dv,SΞ(v,S, ϑ,k) ∈ L(Xp × S3 → Yp × S3) (5.42)

is infinitely differentiable, and hence it is continuous. On the other hand,
Lemma 8 implies that the operator D(v,S)Ξ(0, 0, 0, 0) has a continuous in-
verse which norm is bounded by the constant independent of f and h. Hence
we can choose λ∗ > 0, µ∗ > 0 such that for all (v,S, ϑ,k) ∈ V (µ∗)×Σ(µ∗)×
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B(λ∗) × B(λ∗) the operator Dv,SΞ(v,S, ϑ,k) : Xp × S3 → Yp × S3 also has
a continuous inverse which norm is bounded by a constant independent of ϑ,
k and (f ,h). Next, in view of Theorem 2, the couple (V(ϑ,k),S(ϑ,k) belongs
to the ball V (µ) × Σ(µ) for (ϑ,k) ∈ B(λ) × B(λ), where µ = µ(λ, ε) → 0 as
(λ, ε) → 0. Hence, we can choose λ0 > 0 and ε > 0 such that λ0 ≤ λ∗ and
µ(λ, ε) ≤ µ∗ for all λ ∈ (0, λ0] and all ε ≤ ε0. It remains to note that in view
of Lemma 5 and Theorem 2, the mapping

B(λ)×B(λ) 3 (ϑ,k)→ Λ(ϑ,k) ∈ L(Xp × S3 → Yp × S3)

is infinitely differentiable. Differentiability of Λ−1 and the boundedness of its
derivative follows from the identity DΛ−1 = −Λ−1DΛΛ−1. This completes the
proof.

5.2 Proof of Theorem 3

Denote by Ξ(v,S, ϑ,k, t), t ∈ [0, T ], the nonlinear operator defined by relations
(5.18) with (f ,h) replaced by (f(t),h(t)). It follows from the conditions of
Theorem 3 that for every t ∈ [0, T ] the couples (f(t),h(t)) and (ϑ(t),k(t))
meet all requirements of Theorem 2. It follows from this theorem that for
every t ∈ [0, T ], the operator equations

Ξ(v,S, ϑ(t),k(t), t) = 0 (5.43)

has the only solution

v = V(ϑ,k, t), S = S(ϑ,k, t), (5.44)

in the ball V (µ) × Σ(µ). The operators V and S are defined by Theorem 2.
The only difference is that they depend on t, since f and h depend on t. The
operators V and S meet all requirements of Theorem 2. In particular, they
are infinitely differentiable with respect ϑ and k and their derivatives satisfy
inequalities (5.6)-(5.7). Moreover, in view of Corollary 1, the operator

Λ(ϑ,k, t) ≡ Dv,SΞ(V(ϑ,k, t),S(ϑ,k, t), ϑ,k, t) : Xp × S→ Yp × S3

has a continuous inverse

Λ(ϑ,k, t)−1 : Yp × S3 → Xp × S3,

which norm is bounded by a constant independent of ϑ, k. The mapping

B(λ)×B(λ) 3 (ϑ,k)→ Λ(ϑ,k, t)−1 ∈ L(Yp × S3 → Xp × S3)

is differentiable, and the norm of its derivative is bounded by a constant inde-
pendent of ϑ, k, and t.

Hence Theorem 3 will be proved if we show that the time derivative of
Id + S + v admits the representation (5.14) with operators P, Qi satisfying
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inequalities (5.15). In order to do so we rewrite operator equation (5.44) in
the form

Ξ0(v,S, ϑ(t),k(t), t) = 0, Ξb(v,S, ϑ(t),k(t), t) = 0,

SC− (SC)> + H(v)−H(v)> = 0.

Differentiating both sides of these equalities by t and recalling expression (5.18)
for the operator Ξ, we obtain

Λ(ϑ,k, t)[∂tv, ∂tS] = G + T1(ϑ,k)[∂tϑ] + T2(ϑ,k)[∂tk] = 0.

where the linear operators Ti are defined by the equalities

T1(ϑ,k) = DϑΞ(V(ϑ,k, t),S(ϑ,k, t), ϑ,k, t), T2(ϑ,k) = DkΞ(V(ϑ,k, t),S(ϑ,k, t), ϑ,k, t).

and vector valued function G is defined by

G =
(
∂tf , ∂th,

1

‖f‖C(Ω) + ‖h‖C(∂Ω)

{
SCt − (SCt)

> + Ht(v)−Ht(v)>
})
.

Here v = V(ϑ(t),k(t), t), S = S(ϑ(t),k(t), t), the matrix Ct and the integral
operator Ht are defined by formulae (4.5i) with f and h replaced by ∂tf and
∂th.

Since for every t ∈ [0, T ] the mapping

V (r)×Σ(r)×B(r)×B(r) 3 (v,S, ϑ,k)→ Ξ(v,S, ϑ,k) ∈ Yp × S3

is infinitely differentiable, the mappings

B(λ)×B(λ) 3 (ϑ,k)→ Ti(ϑ,k, t) ∈ L(W 1,p(Ω)→ Yp × S3)

are differentiable, and the norms of their derivatives are bounded by a constant
independent of ϑ, k, and t. Thus we get

(∂tv, ∂tS) = −Λ(ϑ,k, t)−1
(
G + T1(ϑ,k, t)[∂tϑ] + T2(ϑ,k, t)[∂tk]

)
.

Now introduce the projections

Π1 : [∂tv, ∂tS]→ ∂tv, Π2 : [∂tv, ∂tS]→ ∂tS.

Noting that
∂tu = ∂tS x+ ∂tv,

we obtain the desired representation

∂tu = P(ϑ,k, t) +Q1(ϑ,k, t)∂tϑ+Q2(ϑ,k, t)∂tk. (5.45)

with vector-valued function P and the linear operators Qi defined by

P = −Π2

(
Λ−1G

)
x−Π1Λ

−1G, (5.46)

Q1[∂tϑ] = −Π2

(
Λ−1 T1[∂tϑ]

)
x−Π1Λ

−1 T1[∂tϑ], (5.47)

Q2[∂tk] = −Π2

(
Λ−1 T2[∂tk]

)
x−Π1Λ

−1 T2[∂tk], (5.48)
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where

Λ = Λ(ϑ,k, t), Ti = Ti(ϑ,k, t).

Notice that the mappings

B(λ)×B(λ) 3 (ϑ,k)→ P(ϑ,k, t) ∈W 1,p(Ω),

B(λ)×B(λ) 3 (ϑ,k)→ Qi(ϑ,k, t) ∈ L
(
W 1,p(Ω)→W 2,p(Ω)

)
are continuously differentiable as products of infinitely differentiable mappings.
Moreover, the norms of their derivatives are bounded by a constant indepen-
dent on ϑ, k and t. Hence these mappings satisfy the Lipschitz condition in
B(λ) × B(λ) uniformly in t, which yields dthe esired estimates (5.15)-(5.16).
It remains to prove the estimate (5.17). To this end, notice that the operator
Λ−1 : Yp × S3 → Xp × S3 is bounded and Y is continuously embedded in
W 2,p(Ω). From this and conditions (5.10)-(5.11), we finally obtain

‖P‖W 2,p(Ω) ≤ c‖G‖Lp(Ω) ≤ c(‖∂tf(t)‖C(Ω) + ‖∂th(t)‖C(∂Ω))+

‖∂tf(t)‖C(Ω) + ‖∂th(t)‖C(∂Ω)

‖f(t)‖C(Ω) + ‖h(t)‖C(∂Ω)
(|S|+ ‖v‖L1(Ω)) ≤

cε+ c|S|+ c‖v‖L1(Ω) ≤ c(ε+ λ),

and the theorem follows.

6 Proof of Theorem 1

We are now in a position to prove the main Theorem 1 on solvability of the
traction boundary value problem (3.5)-(3.6). First we prove the local exis-
tence and uniqueness of solutions to the modified boundary value problem
(4.5). Next we show that solutions to the modified problem serve as solutions
to problem (3.5)-(3.6). In order to prove the solvability of the modified prob-
lem (4.5), we employ Theorem 3. Using this theorem, we eliminate u from
equations (4.5) and reduce the modified problem to the system of evolution-
ary operator equations. To do this, it is convenient to introduce the following
operators

N0 = −κχ∆ 1

Θ
, (6.1a)

N1(ϑ,k) = χ
(
cT (Θ + ϑ)

1

J2
K

∂tJK − cT
( 1

JK
− 1
)
∂tϑ
)
, (6.1b)

N2(ϑ,k) = −κχ∆
( ϑ2

Θ2(Θ + ϑ)

)
(6.1c)

M(ϑ,k) = χTg(Θ + ϑ,R + k, Du) ·D∂tu,
G(ϑ,k) = g(ϑ,R + k, Du)

(6.1d)
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Here χ(t) is given by (4.4), and Du, ∂tu are given by

Du = I + S(ϑ,k, t) +DV(ϑ,k, t),

∂tu = P(ϑ,k, t) +Q1(ϑ,k, t)[∂tϑ] +Q2(ϑ,k, t)[∂tk],
(6.1e)

where the operators S, V, P, and Qi are defined by Theorem 3. Denote by Q
the cylinder Q = Ω × (0, T ). Using this notation and recalling Theorem 3, we
can rewrite problem 4.5 in the form

cT
∂ϑ

∂t
− κ∆

( ϑ

Θ2

)
= N0 +

2∑
1

Ni(ϑ,k) +M(ϑ,k) in Q, (6.2a)

∂k

∂t
= χG(ϑ,k) in Q, (6.2b)

∂nϑ = 0 on ∂Ω × (0, T ), (6.2c)

ϑ(x, 0) = 0, k(x, 0) = k0(x) in Ω. (6.2d)

We will consider problem (6.2) in the Banach spaces Ep and Fp given by the
following definition

Definition 7 For every p ∈ (1,∞) denote by Ep and Fp the Banach spaces
which consist respectively of all functions ϑ : Ω × [0, T ] → R and k : Ω ×
[0, T ]→ R with finite norms

‖ϑ‖Ep = ‖∂tϑ‖Lp(0,T ;W 1,p(Ω)) + ‖ϑ‖Lp(0,T ;W 3,p(Ω)) + ‖ϑ‖L∞(0,T ;W 2,p(Ω)),

‖k‖Fp
= ‖∂tk‖Lp(0,T ;W 1,p(Ω)) + ‖k‖L∞(0,T ;W 1,p(Ω)).

The same notation is used for the spaces of vector-valued and matrix-valued
functions.

Notice that for p > 3, the spaces Ep and Fp are Banach algebras, i. e., there
is c depending only on Ω, T and p such that the inequalities

‖ϑh‖Ep ≤ c‖ϑ‖Ep‖h‖Ep , ‖fk‖Fp ≤ c‖f‖Fp‖k‖Fp

hold for all ϑ, h ∈ Ep and all f, k ∈ Fp.
Now our task is to prove the local solvability of problem (6.2) in the space

Ep×Fp. We split the proof into a sequence of lemmas. The first technical lemma
gives the estimates for the inverse temperature and will be used throughout
the proof.

Lemma 9 Let p > 3. Then there are ρ0 > 0 and c > 0, depending only on p,
Ω, R and Θ, such that

‖(Θ + ϑ)−1‖Ep
≤ c. (6.3)

0 < c−1 < Θ + ϑ < c, |k| ≤ 1/2 (6.4)

|ϑ| < c%, |k| ≤ cρ. (6.5)

for all (ϑ,k) ∈ Γ (ρ0), ρ ∈ (0, ρ0).
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Proof We have

(Θ + ϑ)−1 = Θ−1
∑
k≥0

(Θ−1ϑ)k.

Since Θ ∈ C∞(Ω) is strictly positive function and Ep is a Banach algebra, we
have

‖(Θ + ϑ)−1‖Ep
≤ c

∑
k≥0

ck‖ϑ‖kEp

Choosing %0 ≤ 1/c, we arrive at (6.3). Inequality (6.4) follows from the bound-
edness of the embedding Ep,Fp ↪→ L∞(Q).

The next lemma establishes the properties of the operators Ni. For every
ρ > 0, let denote by Γ (ρ) ⊂ Ep × Fp the ball of radius ρ centered at 0,

Γ (ρ) =
{

(ϑ,k) ∈ Ep × Fp : max
{
‖ϑ‖Ep , ‖k‖Fp

}
≤ ρ

}
.

Lemma 10 Let p > 3. Then there are ρ0 > 0 and c > 0, depending only
on p, Ω, R and Θ, with the following properties. For every ρ ∈ (0, ρ0] and
(ϑj ,kj) ∈ Γ (ρ), j = 1, 2,

‖Ni(ϑ1,k1)−Ni(ϑ2,k2)‖Lp(0,T ;W 1,p(Ω)) ≤ cρ ‖ϑ1−ϑ2‖Ep +c‖k1−k2‖Fp . (6.6)

‖Ni(ϑ1,k1)‖Lp(0,T ;W 1,p(Ω))) ≤ cρ for i = 1, 2, (6.7)

‖N0‖Lp(0,T ;W 1,p(Ω))) ≤ c T
1/p
0 . (6.8)

Proof Let ρ0 be given by Lemma 9, and choose an arbitrary ρ ∈ (0, ρ0] and
(ϑ1,k1), (ϑ2,k2) ∈ Γ (ρ). Since W 1,p(Ω), p > 3, is a Banach algebra, inequali-
ties (6.4), (6.5), and the identity JK = det (I + R>k) imply the estimates

‖J−1K1
− J−1K2

‖W 1,p(Ω) ≤ c‖k1 − k2‖W 1,p(Ω),

‖J−1K1
− 1‖W 1,p(Ω) + |J−1K2

− 1‖W 1,p(Ω) ≤ c(‖k1‖W 1,p(Ω) + ‖k2‖W 1,p(Ω)) ≤ cρ,
‖∂t(J−1K1

− J−1K2
)‖W 1,p(Ω) ≤ c‖∂tk1 − ∂tk2‖W 1,p(Ω) + (‖∂tk1‖W 1,p(Ω)+

‖∂tk2‖W 1,p(Ω))‖k1 − k2‖W 1,p(Ω).

From this and (6.1b), we obtain

‖N1(ϑ1,k1)−N1(ϑ2,k2)‖W 1,p(Ω) ≤ c‖∂tk1 − ∂tk2‖W 1,p(Ω)+

c(‖∂tk1‖W 1,p(Ω) + ‖∂tk2‖W 1,p(Ω))‖k1 − k2‖W 1,p(Ω)+

cρ‖∂t(ϑ1 − ϑ2)‖W 1,p(Ω) + c(‖k1 − k2‖W 1,p(Ω))(|∂tϑ1|+ |∂tϑ2|) ≤ c ‖∂tk1 − ∂tk2‖W 1,p(Ω)+

c(‖∂tk1‖W 1,p(Ω) + ‖∂tk2‖W 1,p(Ω))‖k1 − k2‖W 1,p(Ω) + cρ‖∂t(ϑ1 − ϑ2)‖W 1,p(Ω)+

c(‖k1 − k2‖W 1,p(Ω))(‖∂tϑ1‖W 1,p(Ω) + ‖∂tϑ2‖W 1,p(Ω)).

This leads to the inequality

‖N1(ϑ1,k1)−N1(ϑ2,k2)‖Lp(0,T ;W 1,p(Ω)) ≤ ‖∂tk1 − ∂tk2‖Lp(0,T ;W 1,p(Ω))+

‖k1 − k2‖L∞(0,T ;W 1,p(Ω))(‖∂tk1‖Lp(0,T ;W 1,p(Ω)) + ‖∂tk2‖Lp(0,T ;W 1,p(Ω)))+

cρ‖∂t(ϑ1 − ϑ2)‖Lp(0,T ;W 1,p(Ω)) + c‖k1 − k2‖L∞(0,T ;W 1,p(Ω))(‖∂tϑ1‖Lp(0,T ;W 1,p(Ω))+

‖∂tϑ2‖Lp(0,T ;W 1,p(Ω))) ≤ ‖k1 − k2‖Fp
+ cρ‖ϑ1 − ϑ2‖Ep

,
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which yields estimate (6.6) for N1. The estimate N3 is similar to the estimate
of N2. We have

‖N3(ϑ1)−N3(ϑ2)‖Lp(Q) ≤ c‖
ϑ1

2

Θ + ϑ1
− ϑ2

2

Θ + ϑ2
‖Ep =

‖ (ϑ1 − ϑ2)(Θ(ϑ1 + ϑ2) + ϑ1ϑ2)

(Θ + ϑ1)(Θ + ϑ2)
‖Ep ≤

c‖ϑ1 − ϑ2‖Ep
(‖ϑ1‖Ep

‖ϑ2‖Ep
+ ‖ϑ1ϑ2‖Ep

)‖ 1

Θ + ϑ1
‖Ep
‖ 1

Θ + ϑ2
‖Ep
≤

cρ‖ϑ1 − ϑ2‖Ep
,

which yields the estimate (6.6) for N3. Notice that Ni(0, 0) = 0 for i = 1, 2, 3.
Setting (ϑ2,k2) = 0 and applying (6.6), we obtain (6.7). It remains to note
that

‖N0‖Lp(0,T ;W 1,p(Ω)) ≤ c‖χ‖Lp(0,T0) ≤ cT
1/p
0 .

Lemma 11 Under the assumptions of Theorem 1, there are ρ0 > 0, ε > 0,
and c > 0, depending only on p > 3, Ω, T , R and Θ, with the following
properties. For every ρ ∈ (0, ρ0] and (ϑ1,k1), (ϑ1,k1) ∈ Γ (ρ),

‖M(ϑ1,k1)−M(ϑ2,k2)‖Lp(0,T ;W 1,p(Ω)) ≤
c(ρ+ ε)

(
‖ϑ1 − ϑ2‖Ep + ‖k1 − k2‖Fp

)
.

(6.9)

‖M(ϑi,ki)‖Lp(0,T ;W 1,p(Ω)) ≤ cρ(ε+ ρ). (6.10)

‖G(ϑ1,k1)−G(ϑ2,k2)‖L∞(0,T ;W 1,p(Ω)) ≤ c ‖ϑ1−ϑ2‖Ep
+c‖k1−k2‖Fp

. (6.11)

‖G(ϑ1,k1)‖L∞(0,T ;W 1,p(Ω)) ≤ c. (6.12)

Proof Since G is independent of ∂tu and g is infinitely differentiable, inequal-
ities (6.11) and (6.12) are simpler than (6.9) and (6.10). In order to avoid
repetitions, we prove (6.9) and (6.10) only. We have for a.e. t ∈ (0, T ),

‖M(ϑ1,k1)−M(ϑ2,k2)‖W 1,p(Ω) ≤
‖T(θ1,K1, Du1)−T(θ2,K2, Du2)‖W 1,p(Ω)

(
‖D∂tu1‖W 1,p(Ω) + ‖D∂tu2‖W 1,p(Ω)

)
+(

‖T(θ1,K1, Du1)‖W 1,p(Ω) + |T(θ2,K2, Du2)|
)
‖D∂tu1 −D∂tu2‖W 1,p(Ω),

(6.13)

where

Duj = I + S(ϑj ,kj , t) +DV(ϑj ,kj , t),

∂tuj = DP(ϑj ,kj , t) +Q1(ϑj ,kj , t)[∂tϑj ] +Q2(ϑj ,kj , t)[∂tkj ].
(6.14)

Now choose %0 ≤ λ, where λ is given by Theorem 3. Assume that ε0 is given
by this theorem. It follows from this Theorem and Definition 7 of Banach
spaces Ep and Fp that the S(ϑ(t),k(t), t) and V(ϑ(t),k(t), t) are well defined
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for (ϑ,k) ∈ Γ (ρ), for ρ ≤ ρ0, ε ≤ ε0, and for a. e. t ∈ [0, T ]. In particular, they
satisfy inequalities (5.6) and (5.7), which yield

‖DV(0, 0, t)‖W 1,p(Ω) + |S(0, 0, t)| ≤ c‖V(0, 0, t)‖Xp
+ c|S(0, 0, t)| ≤ cε, (6.15)

‖DV(ϑ1,k1, t)−DV(ϑ2,k2, t)‖W 1,p(Ω) + |S(ϑ1,k1, t)− S(ϑ2,k2, t)| ≤
c‖V(ϑ1,k1, t)− V(ϑ2,k2, t)‖Xp

+ |S(ϑ1,k1, t)− S(ϑ2,k2, t)| ≤
c
(
‖ϑ1(t)− ϑ2(t)‖W 2,p(Ω) + ‖k1(t)− k2(t)‖W 1,p(Ω)

)
≤

c
(
‖ϑ1 − ϑ2‖Ep

+ ‖k1 − k2‖Fp

)
.

(6.16)

Setting (ϑ1,k1) = 0 and next (ϑ2,k2) = 0, we get

‖DV(ϑj ,kj , t)‖W 1,p(Ω) + |S(ϑj ,kj , t)| ≤ cε+ cρ. (6.17)

Next, we have

Tg(θ,K, Du) =
Θ + ϑ

det (I + R>k)

∂W

∂Φ

(
(I + S +DV)(R + k)

)
(R + k)>.

The right hand side can be regarded as a function of the entries of matrices R
k, S, DV. It follows from Condition (H.1) that there is r > 0 such that this
function is infinitely differentiable for |k| ≤ r, |DV| ≤ r, and |S| ≤ r. Now
choose ε0 and ρ0 small enough that 2c%0 < r, 2cε0 ≤ r. It follows from this
and (6.16) that for a.e. t ∈ (0, T ),

‖T(θ1,K1, Du1)(t)−T(θ2,K2, Du2)(t)‖W 1,p(Ω) ≤
c(‖ϑ1(t)− ϑ2(t)‖W 1,p(Ω) + ‖k1(t)− k2(t)‖W 1,p(Ω)+

‖DV(ϑ1,k1, t)−DV(ϑ2,k2, t)‖W 1,p(Ω)+

|S(ϑ1,k1, t)− S(ϑ2,k2, t)| ≤ c
(
‖ϑ1 − ϑ2‖Ep

+ ‖k1 − k2‖Fp

)
.

(6.18)

Notice that Tg(Θ,R, I) = 0. From this and (6.17), we obtain

‖T(θj ,Kj , Duj)(t)‖W 1,p(Ω) =

‖T(Θ + ϑj(t),R + kj(t), I + S +DV)−Tg(Θ,R, I)‖W 1,p(Ω) ≤
c‖ϑj(t)‖W 1,p(Ω) + c‖kj(t)‖W 1,p(Ω) + c‖DV(ϑj ,kj , t)‖W 1,p(Ω)+

|S(ϑj ,kj , t)| ≤ cε+ cρ

(6.19)

Substituting (6.18) and (6.19) into (6.13), we arrive at the inequality

‖M(ϑ1,k1)−M(ϑ2,k2)‖W 1,p(Ω) ≤ c
(
‖ϑ1 − ϑ2‖Ep

+

‖k1 − k2‖Fp

)(
|D∂tu1|+ |D∂tu2|

)
+ c(ε+ ρ)|D∂tu1 −D∂tu2|,

(6.20)

which holds for a.e. t ∈ (0, T ). Recall that ∂tu1 has the representation (6.14),
where the operators P and Qi satisfy inequalities (5.15)-(5.17). In particular,
we have for a.e. t ∈ [0, T ],

‖D∂tui(t)‖W 1,p(Ω) ≤ c‖P(ϑi,ki, t) +Q1(ϑi,ki)[∂tϑi]+

Q2(ϑi,ki, t)[∂tki(t)]‖W 2,p(Ω) ≤
c‖∂tθi(t)‖W 1,p(Ω) + ‖∂tki(t)‖W 1,p(Ω) + c(%+ ε)

(6.21)
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Thus we get

‖D∂tui‖Lp(0,T ;W 1,p(Ω)) ≤ c‖∂tθi‖Lp(0,T ;W 1,p(Ω)) + c‖∂tki‖Lp(0,T ;W 1,p(Ω))+

c(%+ ε) ≤ c(‖θi‖Ep
+ c‖ki‖Fp

) + c(%+ ε) ≤ c(ρ+ ε).

(6.22)

The difference ∂tu1(t)− ∂tu2(t) admits the representation

∂tu1 − ∂tu2 = I1 + I2, (6.23)

where

I1 = Q1(ϑ1,k1)[∂tϑ1 − ∂tϑ2] +Q2(ϑ1,k1, t)[∂tk1(t)− ∂tk2],

I2 = P(ϑ1,k1)− P(ϑ2,k2) +
(
Q1(ϑ1,k1)−Q1(ϑ2,k2)

)
[∂tϑ2]+(

Q2(ϑ1,k1)−Q2(ϑ2,k2)
)
[∂tk2].

Arguing as in the proof of (6.21), we obtain for a.e. t ∈ (0, T ),

‖DI1‖Lp(0,T ;W 1,p(Ω)) ≤ c‖∂tθ1 − ∂tθ2‖Lp(0,T ;W 1,p(Ω))+

c‖∂tk1 − ∂tk2‖Lp(0,T ;W 1,p(Ω)) ≤ c(‖θ1 − θ2‖Ep
+ ‖k1 − k2‖Fp

)
(6.24)

Next, estimates (5.15)-(5.16) imply

‖I2(t)‖W 2,p(Ω) ≤ c
(
‖ϑ1(t)− ϑ2(t)‖W 1,p(Ω)+

‖k1(t)− k2(t)‖W 1,p(Ω)

) (
1 + ‖∂tϑ2(t)‖W 1,p(Ω) + ‖∂tk2(t)‖W 1,p(Ω)

)
≤

c
(
‖ϑ1 − ϑ2‖Ep

+ ‖k1 − k2‖Fp

) (
1 + ‖∂tϑ2(t)‖Lp(Ω) + ‖∂k2(t)‖Lp(Ω)

)
.

which gives

‖DI2(t)‖Lp(0,T ;W 1,p(Ω)) ≤ c
(
‖ϑ1 − ϑ2‖Ep + ‖k1 − k2‖Fp

) (
1+

‖ϑ2‖Ep + ‖k2‖Fp

)
≤ c
(
‖ϑ1 − ϑ2‖Ep + ‖k1 − k2‖Fp

)
.

(6.25)

Substituting (6.25) and (6.24) into (6.23), we obtain

‖D∂tu1 −D∂tu2‖Lp(Q) ≤ c
(
‖ϑ1 − ϑ2‖Ep

+ ‖k1 − k2‖Fp

)
Combining this result with (6.22) and (6.20), we obtain the desired estimate
(6.9). Finally, notice that

‖M(ϑi,ki)‖Lp(0,T ;W 1,p(Ω)) ≤ ‖T(θi,Ki, Dui)‖Lp(0,T ;W 1,p(Ω)) ‖D∂tui‖Lp(0,T ;W 1,p(Ω)).

Combining this result with (6.19) and (6.22), we obtain (6.10).

The next lemma concerns the maximal regularity results for parabolic bound-
ary value problems
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Lemma 12 Let Ω be a bounded domain in R3 with C∞ boundary ∂Ω and
Θ ∈ C∞(Ω) be a strictly positive function. Then for every T > 0 and f ∈
Lp(Q), Q = Ω × [0, T ], p ∈ (3,∞), the problem

cT∂tϑ−∆
( ϑ

Θ2

)
= f in Q,

∂nϑ = 0 on ∂Ω × (0, T ), ϑ(x, 0) = 0 in Ω,
(6.26)

has a unique solution satisfying the inequality

‖ϑ‖Ep
≤ c‖f‖Lp(0,T ;W 1,p(Ω)), (6.27)

where c depends only on Ω, T , p and Θ.

Proof The existence of solution ϑ ∈ Lp(0, T ;W 3,p(Ω)) with ∂ut ∈ Lp(0, T ;W 1,p(Ω))
follows from the general theory of parabolic equations see [22], Theorem 5.4.
Hence it suffices to prove estimate (6.27). Since ∂Ω belongs to the class C∞, we
can introduce the normal coordinates in a neighborhood ∂Ω, see [17],ch.13. It
follows that there is a collection of linearly independent differential operators
ai(x)∇, i = 1, 2, 3 such that ai ∈ C∞0 (Ω), and

a1 = n, ai · n = 0, i = 2, 3 on ∂Ω.

For every integer l ≥ 1 and for all ϑ ∈W l,p(Ω), we have

‖%‖W l,p(Ω) ≤ c(l,ai)
∑
i

‖ai · ∇%‖W l−1,p(Ω) + c(l)‖%‖W l−1,p(Ω) (6.28)

It follows from the maximal regularity results for parabolic boundary value
problems, see [4] and [2], that for every f ∈ Lp(Q) problem (6.27) has a
unique solution satisfying the inequality

‖ϑ‖Lp(0,T ;W 2,p(Ω)) + ‖∂tϑ‖Lp(Q) + ‖ϑ‖C(0,T ;Dp(∆)) ≤ c‖f‖Lp(Q). (6.29)

Here Dp(∆) is the subspace of the Besov space B
2−1/p
p,p (Ω) which consists of

all functions ϑ ∈ B2−1/p
p,p (Ω) such that ∂nϑ = 0 on Ω. Since the embedding

B
2−1/p
p,p (Ω) ↪→ B1

p,p(Ω) = W 1,p(Ω) is bounded, inequality (6.29) implies the
estimate

‖ϑ‖Lp(0,T ;W 2,p(Ω)) + ‖∂tϑ‖Lp(Q) + ‖ϑ‖L∞(0,T ;W 1,p(Ω) ≤ c‖f‖Lp(Q) (6.30)

The same conclusion can be drawn if if we replace the Neumann boundary
condition in (6.26) by the Dirichlet boundary condition ϑ = 0 on ∂Ω× (0, T ).
Now introduce the functions ϑi = ai∇ϑ. It follows from (6.28) that

‖ϑ‖Ep
≤ c

∑
i

(
‖ϑi‖Lp(0,T ;W 2,p(Ω)) + ‖∂tϑi‖Lp(Q) + ‖ϑi‖L∞(0,T ;W 1,p(Ω)

)
+

c
(
‖ϑ‖Lp(0,T ;W 2,p(Ω)) + ‖ϑ‖Lp(Q) + ‖ϑ‖L∞(0,T ;W 1,p(Ω)

)
(6.31)
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Next, applying the operators ai · ∇ to both sides of (6.26) we obtain the
equations

cT∂tϑi −∆
( ϑi
Θ2

)
= fi in Q,

ϑ1 = 0, ∂nϑi = 0, i = 2, 3 on ∂Ω × (0, T ),

ϑi(x, 0) = 0, i = 1, 2, 3 in Ω,

(6.32)

where

fi = ai∇f + ai∆
(
ϑ∇
( 1

Θ2

))
− ∂k

( 1

Θ2
∂kai · ∇ϑ

)
− ∂kai · ∂k

( 1

Θ2
∇ϑ
)

Since ai and Θ−2 belong to the class C∞(Ω), we have

‖fi‖Lp(Ω×(0,T )) ≤ c‖f‖Lp(0,T ;W 1,p(Ω)) + c‖ϑ‖Lp(0,T ;W 2,p(Ω))

From this and maximal regularity estimate (6.30) with ϑ and f replaced by
ϑi and fi we obtain

‖ϑi‖Lp(0,T ;W 2,p(Ω)) + ‖∂tϑi‖Lp(Q) + ‖ϑi‖L∞(0,T ;W 1,p(Ω) ≤
c‖f‖Lp(0,T ;W 1,p(Ω)) + c‖ϑ‖Lp(0,T ;W 2,p(Ω))

which along with (6.29) implies

‖ϑi‖Lp(0,T ;W 2,p(Ω)) + ‖∂tϑi‖Lp(Q) + ‖ϑi‖L∞(0,T ;W 1,p(Ω) ≤ c‖f‖Lp(0,T ;W 1,p(Ω))

Substituting this inequality and inequality (6.29) into (6.31) we obtain desired
estimate (6.27).

We are now in a position to complete the proof of Theorem 1. Fix ρ0
and ε0 meeting all requirements of Lemmas 9-11. Next, consider the mapping
F : (ϑ̃, k̃) 7→ (ϑ,k) defined as a solution to the boundary value problem

cT
∂ϑ

∂t
− κ∆

( ϑ

Θ2

)
= N0 +

2∑
1

Ni(ϑ̃,k) +M(ϑ̃,k) in Q, (6.33a)

∂nϑ = 0 on ∂Ω × (0, T ), ϑ(x, 0) = 0 in Ω, (6.33b)

k(x, t) = k0(x) +

∫ t

0

χ(s)G(ϑ̃(s), k̃(s)) ds in Q. (6.33c)

In view of Lemmas 9-11, the mapping F : Γ (ρ) → Ep × Fp is well defined
for all ρ ∈ (0, ρ0] and ε ∈ (0, ε0]. It follows from inequality (6.12) in Lemma
11 that for every (ϑ̃, k̃) ∈ Γ (ρ), the function k given by (6.33c) satisfies the
inequalities

‖k‖L∞(0,T ;W 1,p(Ω)) ≤ ‖k0‖W 1,p(Ω) + cT0,

‖∂tk‖Lp(0,T ;W 1,p(Ω)) ≤ cT
1/p
0
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since χ(t) vanishes for t > T0. Recalling Definition 7 of the space Fp, we obtain

‖k‖Fp
≤ c(T0 + T

1/p
0 + ‖k0‖W 1,p(Ω)). (6.34)

Choose T0 and k0 so small that c(T0 + T
1/p
0 + ‖k0‖W 1,p(Ω)) ≤ ρ. Thus we get

‖k‖Fp ≤ ρ. (6.35)

Repeating these arguments and applying inequality (6.11) in Lemma 11, we
conclude that for (ϑ̃i, k̃i) ∈ Γ (ρ), i = 1, 2, the corresponding functions ki
satisfy the inequality

‖k1 − k2‖Fp ≤ c(T0 + T
1/p
0 )(‖k̃1 − k̃2‖Fp + ‖ϑ̃1 − ϑ̃2‖Ep). (6.36)

Notice that for such a choice T0 and k0, the couple (ϑ̃,k) ∈ Γ (ρ). Hence we
can estimate the right hand side of (6.33a) using Lemmas 10 and 11. It follows
from inequalities (6.7), (6.8) in Lemma 10, inequality (6.10) in Lemma 11 and
inequality (6.27) in Lemma 6.6 that for every (ϑ̃, k̃) ∈ Γ (ρ) and k = k(ϑ̃, k̃),
a solution to problem (6.33a)-(6.33b) satisfies the inequality

‖ϑ‖Ep
≤ cρ(ρ+ ε). (6.37)

Hence the mapping F takes the ball Γ (ρ) into itself for c(ρ + ε) ≤ 1. Next,
inequality (6.6) in Lemma 10, inequality (6.9) in Lema 11 and inequality (6.27)
in Lemma 6.6 imply that for every (ϑ̃i, k̃i) ∈ Γ (ρ) and ki = k(ϑ̃i, k̃i) the
corresponding solutions ϑi to to problem (6.33a)-(6.33b) satisfy

‖ϑ1 − ϑ2‖Ep ≤ c(ρ+ ε)(‖ϑ̃1 − ϑ̃2‖Ep + ‖k1 − k2‖Fp).

Combining this result with (6.36) and noting that c(T0 +T
1/p
0 ) ≤ ρ, we finally

arrive at the inequality

‖ϑ1 − ϑ2‖Ep + ‖k1 − k2‖Fp ≤ c(ρ+ ε)(‖ϑ̃1 − ϑ̃2‖Ep + ‖k̃1 − k̃2‖Fp).

Hence, for c(ρ + ε) ≤ 1 the mapping F : Γ (ρ) → Γ (ρ) is a contraction.
Therefore, it has a unique fixed point (ϑ,k) in this ball. Obviously (ϑ,k)
satisfies equation (6.33). Applying Theorem 3, we conclude that that functions
(ϑ,k), v = V(ϑ,k and the matrix S = S(ϑ,k) serve as a solution to the
modified problem (4.5). On the other hand, in view of Theorem 3, the corrector
E in the momentum balance equation (4.5c) equals zero. Hence the functions
(ϑ,k) and u = Id + Sx + v form a solution to the main problem (3.5)-(3.6).
This completes the proof of Theorem 1.
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7 Conluding remarks

The obtained results show that the nonlinear growth models proposed in me-
chanics and biology are well posed from the mathematical point of view. The
models admit the local in time, classical solutions. To our best knowledge there
are no such results in the mathematical literature of the subject due to the
complexity of the nonlinear, coupled models. The subsequent papers would be
devoted to the further analysis of the models and some applications as well as
to the numerical solutions of the models. This field of research is important
for real life problems in mechanics, biology and medicine.
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